Implementation Level Issues in MAS Modeling

Cossentino Massimo
Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)
Consiglio Nazionale delle Ricerche (CNR)
cossentino@pa.icar.cnr.it

Abstract— The aim of this paper is to focus on the issues
connected with the diagrammatic notations and tools, which
should support developers when moving from the design phase
towards the implementation phase of MASs. The paper deals
with three main research lines: the representation of the inter-
actions between agents and their relationship with the internal
architecture of the single agent, the deployment of MASs, and
the pattern reuse.

I. INTRODUCTION

As evinced from an analysis of the majority of the proposed
languages and methodologies, a great effort has been spending
in defining new metaphors, symbols and diagrammatic no-
tations. But despite this effort the modeling languages and
methodologies proposed still remain incomplete.In particular,
up to now, the study of the issues connected with the mul-
tiagent system implementation phase has not been stressed
enough. The only methodology, which has dealt with these
issues, is the PASSI methodology [1]; and we take it as a
good starting point. The aim of this paper is to focus on
the issues connected with the diagrammatic notations and
tools, which should support developers when moving from the
design phase towards the implementation phase of MASs. We
have identified three main research lines: the representation
of the interactions between agents and their relationship with
the internal architecture of the single agent, the pattern reuse
and the deployment of MASs. The reason for our choice is to
be found in the nearest antecedent technology: object oriented
software technology. We believe that this technology can give
us the right means to understand what we could need in the
agent technology field. In UML 2.0 the deployment diagram
is the only form of implementation diagram and its role is to
show how Artifacts are allocated to Nodes. None of the exist-
ing agent oriented modeling languages provide concepts and
notations to fully capture the multiagent system deployment.
Concerning the MAS implementation phase, we are convinced
of the usefulness of the deployment diagram. Furthermore we
believe that we need another diagram, showing the interactions
between agents and the relationship with the activities flow
inside the single agent, which would be a valid support for
developers. We intend to refer to Agent UML (AUML) [2] [3],
a modeling language based on UML, as a modeling language
used to express the mentioned diagram. The AUML work is
organized as an activity within the FIPA Modeling Technical
Committee [4]. In this paper, we focus on a new subset of
an agent-based UML extension for the specification of the

Poggi Agostino, Rimassa Giovanni and Turci Paola
AOT Lab - Dipartimento di Ingegneria dell’ Informazione
Universita’ degli Studi di Parma
{poggi, rimassa, turci} @CE.UniPR.IT

interactions between agents, and their relationship with the
internal structure of a single agent, and the deployment of
a multiagent system. This is accomplished by extending the
formally-based UML metamodel to support the semantics of
agents and their supporting platforms. In particular, we aim
at showing how UML can be exploited and extended to drive
the implementation phase and to model the deployment of
multiagent systems at the agent level. The presented notation
takes advantage of stereotypes to associate an agent-oriented
semantic with the model elements involved in the diagram. In
order to be competitive today, the modern development process
must allow customers to maximize business opportunities by
enabling them to identify new ones; by ensuring a return on
their investment as early and frequently as possible; and by
allowing them to make changes when they feel the need.
Multiagent systems, as any software development approach,
benefit from sound methodology and notation but there is
more to them. Concrete issues such as APIs, libraries and
infrastructure are also very important to achieve a success
when adopting MAS development in a software project. More-
over our conviction is that pattern reuse is a very challenging
and interesting issue in multiagent systems as it has been in
object-oriented ones. The introduction of an extensive pattern
reuse practice in the implementation phase can be determinant
in cutting down the time and cost developing the multiagent
systems. Many works have been proposed about the patterns of
agents; our concept of pattern addresses an entity composed of
portions of design and the corresponding implementation code.
The next section describes the behavioral diagrams, which
will drive the implementation phase, giving useful information
concerning the implementation of the interactions between
agents and their relationship with the internal structure of a
single agent. Section three deals with the relevance and the
peculiarity of the configuration and deployment in multiagent
systems, describing the rationale used in defining the AUML
deployment diagram, specifying the standard representation
for its elements in UML models. Section four deals with
the importance of pattern reuse in the implementation phase.
Finally, the fifth section concludes with a discussion about
implementation issues and future work.

