
Towards a New Inheritance Definition
in Multi-Agent Systems

Antonino Ciuro, Massimo Cossentino, Giuseppe Fontana, Salvatore Gaglio, Riccardo Rizzo and Monica Vitali

Abstract—Growing complexity of software systems leads some
researchers to explore new paradigms like self-organization
and genetic programming. We regard this problem as a new
occurrence of a need that has been partially solved in the past
with the introduction of object-orientation whose most innovative
feature can probably be agreed to be inheritance. In this work,
the authors propose a different approach for solving the initially
discussed process. The definition of a new “nature-inspired”
inheritance is discussed. Agents according to this approach can
reproduce by mixing their genome and generate new agents that
can better fit a specific problem.

Index Terms—Agent-oriented software engineering, Agents
and objects, Relationships between agents and other development
technologies.

I. INTRODUCTION

SOFTWARE complexity continuously grows up and pushes
researchers towards the definition of new techniques for

facing this complexity.
In 1970s, the well-known software crisis encouraged the

adoption of new programming paradigms (object-orientation)
and new design philosophies (waterfall design approaches
were fully exploited and then overcome by more modern
evolutionary and iterative/incremental approaches). Despite the
relevant advantages offered by modern technologies (service-
oriented architectures, model driven engineering, and so on)
new challenges have to be faced. Several researchers think
that a solution to growing software complexity is in the
definition of evolutionary paradigms for software behaviour.
Some of them adopt self-organization [7] as the key strat-
egy for solving complex problems. The idea of designing
a rather simple system (usually composed by autonomous
entities called agents) that can dynamically evolve its be-
haviour towards the achievement of a goal is for sure very
fascinating. The designer needs to define the goal (for instance
by using a formal logics or a kind of fitness function) and the
entities composing the system will reorganize their individual
behaviours and collaborations in order to collectively achieve
the goal. The research presented in this paper starts from
a similar motivation, it is largely inspired by evolutionary
concepts and it aims at exploring the following issue: how
can system entities evolve themselves in order to achieve the
best fitness for solving a problem? This question has usually
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been faced by adopting evolutionary criteria of the information
manipulated by an algorithm (this is the typical application
context of genetic algorithms [6] [5]). If the concept of agent
as a highly encapsulated, autonomous, proactive and social
entity is introduced in this scenario, a different strategy should
be identified because object-oriented inheritance cannot be
applied because it violates the high encapsulation of agents.
Since agents are frequently regarded as live entities the obvious
path for achieving such an evolution is to look at natural
evolutionary processes and the problem becomes defining an
agent-oriented inheritance as the propagation of parents knowl-
edge and abilities to their child with the necessary changes
that may ensure evolution. Modern agent-based architectures
are mostly based on diffused object-oriented languages and
therefore do not offer a specific (agent-oriented) inheritance
feature. Sometimes, delegation is adopted as a surrogate for
that. In order to define a natural evolution paradigm for agents,
it is possible to look at the biological inheritance among
individuals. The proposed approach consists in defining a
genetic representation of the agent (a DNA-like representation
of agent physical and behavioural features), and in allowing
the reproduction of couples of individuals by mixing portions
of their DNA. Casual changes introduced in the DNA mixing
phase also ensure the possibility of pursuing an evolution of
species just like it happens in nature. The paper is organized as
follows: section 2 introduces the proposed approach, section 3
discusses the Genoma framework we developed to implement
the agents’ reproduction process, section 4 introduces a case
study where the proposed approach is used to approximate
some geometrical shapes. Finally some conclusions are drawn
in section 5.

II. THE PROPOSED APPROACH

In object oriented approaches using inheritance makes por-
tions of useful and general code available to a large set of
other classes [9]. Such a code can be easily specialized by
programmers in order to fulfil a new goal.

In the agent oriented world such an inheritance process
doesn’t exist. Some attempts have been proposed in the past
(for instance in [4][8]).

In our approach the focus of inheritance is not the code
but knowledge and ability of the agents, and the “user” is
not a programmer but another agent (the CrosserAgent) that
manages the deployment of new agents with new knowledge
and abilities. We realize this inheritance feature by means of
a reproduction process that starting from two parent agents
(that are not able to solve a specific problem), generates a new



agent that (hopefully) better fits the problem. The solution is
ensured by the generation of several new individuals that in
turn reproduce themselves until the proper result is achieved.

