
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1

  
 

Abstract—The use of design patterns proved successful in 
lowering the development time and number of errors when 
producing software with the object-oriented paradigm. Now the 
need for a reuse technique is occurring for the emergent agent 
paradigm, for which a great effort is currently spending in 
methodology definitions. In this work we present our experiences 
in the identification, description, production and use of agents 
patterns. A repository of patterns was enriched during these 
years so to request a classification criteria and a documentation 
template useful to help user during the selection. 
 

Index Terms—Multiagent systems, patterns, reuse models and 
tools. 

I. INTRODUCTION 
N the last years, multi-agent systems (MAS) achieved a 
remarkable success and diffusion in employment for 

distributed and complex applications. In our research we focus 
on the design process of agent societies, activity that involves 
a set of implications such as capturing the ontology of the 
domain, representing social aspects, and intelligent 
behaviours. In the following, we will pursuit a specific goal: 
lowering the time and costs of developing a MAS application. 
We think that a fundamental contribution could come by the 
definition of reuse techniques and tools providing a strong 
support during the design phase. We identified in design 
patterns a good solution to this need. Significant motivations 
to the use of design patterns in a project are: 
• Patterns communicate knowledge: they allow experts to 

document, reason and discuss systematically about 
solutions applied to specific problems. Patterns also help 
people to learn a new design paradigm or architectural 
style, and help new developers ignore traps and pitfalls 
that have been learned only by costly experiences [8]. 

• Patterns increment quality of software: design patterns 
are signs of quality because their use implies safe and 
elegant solutions that are validated by the experience 
rather than from testing [15]. 

• Patterns improve the documentation process: the 
pattern catalogue constitutes a documentation repository 
where the designer may explore possible solutions for 
his/her problem: each pattern provides a comprehensible 
way of documenting complex software architectures by 
expressing the structure and the collaboration of 

 
 

participants at a level higher than source code [16]. 
• Patterns decrease development time: design patterns 

are strategies helping people to find their way through 
complex situations by applying ready solution to solve 
difficult problems. Also they help in diagnosing, revising, 
and improving a group's work [8][10]. 

• Patterns improve software maintenance: a project 
obtained with patterns reuse is robust and simpler to 
modify with respect to traditional projects [15]. 

 
Our definition of pattern come from traditional object-

oriented design patterns, revised for the agent paradigm. In 
particular we use an ontological approach, strongly influenced 
by the study of multi-agent system (MAS) meta-models.  

In this paper we will present AgentFactory II, a tool for 
working with patterns for agents, integrating a user interface 
to select and apply pattern from a repository. AgentFactory II 
is based on the experience done with a previous version [5] 
that was useful to explore the possibility of design a multi-
agent system using design patterns as building block and 
successively to generate code from them. The major 
innovation of the tool is an expert system able to reason about 
the project and patterns, and a complex system to generate 
source code and documentation.  

In the following we will discuss our tool. In the section II 
we discuss our pattern definition that is the base of our 
approach; in the section IV we illustrate the complex 
architecture adopted to realize the tool; in the section V we 
illustrate the DocWeaver, a specific agent of this architecture, 
that is responsible to generate the documentation in a specific 
agent-oriented style. Finally, in the section VI we report some 
conclusions. 

II. THE PASSI DESIGN PROCESS 
In our work we will refer to the PASSI [3] methodology 

that represents the starting point and the natural context of our 
pattern definition and application. PASSI (Process for Agent 
Societies Specification and Implementation) drives the 
designer from the requirements analysis to the implementation 
phase for the construction of a multi-agent system. The design 
work is carried out through the construction of five models 
obtained by performing twelve sequential and iterative 
activities. Briefly, the phases and activities of PASSI are: 
• System Requirements. It produces a description of the 

functionalities for the system-to-be, driving an initial 
decomposition of the problem according to the agent 

Building Agents with Agents and Patterns 
L. Sabatucci (1), M. Cossentino (2), S. Gaglio (3) 