II. IMPLEMENTATION-LEVEL MAS INTERACTIONS

The increased focus on interaction is one of the distinctive
traits of the agent-oriented development approach, and it
permeates the whole MAS development process, starting from

role-model based system analysis. However, dealing with the
interaction dimension within multi-agent systems on a general
basis is not the purpose of this paper. Instead, we wish to
concentrate on the peculiar view over agent interaction that
becomes dominant when the development process is very close
to actual implementation of a multi-agent system. In the first
part of this section we will try to define a two-dimensional
plane and a point on that plane where a diagram showing
implementation-level MAS interactions should be placed.
The implementation phase typically needs a very precisely
defined model, which fully refines previous design models to
achieve a specification that is unambiguous enough to be fed
to automated tools such as compilers and code generators.
Producing such a detailed model generally entails matching the
conceptual entities, gathered from analysis and architectural
design deliverables, to the actual technological artifacts that
are going to be used to build the system. Applying the above
consideration to the case of multi-agent systems development,
we have to recognize that with the current state of the tech-
nology the final implementation of a multi-agent system will
most likely use object-oriented technology. While some agent-
level concepts have no direct counterpart in object-oriented
languages, the “every software is simulation software” vision
that lies at the heart of the object-oriented approach allows
agent developers to define those concepts at the infrastructure
layer. In the past years several libraries, frameworks and
middleware platforms have been made available, that pro-
vide MAS application developers with agent-level abstractions
implemented with object-oriented languages and tools. When
adopting such support systems, developers express interaction,
coordination and deliberation concerns through an agent-level
API, resorting to plain object orientation when specifying
ordinary computation tasks. Therefore, the first dimension of
our conceptual plane is the component dimension, and we
claim that an effective implementation-level diagram for MAS
interactions must be placed along this dimension where agents
melt into objects. This implies that looking at the diagram
one has to be able to recognize both the agent-level entities
represented and the object-oriented artifacts with which they
are expressed. The second dimension that we consider is the
interconnection dimension (in a way similar to architecture
definition languages, which specify software architectures as
made by components and connectors). Along this dimension,
willing to represent MAS interactions at the implementation
level, we notice that the focus is to be put on the boundary
between individual agents and the society they participate in.
This is because most implementation effort goes into writing
the components, and the connectors are generally implemented
by how the code within a component interacts with code within
another one. So, just as our diagram is placed at the agent-
object boundary in the component dimension, we place it at
the agent-society boundary in the interconnection dimension.
This means that, when looking at the diagram, one has to
be able to see the (part of the) social structure the agents
participate in as a whole, but also which internal parts of
each agent get actually involved in the ongoing interaction.

Considering the component vs. interconnection plane, our
interaction diagram is placed at the contact point between
the agent internal structure and the external environment. This
entails that the diagram cannot be independent from the actual
agent architecture; the implementation-level interaction has to
be specified differently for different agent architectures.

Several agent architectures have been proposed in the
literature, each with its own strengths and weaknesses, its
own preferred application domains and its own supporters.
We strive here for a parametric diagram, taking the concrete
architectures of the agents participating to the interaction as
parameters. The aim is to support both well-known agent
architectures and custom agent architectures expressed through
an object-oriented model of the agent internals.

Two additional, but important nevertheless, requirements for
an implementation-level representation of agent interactions
are traceability and tool integration. Since we operate very
closely to the source code of the system, a bidirectional
mapping between code and diagrams is highly desirable and
much easier to attain than, say, in the case of requirements
traceability. Tool integration is paramount at this level; inter-
esting and desirable features for an interaction diagram are the
ability to generate the possible interaction traces or the visual
animation of the interaction.