Knowledge and abilities are stored in chromosomes and
modified using techniques coming from genetic programming
(crossover, mutation, and so on). Using the genetic algorithm
point of view, we are looking to a solution in the space
obtained by joining the ability and knowledge spaces. In so
doing, we suggest an agent reproduction process characterized
by two different phenomena:

• from an individualistic point of view: it is highly prob-
able that a part (probably the most useful) of parents’
knowledge and ability is forwarded to their children;

• from a social point of view: the behaviour of the new
agents “moves” towards the achievement of the assigned
goal. This means that plans and knowledge evolve in
order to fulfil the desired service.

The first phenomenon concerns the conservation of the useful
knowledge and abilities of the agent in the reproduction
process. The second phenomenon is about the whole point
of genetic programming: the desired behaviour emerges from
the agent society during evolution and it can be considered as
a “specialization” of the agent.

In order to realize our ideas, we developed the Genoma
Framework; this framework allows us to obtain a society of
agents capable to increment their efficiency and/or to learn
new capabilities. A Genoma agent (an agent that belongs
to the framework) is composed of chromosomes defining
its knowledge about the world and the plans (addressed as
Abilities) that define its behaviours. All the knowledge and
the abilities of the agent are coded in a genome structure.
Using the information in the genome structure it is possible
to implement a reproduction process for the agent. The agent
is developed using the JADE platform so it is able to send
and receive messages to other JADE agents. The knowledge
of the agent is implemented by using Java and it is an instance
of ontological elements. In the Genoma framework, the agent
society is composed by one or more Genoma agents that can
make available many services, and by one agent that manages
the reproduction process: the CrosserAgent. Once activated,
each Genoma agent sends a chromosome containing all the
information that defines the agent to the CrosserAgent.

Inside the agent society all the agents that need a service
can ask for that service to all the others inside the society.
If the required service is not available, or not satisfying, the
agent can ask to the CrosserAgent to activate an evolution
procedure. The CrosserAgent will form a society composed
by descendants of all agents that can deliver a similar service
and it will start the crossover procedure among the selected
individuals. The generation zero will contain a lot of duplicate
agents, if there are not enough individuals. The following gen-
eration will contain many agents of the preceding generation
and new agents obtained by crossing genome of the original
agents. This evolution process will continue until a suitable
agent is obtained (according to some fitness criterion). This
resulting agent will now be introduced in the agent society
and the CrosserAgent will send to the agent that requested
the unsatisfied service its name in order to properly fulfil the

Fig. 1. A sketch of the agent crossover procedure, Genoma agents are white,
selected agents are light gray.

service request (Figure 1). The evolution process operates at
two different levels: knowledge and plan. The knowledge level
is related to instances of (knowledge) objects that belong to the
agent, plans are related to how the agents behave and execute
the required service. The evolution procedure is different for
knowledge and plan and some details will be reported later.

An example will help to explain the full mechanism. Imag-
ine we want to develop an agent capable to escape from a
labyrinth. A simple (but not efficient) way to escape from
a labyrinth is to go ahead and turn on the same side each
time a wall or a turn is met. This plan can be expressed as a
graph where each node corresponds to a choice or an action.
In the upper part of Figure 2 we have two plans for agents
that are trying to solve the labyrinth: the former (agent A
on the left) changes its direction whether it finds a wall or
not. The latter (agent B on the right) tries to move forward
in every circumstance. The nodes of the plans refer to the
knowledge of the agent. This is a consequence of the ontology
structure adopted in PASSI [2] that is composed of: concepts
describing categories of the world, predicates asserting the
status of the previous cited concepts and finally actions that
can affect concepts status. For instance, the action “turn” is
referred to a concept “direction” of the agent. This knowledge
piece, once instantiated in the agent, can have four values:
right, left, forward or backward. We can suppose it has value
left. Both of these agents are unable to solve the problem. The
crossover of these agents generates a new individual who has
acquired the ability to solve the proposed problem as shown
in the lower part of Figure 2. The new agent in Figure 2
inherits from agent B the ability to go ahead if there are not
walls (part of the plan on the no branch of the second decision
node) and from agent A the ability to turn according to the
actual value of “direction”. This value actually depends from
the crossover process applied to the knowledge of the two
agents. In a second scenario, we can suppose agent A having
the value “back” for its direction and agent B having the value
“left” (even if it doesn’t use it in its plan). The new agent can
inherit one or both parents’ knowledges and it will be able to
solve the problem only if it inherits the knowledge direction
with value left. Figure 3 shows a possible crossover of the



Fig. 3. Diagram which shows the relations between the action “Turn” and
the concept “Direction”. The instance on the left belongs to the upper left
agent in Figure 3, the one on the right belongs to the upper right agent. The
instance in the lower part is the knowledge of the new agent generated by
crossover.

knowledge “direction”. The instance of “direction” on the left
belongs to agent A in Figure 2, the one on the right belongs
to agent B. Different tecniques for crossing knowledge will be
explained further on.