(1,3) DINFO - Dipartimento di Ingegneria Informatica, Università degli Studi di Palermo - Viale delle Scienze, 90128 Palermo, Italy 
sabatucci@csai.unipa.it; gaglio@unipa.it 

(2) Istituto di Calcolo delle Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche 
cossentino@pa.icar.cnr.it 

I 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2

paradigm. The four activities are: (i) the Domain 
Requirements Description, where the system is described 
in terms of the functionalities; (ii) the Agent Identification 
where agents are introduced for dealing with identified 
requirements; (iii) the Role Identification where agents' 
interactions are described by the introduction of roles; 
(iv) the Task Specification where the plan of each agent is 
draft. 

• Agent Society. It is the phase where the agent paradigm 
is fully exploited. It is composed of four activities: i) in 
the Domain Ontology Description the system domain is 
represented in terms of concepts, predicates and actions; 
ii) the Communication Ontology Description focuses on 
the agents' communications, described in terms of 
referred ontological elements, content language and 
protocol; iii) in the Role Description the distinct roles 
played by agents are detailed within their dependencies. 

• Agent Implementation. It is a model of the solution 
architecture in terms of required classes with their 
attributes and methods. It is composed of two main 
streams of activities (structure definition and behaviour 
description) both performed at the single-agent and multi-
agent levels of abstraction. 

• Code. It is a model of the solution at the code level. It is 
largely supported by patterns reuse and automatic code 
generation. 

• Deployment. It is a model of the distribution of the parts 
of the system across hardware processing unit; it 
describes the allocation of agents in the units and any 
constraint on migration and mobility. 

• Testing. It has been divided into two different activities: 
the Agent and the Society test. In the first one the 
behavior of each agent is verified with regards to the 
original requirements whereas during the Society Test, 
integration verification is carried out together with the 
validation of the overall results of the iteration. 

III. PATTERN FOR AGENT DEFINITION 
In order to work with design pattern we require a formal 

definition. We agree with the traditional object-oriented 
definition for design patterns, but we introduced some 
changes in order to adapt it for the agent paradigm.  

We define a pattern as “a problem which occurs over and 
over again in our environment, and then describes the core 
solution to that problem” [1]; the common use of design 
patterns is to describe best practices, good designs, and 
capture experience in such a way that it is possible for others 
to reuse them [8]. 

Our design patterns approach was conceived during the 

development of the PASSI process [3] with the goal of 
introducing a viable reuse technique for the development of 
MASs: our reuse technique uses some PASSI diagrams for 
describing the proposed solution. In this way the “solution” 
introduced is expressed in agent oriented terms, for instance 
agent, role, communication, goal and so on. 

Jackson in an analysis of the software design [8] 
distinguishes between the problem and the solution contexts: 
the problem and its solution are separated entities located in 
two different conceptual positions. The solution stays in the 
computer and in its software (machine domain) whereas the 
problem is in the world outside from it (application domain). 
Our approach to the definition of agent patterns spreads across 
both of the application and machine domains. However we 
need to specialize the Jackson’s domains to cope with the 
agent concept. When using agents as a design paradigm the 
solution is generally quite abstract respect when it is 
expressed in object oriented terms. We split the machine 
domain in two sub-domains, introducing the “agency domain” 
between the problem and implementation domains (see Fig. 
1). Our pattern architecture is based on these three levels:  

Pattern problem. A fundamental part of a pattern is the 
textual description of the problem for which it may be useful. 
It is composed by: (i) motivation, an explanation of how (and 
why) the pattern works, and why it is good, putting into 
evidence steps and rules required to resolve the problem; (ii) 
the application context describes the conditions under which 
the problem and the solution seem to recur, and for which the 
solution is desirable; (iii) related patterns element describes 