A. Choosing the Perspective: UML Activity Diagrams

Representing the dynamics of a MAS is quite different from
describing the flow of control of an object-oriented system; we
will come back on this issue in the next sub-section but by now
we could simply argue that the first determinant difference is in
the greater encapsulation of the agents; in fact despite having
a very complex inner structure (they are often composed of
several classes), they interact with the remaining part of the
system as a whole (the agent) that can be resembled to an
unicellular organism that aggregates with the others creating
complex structures where each individual plays a precise role
and has a specific objective. Another important issue is that
agents, usually, cannot directly relate to each others but they
need a message transport service that in many architectures is
provided by the middleware. These interactions are obviously
totally different in nature by the direct method invocations
that could take place within the agent among the classes
that constitutes it. As already stated we decided to support
the AUML initiative and therefore we mainly consider UML
diagrams as the source for our notations. In order to describe
the agents interactions, we should choose a diagram that allows
the description of the behavior of the component dimension
during time also in terms of the interconnection dimension.
This overall requisite can be decomposed in some specific
needs:

e Being focused on the implementation issues, we aim
at obtaining and high level of detail. This sometimes
produces very crowded diagrams that going deeply into
the particulars fail in providing the designer with a
global description of the situation; in the solution we will
provide a zoom capability that allows the representation

genericAM genericUPM

fmsg(addNew Annotation:request)

ExecutorBehaviour e >
inform-new A nnotation

{protocol=none
content language=CoMMA-RDF
ontology=CoMMA-user}

NewAnnotationHandlerBehaviour

/mew{Notify UPMBehaviour)

genericLocalUPA genericUserIC

request-match UserProfile
{protocal=FIPARequest

J new(FIP Behaviour)

NotifyUPM

RequestUserProfileBehaviour

7 new(FipaRequest
ResponderBehaviour)

content language=CoMMA-RD]
ontology=CoMMA-ontology}

NewAnnotationMatcher Behaviour

I new(PushEngincBehaviour)

1 new(InformPushDocumentsBehaviour)

inform-UserProfile: ACL Message

content language=CoMMA-RDF
ontology=CoMMA-user}

{protocol=none PushEngineBahaviour

FIPARequestResponder Fs

InformPushDocumentBehaviour

Z<datastore=>
UserProfileDataBase

inform-pushDocumentAvailable

tpr
content Language=CoMMA-RDF
ontology=CoMMA-user}

PushDocumentHandlerBahaviour

linterested|

request-PushDocuments
ARequest

SenderPushD: Behaviour [&—

fr
content language=CoMMA-RDF
ontology=CoMMA-user}

[not interested]

inform-PushDocuments
{protocol=FIPARequest

content language=CoMMA-RDF
ontology=CoMMA-user}
|

Fig. 1.

of different levels of details in the same diagram for
different agents.

« Both agents and objects should be described (if neces-
sary) in the same diagram in order to represent not only
the agent but also its internal classes (this structure is
essentially OO) and the interactions of the MAS with
external not agent-based systems;

o Possible interactions that should be described are the
communications among different agents (inter-agents re-
lationships) and the classical object-oriented interactions
within a single agent (intra-agent relationships).

A good solution to these problems could come from the use of
activity diagrams with some minor extensions of their syntax.
These diagrams allow the description of both the structural and
behavioral aspects of the MAS; in fact, concepts like swim
lanes show the relationships among the software entity related
to that swim lane and its dynamical representation in terms
of activities/actions. In activity diagrams, time constraints
can be explicitly represented (this allows for example the
representation of real-time situations) just like concurrency
(useful in order to explicitly model agent pro-activeness) and
other control-flow structures like branches, forks and joints. An
extension of the ’classical’ UML activity diagram is necessary
in order to obtain the proper level of detail for each different
situation. We think that these diagrams should not address only
one specific level of abstraction but a range of possible levels.
The coarse-grained representation could include a diagram

Diagram for FSM-based agents

with one swim lane for each agent. Activities within each
swim lane group the dynamics of an agent. At this level
of abstraction we could think that activities granularity is
comparable to an agent behavior. The opposite situation is
described in a diagram composed of one different swim lane
for each agent class or agent behavior; in this case each activity
can address a method level entity. There should be no duality
nor separation between these two extremes; we consider that
a specific CASE tool could support a zooming operation so
that the designer could start looking at the whole system and
then in order to refine his/hers work he could exploit the
representation of one agent down to the lowest level of detail.