III. THE GENOMA FRAMEWORK

The Genoma Framework blends genetic programming to the
JADE agent platform[1][3]. All the information required to
define an agent and its behaviour are coded in a data structure
that is comparable to a genome, as it will be described
later. Genomes belonging to two different exemplars of agents
are mixed in order to obtain a new agent with some new
behaviours.

The basic structure of the framework, as reported in this
paper, is applied to the realization of services delivered by
single agents, but because of the generality of the approach
it can be used for other broader scope tasks. The Genoma
Framework is based on the GenomaAgent agent that is a
specialization of the JADE Agent. The reproduction process,
governed by the CrosserAgent, is applied to couples of these
agents and produces new individuals. In the following a de-
scription of the GenomaAgent agent will be provided in terms
of its structure (subsection III-A) and chromosome (subsection
III-B); after that, subsection III-C provides a description of the
CrosserAgent.

A. The Genoma Agent Structure

The GenomaAgent agent structure is based on a class that
is an extension of the JADE Agent class. The GenomaAgent
class is composed of:

• a global plan representing the ability of the agent;
• a set of knowledge items (instances of ontology ele-

ments);
• a set of tasks that are used in the global plan;
These elements represent the chromosomes of the agent;

more specifically we can talk of an Ability chromosome

(representing the agent global plan and composed by activities
and control nodes), a knowledge chromosome and a set of
task chromosomes (representing the agent activities). Task
chromosomes can, in turn, be represented as the composi-
tion of an Ability and Knowledge chromosome. The Ability
chromosome is composed of activities and control nodes
while the knowledge chromosome is composed of referred
knowledge (that is the portion of the agent knowledge that is
referred in the plan). The global plan (stored in the agent’s
Ability chromosome) manages the agent’s life, defines the
roles the agent can assume during its life-cycle, and manages
the interactions with the environment and the service delivery.
The activities used in the Ability chromosome are elementary
pieces of behaviour that constitute the whole set of the agent
capacities (usually implemented by using tasks in the JADE
platform). Each activity is the representation in the Ability
chromosome of an ontology action (stored in the Knowledge
chromosome as an Action gene). Tasks realizing activities
can have an internal plan that leads the agent towards the
achievement of the related sub-goal. Tasks refer to knowledge
items for manipulating entities of the environment. As a
consequence, Tasks, even though they constitute one of the
agent’s chromosomes, contain an Ability and a Knowledge
chromosome themselves.

All of these elements (ability, knowledge and tasks) define
the agent chromosome structure. In order to simplify the oper-
ations related to the reproduction process, a plan is represented
by a tree structure that is composed by nodes. A node is the
basic element of the tree and can contain an action/activity or
a predicate. It can have one or more predecessors and one or
more successors. If the action or the predicate related to the
node are satisfied, all the successors nodes are activated.

B. Chromosomes

The agent structure can be defined using three chromosome
categories: a Knowledge chromosome, an Ability chromosome
and a Task chromosome. Each chromosome is made by genes;
in the first chromosome, each gene describes an instance of
the ontology (predicates, concepts and actions). The ability
chromosome contains a plan that represents what the agent is
able to do.

Figure 4 reports the genome structure in form of a UML
class diagram.

1) Knowledge Chromosome Crossing: The generated agent
will have a set of knowledge elements derived by the two
parents. If parents own a similar knowledge they will generate
a new knowledge that will be in relation to both the knowledge
of the parents. If one of the parents has a knowledge that does
not have any correspondent to the knowledge of the other
parent, the new knowledge will be in relation only will the
knowledge of one parent (the right parent). In this way, for
each knowledge piece of the parents there will be only one
knowledge piece in the child. On the other side, the knowledge
of the child will be in relationship with at least one knowledge
of the two parents.