 
Fig. 1 – The three levels architecture for our pattern definition 

Table 1 – Description for the GenericAgent pattern 
Name: GenericAgent 
Classification: internal architecture/single-agent 
Intent: this pattern may be used as the root before 
applying all single-agent patterns because it gives to an 
agent the ability of registering/deregistering to the 
platform services (AMS and DF). 
Motivation: this pattern is useful for agents who want to 
discover if the system offers a specific service and what 
agents can provide it. The GenericAgent pattern adds the 
ability of registration to the platform (white/yellow pages) 
so that the agent is accessible for conversations. 
Preconditions: none. 
Postconditions: the agent is able of registering and de-
registering to AMS e DF. 
Solution (Structure, Participants and Collaboration): the 
target agent is enriched with an attribute for listing the 
description of all its services offered to the community. A 
registerDF() and registerAMS() methods with their 
correspondent deregisterDF() and deregisterAMS() are 
introduced to agent class. 

Related Patterns: this pattern may be the predecessor 
for all single-agent patterns. The LogAgent is a variant of 
this pattern which may be used specifically for 
debugging/testing aims. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3

other patterns that could solve a similar problem. As an 
instance of pattern we report the GenericAgent described in 
details in Table 1. 

Pattern solution. It represents the solution (introduced 
when adopting the pattern) in terms of agent-oriented 
elements. The solution description illustrates the static 
structure and the dynamic behaviour introduced by the pattern 
in terms of structure, participants and collaborations. The 
formal description is a set of rules expressed using a logical 
language based on Jess. These rules are classified in three 
groups: i) the preconditions have to be verified before to 
introduce the pattern, ii) the postconditions are rules to verify 
after the pattern application (they may condition future 
patterns application), and iii) the solution rules that are a 
logical description of the elements constituting the solution 
and their behaviour/interactions. Our patterns for agents are 
explicitly defined to be used in conjunction with the PASSI 
methodology [3]; as a consequence the solution is described 
using some diagrams from the PASSI phases depicting agents’ 
internal structure and social behaviour. Roles, tasks, 
communications, and interaction protocols are examples of the 
involved elements. An instance of rules for the pattern 
solution is shown in Table 2 for the previously introduced 
GenericAgent; in the subsection IV.B we will describe how 
these rules influence the design when the pattern is introduced 
in the project. 

Pattern implementation. This represents the lower level of 
the solution containing the effective implementation in object 
oriented terms. It uses diagrams of PASSI depicting the static 
structure of the involved agents in terms of classes, attributes 
and methods using conventional UML class diagrams and 
dynamic behaviour of one or more agents involved in 
interactions using activity or state-chart diagrams. 

The main feature of our tool is to automatically generate the 
solution at this implementation level. This feature will be 
discussed in the subsection IV.C. 

IV. THE AGENT FACTORY TOOL 
The AgentFactory II was designed and developed after the 

experience obtained developing and using the previous 
version of the tool. The strategic choice distinguishing this 
new version of the tool from the previous one is that this was 

developed as a multi-agent system. 
The system is basically composed by four agent 

organizations [8] (or groups of agents responsible of a 
functional area, see Fig. 2): i) the pattern architect, ii) the 
agent model, iii) the aspect weavers and iv) the object model. 
Each organization will be discussed in detail in the following. 
An agent, external to all the organizations, is the UserAgent 
responsible to interact with the designer, using a GUI (a 
screenshot is reported in Fig. 4); this agent has the goal to 
adapt its GUI to the agents present in the system (that are not 
known a priori); this is realized using communications, 
ontology abstraction and reflection technique. 

A. The Agent Model Organization 
This organization is conceived to realize the agent solution 

level of our architecture (reported in Fig. 2). This organization 
is designed to front an hard problem: to maintain the meta-
model of our patterns independent from the specific 
methodology employed to design a system. This is a complex 
goal because all the agent oriented methodologies use own 
specific meta-model, involving different concepts or assigning 
them different meanings. 

We structured the “Agent Model” as an holonic 
organization (shown in Fig. 3) based on three basic roles (that 
are played by the agents of the organization): i) the MMDF, 
the head of the hierarchy, ii) the Fragment Agents stay at the 
intermediate level, whereas iii) the Model Agents are the 
bodies of this holonic structure. 