B. Example: FSM-Based Agent Architecture

As a working example, we consider here the very simple
yet popular agent architecture that builds software agents
as active objects with basic task scheduling capabilities but
no reasoning and planning modules. In most cases, tasks
are represented as first class objects and can be composed
according to some rules to aggregate complex tasks out
of simpler ones. The most common execution model for
this kind of agent relies on Finite State Machines. An
object-oriented implementation of the above, cast in a class-
based language ends up with an agent class (that is called
jade.core.Agent in the JADE framework) and a rask
class (jade.core.behaviours.Behaviour in JADE).
When applying UML Activity Diagrams to FSM-based agents,

Purchaseanager.StartPurchase

StartPurchase.
StartPurchase

newTask(Negaotiate

PurchaseManager Starthlegotiation

StartNegotiation.

StartNegotiation

StartNegotiation.
stariTask

StartNegotiation
‘handlelnform
Fig. 2.

agent tasks are naturally mapped to activities and swim lanes
can be exploited to gather together the tasks belonging to
the same agent. The links between activities can be used to
represent message exchanges when they cross swim lanes,
and task creation or activation when they connect activities
within the same swim lane. The following figure illustrates
this diagram with respect to a sample agent interaction. The
PASSI methodology [1] has a diagram, named Multi-Agent
Behavior Description, which uses UML Activity Diagrams in
a way similar to the one we are proposing here. However,
the PASSI diagram is more detailed than the one above.
It uses one swim lane per agent task instead of one swim
lane per agent, and shows actual methods of the agent and
task classes as activities. Therefore, exploiting the recursive
aggregation of activities allowed by UML Activity Diagrams,
one can have both the diagram represented in Figure 1, and
the more detailed diagram used by PASSI and shown in Figure
2. Observing the PASSI diagram, some issues can be raised
about whether modeling methods as activities can be a proper
approach. Methods are rather requests for activities and as such
they have no state; on the other hand, the diagram in Figure 2
closely matches the actual code that application programmers
write when implementing agents according to the ‘“agent
class and task class” style. This apparent contradiction is a
good example of the peculiar status of this kind of diagram;
being at the border between agents and their object-oriented
implementation, this diagram shows exactly the slight twist
of object-oriented idioms that is to be used to effectively
represent and implement agent oriented concepts. The relation
between the agent class and the task classes is very specific.
Firstly, it is an exclusive aggregation: the agent has control
over the life cycle of its tasks, which cannot be accessed
from the outside. Tasks, in turn, can use agent internal data
as a common repository to share information among them.
This means that the methods of the agent and task classes
that appear as activities in the diagram of Figure 1 are not
to be invoked from the outside, and do not belong to the
agent external interface. In Java based implementations, it is

Purthaser. Recemelleg diation Reque st Purchaser:Hegoliate

oe(OurRequest; gueny-if)

ReceiveNegoliationRequest.
ReceiveNegotiationRequest

b
ReceiveMNegotiationRequest.
startTask newTask{ Negatiate)
¥ Negotiate.
Negofiate

Negotiate.
start Task

messagel OurRequest, inform)

A more detailed Activity Diagram

customary to use private inner classes to realize agent tasks,
so that they are only accessible from their agent class, and
can even call its private method. When such a code pattern is
followed, the agent-task aggregation is protected at the Java
language level. This means that the mutual method calls that
occur between an agent class and its task classes are not to
be considered ordinary invocation, according to Design by
Contract. Rather, they are but a language level representation
of the distribution of an agent state between its knowledge base
and the conversational state of its ongoing activities. Since
the knowledge base and the conversational states have to be
coherent, and since their concrete implementation is expressed
with an object-oriented language whose only computation
device is method invocation, we have to use method calls
to synchronize the activities (whose data resides within the
task classes) and the knowledge base (contained within the
agent class). Therefore, the Activity Diagram depicted in
Figure 2 meaningfully details the one in Figure 1, and its
representing methods as activities is correct modeling because
those methods are special methods that indeed serve as links
between the different agent activities.