The evolution process is realized by applying several differ-
ent crossover techniques to the parents’ genome. This process



Fig. 2. On the left part of the figure the two plans of the parent agents and on the right the resulting plan. The parts of the plan selected for the crossover
procedure are highlighted.

Fig. 4. A UML class diagram representing the agent genome

is strongly conditioned by the need of obtaining a working
agent. In order to achieve this objective, it is necessary
that knowledge crossover will happen only between similar
knowledge elements. There are four techniques to obtain a
new knowledge:

• fusion: the two parents’ knowledge is unified into a single
body of knowledge that will contain a weight or algebraic
average of the parent knowledge

• selection: as in fusion, the two parents’ knowledge orig-
inate a unique knowledge in the child but, in this case,
one of the two is copied and the other one is discarded

• union: the new individual’s knowledge will be composed
by the union of the two parents’ bodies of knowledge.
A frequent use of this technique may produce a very

redundant agent
• copy: it is used if one of the two parents has a knowledge

the other parent has not. In this case the knowledge is
simply copied from the parent to the child.

As it is obvious, we assume that all the knowledge pieces
of an agent may have a reference to other knowledge pieces
or may be referred by portions of the agent plan. Of course, it
is necessary to maintain these references in the child agent
during the reproduction process; otherwise it will contain
some knowledge portions without any reference (and therefore
useless).

An example is in Fig. 5 where the concept “brush” is linked
to the concept “grid” (an agent can draw in the grid by using
a brush). If we remove this link, the crossover may generate



Fig. 5. Crossover where there are referred knowledge pieces

a concept “grid” without any reference to the object “grid”
referred by the two parents.

The algorithm applied for the knowledge chromosomes
crossing is the following:

1) A crossover operation (fusion, selection, union, copy) is
assigned to each knowledge gene element contained in
the agent chromosome;

2) An item, containing the selected operation and the
parents’ knowledge, is added to the list of crossover
operations to be done.

3) The first item of the list is selected and the corresponding
operation is performed. Then the resulting knowledge is
verified:

a) if both the objects referred by the parents’ knowl-
edge were not marked then a new mark is created
with the same crossover operation and it is added
to the bottom of the crossover list

b) if at least one of the knowledge was marked for
the crossover operation, a reference is created.

4) if the list is empty then end, else go to step 3.

2) Plan Chromosome Crossing: Plan crossing is the op-
eration that allows obtaining the child plan from the two
plans of the parents. Plan crossing is some way less complex
than the previous discussed knowledge crossing, because all
the referred knowledge genes have been already crossed at
this point. Generic tasks composing the plan (and referred
in the knowledge as actions) are crossed by using the same
techniques explained in the previous subsection. In this case
it is necessary to distinguish the two parents’ agents in, a
randomly labelled, “mother” and “father” agent. The plan frag-
ment obtained from the “mother” agent will always contain the
starting node and will be obtained as follows:

1) randomly select a cut node
2) cancel all the links that start from the cut node
3) cancel all the nodes that are not reachable

An example of “mother” agent plan is represented in the top-
left part of Figure 2. The plan fragment obtained from the
“father” agent will always contain the end node and will be
obtained as follows:

1) randomly select a cut node
2) cancel all the nodes that are not reachable from the cut

node
An example of “father” agent plan is reported in the top-right
part of Figure 2. The “child” agent plan is obtained substituting
the cut node of the “mother” with the cut node of the “father”
(see bottom plan in Figure 2).

3) Mutation: Mutation allows obtaining a new individual
from a single parent by modifying in a random way one of
its characteristics. If mutation is applied to a knowledge item,
an attribute is selected and a random value is given to the
node. If mutation is applied to a plan a node is replaced
with an equivalent one or a link is added in a random way.
The probability that an efficient individual is obtained after
mutation is low but mutation adds an unpredictable variation
that sometimes allows obtaining unexpected improvements.

C. The Crosser Agent

The CrosserAgent is responsible for managing the repro-
duction process that includes the creation of agent genera-
tions, the execution of new agents, and the evaluation of the
results achieved by each agent. The behaviour of this agent is
composed by a set of tasks executed according to a specific
plan (Figure 6 represents it as a PASSI [2] Task Specification
diagram). More in details, the most relevant components of
this behaviour are:

• Listener: this task is responsible for message receiving
and management. Messages containing agent genome and
crossing requests are usually received by this agent.