 
The most important role on the organization is played by 

the MMDF (MetaModel Directory Facilitator) agent that is 
inspired to the FIPA [6] Directory Facilitator (DF); in the 
abstract architecture defined by FIPA, the DF is the agent 
responsible to maintain the yellow pages for all the services in 
the system; communicating with the DF all the agents may 
register its own services or discovery services offered by other 
agents. The MMDF agent has a similar function but restricted 
to the building of the meta-model to use in the design: at the 

 
Fig. 2 – Organizations and agents involved in the  

AgentFactory II tool 

 
Table 2 - Rules for the GenericAgent pattern 
(deffunction generic_agent (?name) 

(if (generic_agent_precond ?name) then  
    (add_new agent ?name) 
    (add_new agent_action “register_DF” ?name) 
    (add_new agent_action “unregister_DF” ?name) 
    (add_new agent_action “register_AMS” ?name) 
    (add_new agent_action “unregister_AMS” ?name) 
)) 
 
(deffunction generic_agent_precond (?name) 
    (if (exist (agent ?name)) then 
        (return FALSE) 
     else 
        (return TRUE) 
)) 

) 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4

beginning the meta-model is empty; when the model agents 
are executed they register one or more meta-model elements: 
therefore the MMDF is populated at run-time (according to a 
specific methodology). 

The fragment agents represent “pieces of a methodology” 
and are responsible to group model agents coming from the 
same methodology in a unit; this is a double function: i) 
fragment agents coordinate the work among their model 
agents (internal collaboration); ii) fragment agents allow the 
collaboration of elements coming from different 
methodologies (external collaborations). For illustrating this 
concept, in Fig. 3 we have shown a possible configuration for 
the “Agent Model” organization. We have two fragments 
coming from two agent oriented methodologies: PASSI [3] 
and Tropos [3]. Each of these fragments is responsible of 
different elements of the meta-model (requirement, role and 
agent for PASSI, goal, resource and agent for Tropos); 
intersections among model agents may be treated in two 
different ways: a concept may be shared among different 
fragments (as the agent in Fig. 3) or may be exclusive of a 
methodology. 

B. The Pattern Architect Organization 
This is the organization responsible to manage the pattern 

repository and to introduce the rules (of selected patterns) into 
the system. Our pattern implementation is realized using a first 
order language; we have chosen to extend the Jess language 
[12] adding the ability to access to the services offered by the 
Agent Model (for instance to query for a specific element, or 
to introduce a new element). In Table 2 there is an example of 
a pattern: the GenericAgent; it is a pattern used for giving to 
an agent the ability of registering/deregistering to the platform 
services (white/yellow pages). This pattern is useful for agents 
who want to discover if the system offers a specific service 
and what agents can provide it. The pattern is done by a rule, 
generic_agent, that is activated using a parameter (the name 
of the new agent). This simple set of rules verifies 
(precondition) if an agent with the same name exists in the 
project, an then (pattern solution) adds the agent with some 
abilities (register_DF, unregister_DF, register_AMS, 

unregister_AMS). In this example there are no postconditions. 

C. The Aspect Weavers Organization 
A significant characteristic of AgentFactory (already 

present in the early version of the tool) is the automatic code 
generation for multi platforms (until now we supported only 
Jade [2] and FIPA-OS [7], but it was conceived for being 
extendible with other agent-platforms that are compliant with 
the abstract FIPA architecture [6]). The previous version of 
the tool had a code generation engine based on a sequence of 
transformations according to the MDA architecture [13]. In 
this new version we are realizing a more complex 
transformation, that is inspired to the Aspect Oriented 
Programming (AOP) [13] to reduce the gap between the agent 
solution (introduced using the patterns from the repository and 
refined by the designer) and the object-oriented solution (that 
typically is an object oriented system). We inspired to a 
development team where different human-roles (that are 
expert in their own sector) individually work in a specific 
competence area, giving their personal contribution to the 
final solution. In our context agents are the experts and each 
area of competence is an aspect of the agent-oriented solution 
to take in consideration. Agents have to collaborate in order to 
converge all their contribution in the same final object-
oriented code. In the AOP terminology the engine that realize 
this convergence is the aspect weaver; this is the motivation 
for the name of the organization: an aspect weaver is the 
”expert” of a specific sector of the project; it is responsible to 
a specific aspect of the project and to generate the output in 
terms of object-oriented solution. The entire organization is 
organized to weave all the contributions coming from 
different aspects and to meet them in an unique solution.  