III. MODELING DEPLOYMENT ISSUES IN MASS USING
AUML

The role of the deployment diagram in UML is to show
the configuration of run-time processing elements and the
software components, processes, and objects that execute on
them [5]. In UML 2.0 it is the only form of implementation
diagram. In several systems, these aspects are quite evident
and a deployment diagram does not add real value to the
modeling phase. In these cases it can be useful to produce
one a posteriori for documentation completeness. Complex
systems with several nodes with significantly different com-
putational responsibilities may benefit from the deployment
diagram right from the beginning. Considering the software
engineering process in more detail, promoters of the MAS
approach generally stress its suitability for heterogeneous
distributed systems. Those systems are exactly the ones where

deployment issues can become nontrivial and deserve to be
analyzed and addressed with properly designed techniques.
Regarding the MAS, the deployment diagram has to represent
hosts (servers, front-ends, etc.), resources, physical agents and
their acquaintance graphs, and, depending on the framework
used in the implementation, MAS platforms. The deployment
diagram is very useful to model highly distributed MAS, that
is systems in which it is important to visualize the system’s
current topology and distribution of components and agents,
and to reason about the impact of changes on the topology.
There is a need of defining new model elements to represent
the new entities. Our starting point is AUML and we call the
diagram, AUML Deployment Diagram.

A. Multiagent System Architecture and Configuration

The architecture of a MAS is a structure that portrays
the different kinds of agents and the relationships among
them. The architectural description is studied and fixed when
designing the MAS. A configuration is an instantiation of an
architecture with a chosen arrangement and an appropriate
number of agents. One frozen architecture can lead to several
configurations. The configuration is tightly linked to the topol-
ogy and the context of the place where the MAS is rolled out.
The architecture is designed so that the possible configurations
cover the different system organizational layouts foreseeable
in the context of a project. Agents can be arranged among
various machine configurations in order to more effectively
use available processing power and network bandwidth. The
deployment of a multiagent system therefore is driven by: the
system organizational layout, the network topology and the
interests area.

B. AUML Deployment Diagram Notation

A deployment diagram is a graph of nodes connected by
communication associations (see Figure 3). The most common
kind of relationships among nodes are associations that repre-
sent physical connections. Generic components are depicted,
as they are in UML standard. The concrete agents may be
contained within the component instance symbols to indicate
that the items reside on the component instances. A concrete
agent is rendered as rectangle with a name. Two primary forms
of information may be supplied for an agent name: instance,
and class. The general form of describing the agent name in
AUML is:

instance—-name class

Agents belonging to the same agent platform are grouped
together. An agent platform is a kind of Component, indicating
which agents are housed on the platform itself. Every agent
platform must have a name that distinguishes it from other
platforms; a name is a textual string. Agents are connected
to other agents by acquaintance relationships; this indicates
that one agent could communicate with the “known” agents
by means of interactions protocol. A directed graph is used
to show the agent acquaintance graph. The directed graph
identifies communication pathways between concrete agents

A

UserProfileServer: AppServer
Deploys
:UserProfile
Archivist <acquaintance=>
= conerete agent
e UseProfile
= | Manager
<reside=> e 7\
APInstance

- - Eeresides> <<acquaintance>>

JDe’sPC:C]igét

Deploys

acquaintance
relationship

T-s<reside=>

N | JoeAgent:Perso
nalAgent

e |

Fig. 3.

AUML deployment diagram notation

playing the roles involved in an interaction scenario. A non-
directed edge denotes that both concrete agents, playing the
roles, know each others.