• ManageRequest: this task is responsible for creating the
necessary file system structure (namely directories) for
storing next agent generations.

• GenerateChildren: it is responsible for child agent cre-
ation and chromosome crossover operations.

• CompileChildren: it compiles the classes (agents) built
by the GenerateChildren task.

• PollChildren: it instantiates agents of the current gener-
ation and introduces them in the agent platform. Then it
requests them the service that is to be evaluated to esteem
the agent fitness to solve the assigned problem. All the
agents of this generation have a fixed time for performing
the assigned duty. If they complete the work in time, their
fitness is evaluated, otherwise they are discarded.

• EvaluateChildren: it calculates the fitness function value
for each agent and stores it.

• ManageGeneration: it selects the agents that will com-
pose the next generation. This new generation will be
composed of elite agents (the best agents of the current
generation) and the children of this generation that better
realised the required service. If the crossover process is



Fig. 6. The CrosserAgent plan represented as a PASSI Task Specification
diagram

completed (maximum number of generations or maxi-
mum value of fitness function reached) then it selects the
best agent.

In the current implementation of the framework, crossover
operations can be done by only considering agents providing
the same service.

IV. EXPERIMENTAL RESULTS

The discussed approach has been applied to a simple case
study where the goal is to be achieved by a single agent; the
goal consists in reproducing a design in shape and colour (see
the shape at the top of Figure 7).

A. Reproduction of a Graphical Structure

This case study uses an agent-oriented system for solving
a problem characterized by several different variables. The
problem consists in reproducing a shape in both colour and
geometry; the fitness function considers both shape similarity
and colour proximity.

Figure 7 reports the original shape to be reproduced (exper-
iments have been done by adopting different shapes, sizes and
filling colours). Each agent of the first generation (composed
by the two individuals depicted in Figure 7) was able to draw
by using elementary cells (brushes) of square shape. Inside the
brush, it was able to draw a triangle with a vertex on the lower-
right corner (the other agent was able to draw a triangle with
a vertex on the higher-left corner). Each agent designed its
brush in a different colour. An optimal solution to this problem
requires that agents cross their genome in order to learn how
to draw brushes that can produce a good reproduction of the
goal picture in both shape and colour. During the evolution
process, brushes of different size can emerge and the triangle
can change its orientation and even its shape. The fitness
function calculates the percentage of the shape that is filled
(and not left blank) and the similarity in the filling colour to the
goal picture. Figure 8 reports results obtained by individuals of
the fourth generation; they are interesting because they show
the different evolution paths that can be undertaken during

Fig. 7. The objective of the case study is reproducing the shape at the top
of this figure. Initial agents are able to achieve a limited approximation of the
required goal.

Fig. 8. Results obtained by individuals of the fourth generation and the
corresponding fitness function

the process. We found that the number of generations that is
necessary to build in order to find the optimal solution to the
problem depends (as it was expected) on the complexity of the
goal picture. In the reported example, nine generations have
been necessary in order to obtain some individuals (more than
one obtained the same score) achieving the optimal solution.
A few examples of good and optimal solutions obtained from
individuals of the ninth generation are reported in Figure 9.

V. CONCLUSIONS AND FUTURE WORKS

We proposed a new inheritance approach that focuses on
agent knowledge and abilities as a subject of reuse.

In our approach the agents do not inherit code or classes
but behaviours and pieces of knowledge; genetic programming
techniques modify and specialize them in order to fulfil a
defined goal or delivery a requested service. In principle, the
management of this procedure is delegated to an agent so that
this process is automatic and transparent to the user: agents
are evolved by reusing and modifying their knowledge and
abilities without the programmer help.



Fig. 9. Results obtained by individuals of the eight (subfigures (a) and (b))
and ninth generations (subfigures (a1) and (b1))

Many aspects of the proposed method need further investi-
gations: for example we noticed that there are also part of the
plan of the agent that are not used but merely transmitted from
parent to children and they remain present in the agents that
reach the final goal. These parts of plan and knowledge can be
considered a sort of “memory” of the agent society and they
can be useful if another service is requested. In fact from an
optimized set of knowledge pieces and set of abilities it can
be difficult to obtain something new. It is possible to think
that if we optimize the agent by deleting unused knowledge
and abilities future generations will cover a smaller area of the
“solution” space. The impact on the agent functionality, and
on the agent society, of these parts of plan and knowledge that
are not used are worth of more investigations.
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