We actually realized only three weaver agents: i) an 
ArchitectureWeaver (responsible of the agent skeleton and 
communications), ii) an OntologyWeaver (responsible to add 
an ontology reference to the message exchanged by agents) 
and iii) a DocWeaver (that creates the documentation; it will 
be discussed in details in the section V). The 
ArchitectureWeaver fundamentally carries out the code 
generation functionality of the previous version of 
AgentFactory, generating the base architecture of the agents 
within their abilities/tasks. The OntologyWeaver adds the 
management of the ontology: concept, predicate and actions 

 
Fig. 4 - A screenshot of the AgentFactory User agent 

 
Fig. 3 – Agents and roles in the holonic structure for the “Agent 

Model” organization 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

5

that are used in the agent knowledge and communications.  

D. The Object Model Organization 
This organization is conceived for realizing the agent 

implementation level of our architecture (see Fig. 2); it is 
relative to the object oriented solution. Agents of this 
organization are responsible to treat elements of the object 
oriented paradigm (such as classes, methods, attributes and so 
on). The organization is composed by three agents: i) the MAS 
agent, ii) the Ontology agent and iii) the Testing agent. The 
MAS agent is responsible to handle data for a multi-agent 
system taking in consideration both the static structure of the 
agent and the behaviour of the multi-agent system. It is able to 
export the source code for Jade and FIPA-OS agent platforms. 
The Ontology agent is responsible to generate classes for the 
system ontology (composed by concepts, predicates and 
actions). These classes are serializable and are used in the 
agents’ knowledge and communications. The Test agent (still 
under development) is responsible to generate stub and driver 
agents for simulate the communications and collaborations 
among system agents (integrations testing). 

V. A WEAVER AGENT: DOCWEAVER 
During the development of multi-agent system we suffered 

the lack of a specific technique for documenting our source 
code; we used the Javadoc for generating the API 
documentation (from comments in source code), but we noted 
it was difficult to navigate because it implies a shift in the 
paradigm (from agent-oriented to object-oriented and vice 
versa); whereas the solution is expressed in agent oriented 
terms, the documentation is expressed in object oriented 
terms: the mapping is not direct and easy. Therefore we 
demanded a way for documenting our solution using directly 
an agent oriented style.  

We propose the AgentDoc, an agent oriented style for 
documenting a multi-agent system; terms included in the 
documentation are not fixed, but are depending from the 
specific methodology used and therefore from the specific 
MAS meta model. AgentFactory II has simplified this because 
is naturally inclined to use different meta-models, so we have 
create a DocWeaver agent responsible to generate the 
AgentDoc for the designed MAS.  In order to generate this 
documentation the AgentDoc uses the meta-model in the 
MMDF. This is not enough because the agent requires 
information about how an element of the MAS meta-model 
influences the documentation content. In order to solve this 
problem the DocWeaver uses a (manually built) configuration 
graph that specifies what elements (graph nodes) have to be 
included in the documentation (for each instance of the 
included element an HTML page is generated); whereas the 
relationships among the elements (graph arcs) generate links 
among pages. The result is a navigable hyper textual 
documentation; in the Fig. 5 an example of this documentation 
is shown generated using a meta-model of the PASSI 
methodology. 

VI. CONCLUSIONS AND FUTURE WORKS  
Our conviction is that pattern reuse is a very challenging 

and interesting issue in multi-agent systems as it has been in 
object-oriented ones. However we are aware that the problems 
arising from this subject are quite delicate and risky. 
Nonetheless, we believe, thanks to the experiences made in 
fields such as artificial intelligence and robotics, that it is 
possible to obtain great results with a correct approach. 