C. AUML Deployment Diagram Semantics

The aim of this section is to provide complete semantics
for all modeling notations used in the AUML deployment
diagram. In the following we try to give a precise definition of
the terms involved in the deployment diagram, mapping them
in UML model elements. For the following, refer to Figure 4.
We consider a starting point of our dissertation the definition
of the model element “agent” as a stereotype of the metaclass
Class [6]. The stereotype extension mechanism provides a way
of defining virtual subclasses of UML metaclasses with new
metaattributes and additional semantics. What is applicable
to a metaclass Class is therefore, by definition, applicable to
an Agent Class. Agent Class defines a set of elements, that
we call “Agents”! (instances of the Agent Class), which have
the same structural and behavioral characteristics. Moreover
Agent Class is a conceptual element declared in an intensional
way as a collection of features and inherits participation in
Associations. The stereotype “acquaintance” is applied to an
Association between Agent Classes to denote that messages
may be sent between their instances. An Artifact is a concrete
element’ that we can define with a good approximation as
a structured set of bytes. The implementation of an Agent
Class can be memorized in one or more Artifacts. Executable
Artifacts can be loaded in memory and be associated to
one or more executable threads. If an Artifact contains an
implementation of an Agent Class, we can say that the
copy, in memory, is able to create concrete elements that
implement Agents, instances of the Agent Class itself. An
Artifact may constitute the implementation of a deployable
Component. We consider Component as a conceptual element.

'An Agent has at least one thread of control and runs concurrently with
other Agents; Agent Class is therefore a subclass of Class with the attribute
“isActive” always true.

2In general we use the term “concrete element” to denote an active process,
a dynamic library, an instance of an Implementation Agent Class, etc. We use
the term “conceptual element” to denote for example an Agent Class.

+implementationLocation

}»II

Location

" |Artitact

 I—

isActive : boolean| [———

DataType]
—/

I g
| I

+container

ElementResidence
Visibility - VisibilityKi

* | +resident

ModelElement

Fig. 4. UML 1.4 Core Package - Classifiers

The Component is defined as a container of one or more
Artifacts. The property of the Component, as a conceptual
element, is the property of being able to host other conceptual
elements, like Agent Classes. At the implementation level, the
meaning of the role “resident” (characterizing the Artifact)
is that the Executable Artifact, binding to the Component,
contains code, which is able to create, at the execution
time, instances of the [implementation of the] Agent Classes,
resident in the Component. The meaning that we usually
give to ComponentInstance is an instance of the Executable
Artifact associated to the Component itself. So when we speak
of Componentlnstance we refer to its executable part. If a
Component hosts conceptual elements, like Agent Classes,
a Componentlnstance will host concrete elements, instances
of the implementations of these conceptual elements; in this
specific case, concrete agents®. A Nodelnstance is an instance
of a Node. A collection of ComponentInstances may reside on
a Nodelnstance. In the metamodel each Componentlnstance
that resides on a Nodelnstance must be an instance of a
Component that resides on the corresponding Node.

1) Agent Platform and MAS Middleware: Among all the
various UML diagrams, the Component and Deployment Di-
agrams are the ones most tightly related to concrete software
infrastructures and middleware; therefore, when defining the
AUML Deployment Diagram, it is natural to consider the agent
oriented middleware standards and products available, to try
and find useful abstractions to model them within AUML.
Two UML metamodel elements were considered: Subsystem,
which seems more appropriate for modeling the internal view
of an agent platform and Component, which seems to be the
natural choice on the basis of its characteristic of exhibiting
services. Moreover, in the UML metamodel a Component
is a subclass of Classifier, and as a Classifier it may also
have its own Features and realize Interfaces. This assertion of
“individuality” of the Component is important since it means
the component not only exposes the interfaces of artifacts
deployed in it but it can implement them directly. The choice
falls on the Component, seen more as an infrastructure for
agents deployed in it rather than as a mere agent container.
We therefore define the model element “agentPlatform” as a