In order to support the design of multi-agent system we 
developed a complex multi-agent system for building agents 
with a pattern support. This tool is also able to generate the 
documentation and the source code for the project. Actually 
the code generated is just a bit richer that code generated in 
the previous version, however we are working on a more 
complex organization with a greater number of weaver agents 
involving other aspects as role, task, plan and so on; in this 
context we require a more precise coordination mechanism 
among the weavers. Another improvement under development 
is the Tesing agent, that would be employed for integration 
testing on multi-agent system. 

REFERENCES 
[1] Alexander C. 1979. The Timeless Way of Building. Oxford University 

Press 
[2] Bellifemine F., Poggi A. and Rimassa G. 2001. Developing Multi-agent 

Systems with JADE. In proceedings of The 7th international Workshop 
on intelligent Agents. Agent theories Architectures and Languages (July 
07 - 09, 2000), LNCS 1986, Springer-Verlag, London, pp. 89-103. 

[3] Bresciani P., Giorgini P.,  Giunchiglia F., Mylopoulos J., and Perini A. 
2004. TROPOS: An Agent-Oriented Software Development 
Methodology, Journal of Autonomous Agents and Multi-Agent Systems, 
Kluwer Academic Publishers 8(3), pp. 203-236 

[4] Cossentino M. 2005. From Requirements to Code with the PASSI 
Methodology, In Agent-Oriented Methodologies, edited by B. 
Henderson-Sellers and P. Giorgini, Idea Group Inc., Hershey, PA, USA 

[5] Cossentino M., Sabatucci L. and Chella A. 2003. A Possible Approach 
to the Development of Robotic Multi-Agent Systems. IEEE/WIC Conf. 
on Intelligent Agent Technology (IAT'03). Halifax (Canada), October, 
13-17, pp 539- 44. 

[6] FIPA Abstract Architecture – [Available on Internet] 
http://www.fipa.org/repository/architecturespecs.html 

[7] FIPA-OS Website - [Available on Internet], http://fipaos.sourceforge.net 

Fig. 5 - A screenshot of the documentation generated for the case 
study 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6

[8] Ferber J., Gutknecht O. 1998. A Meta-Model for the Analysis and 
Design of Organizations in Multi-Agent Systems. In Third International 
Conference on Multi Agent Systems (ICMAS'98); p 128. 

[9] Gamma E., Helm R., Johnson R., and Vlissides J. 1994. Design Patterns: 
Elements of Reusable Object-Oriented Software. Addison-Wesley. 

[10] Greenfield J. and Short K. 2003. Software factories: assembling 
applications with patterns, models, frameworks and tools. In Companion 
of the 18th Annual ACM SIGPLAN Conference on Object-Oriented 
Programming, Systems, Languages, and Applications (Anaheim, CA, 
USA, October 26 - 30, 2003). OOPSLA '03. ACM Press, New York, 
NY, pp. 16-27 

[11] Jackson M. 2001. Problem Frames: Analysing and Structuring Software 
Development Problems, Addison-Wesley 

[12] Jess Rule Engine – available at: http://herzberg.ca.sandia.gov/jess/ 
[13] Kiczales, G. 1996. Aspect-oriented programming. ACM Comput. Surv. 

28, 4es (Dec. 1996) 
[14] OMG Model Driven Architecture - [Available on Internet] 

http://www.omg.org/mda/ 
[15] Prechelt L., Unger B., Philippsen M. and Tichy W. 2002. Two 

Controlled Experiments Assessing the Usefulness of Design Pattern 
Documentation in Program Maintenance. IEEE Trans. Softw. Eng. 28(6), 
pp. 595-606.  

[16] Schmidt D. and Stephenson P. 1995. Experience Using Design Patterns 
to Evolve Communication Software Across Diverse OS Platforms, In 
proceedings of the 9th European Conference on Object-Oriented 
Programming, LNCS 952, pp. 399 – 423 

 
 
 
 
 
 
 
 
 
 