3The conceptual element Agent denotes an instance that originates from an
Agent Class. The term “concrete agent” denotes an instance that originates
from an implementation of an Agent Class.

stereotype of the metaclass Component. It should be noted
that the concept of an agent platform does not mean that all
agents resident on an agent platform have to be co-located on
the same host computer. FIPA envisages a variety of different
agent platforms from single processes containing lightweight
agent threads, to fully distributed agent platforms built around
proprietary or open middleware standards. One AgentPlatform
Component, therefore, can span more than one Node, if
the agents belonging to this platform are deployed on more
than one Node. The model element AgentPlatformInstance
represents an instance of an AgentPlatform Component and
it can host concrete agents.

D. Concrete and Situated Agents

A major feature of the multiagent system approach to
software development is the reliance on the social level of
abstraction: this allowed researchers in the MAS field to take
inspiration and leverage results from social sciences, where
they deal with complex and dynamically changing systems.
However, the shift towards a social perspective in multiagent
systems should not suggest forgetting the main attributes of
the single agent, namely autonomy and situatedness. When
inserted into a society, each member agent becomes situated
in an hybrid environment, arising partly from social and
institutional entities and partly from entities external to the
agent society. The diagrammatic representation of a concrete
MAS should be able to fully depict this hybrid situatedness,
showing agents and their social and natural environment as a
whole. The social aspect of agent situatedness can be captured
by an oriented graph connecting agents with arcs. This graph is
called “acquaintance” graph. In simple client/server systems,
usually it is assumed that clients know the server beforehand
but the server does not know a client until it is contacted by
it. These strict assumptions, common in multi-tier client/server
systems, make the acquaintance graph trivial, which explains
why it is generally not included in the system diagrams,
but a MAS architecture can result in arbitrary acquaintance
graphs, so they have to be explicitly represented. From the
above considerations it follows that even if the deployment
diagram is part of the architectural models and its scope
is to model the static deployment view of a system, some
aspects of MAS deployment diagrams are related to the
behavioral models. The AUML deployment diagram therefore
must be more expressive than the corresponding reference
UML deployment diagram, and must include the acquaintance
relationships between agents.

IV. IMPACT OF PATTERNS IN THE IMPLEMENTATION

Patterns for MAS have been studied since many years [7]
[8] and the interest about them is still very high and new
works often appear [9]. Despite the number and differences
of these works two issues have not received a definitive
solution: the definition of pattern and the implementation
aspects. About the definition, the different works, sometimes,
propose new arguments that try to introduce the concept of
agent in it. We see a pattern as a recurrent problem and an

associated solution expressed in terms of portions of design
and the related implementation code. Four different possible
granularities can be identified for our patterns: the service
pattern is related to the composition of two or more agents, the
component pattern looks at a single agent as the solution of the
problem, the task/behavior pattern regards a significant portion
of the agent behavior and the action pattern is a simple action
done by an agent. Three different steps should be considered
in reusing patterns: the identification, the solution design at
the conceptual, social level and, finally, the implementation.
About pattern identification we think that patterns rely on
the problem domain rather then in the solution one and in
fact our definition starts from the ’classical’ one proposed by
Christopher Alexander [10]: “Each pattern describes a problem
which occurs over and over again in our environment, and then
describes the core solution to that problem”. As a consequence,
we can identify a pattern wherever a problem is present.
Typical scenarios for pattern identification are:

« collaborations among agents. The scope of these patterns
can be related to two or more different agents and
therefore it spreads across a large part of the system;

« specific vocation of a single agent (for example the ability
to offer some kind of proxy service). This is usually
limited to the single specific agent and therefore can be
considered as a kind of component scoped pattern;

« agents’ behaviors or roles. Patterns of this kind are related
to minor portions of the agent capability (for example the
possibility of communicating with a specific interaction
protocol) and therefore are smaller (behavior-sized) than
the previous one.

In the next two subsections we will discuss the other two
aspects of patterns: the design with the related modeling
problems and the implementation issues.

A. Using patterns during the design

There is an evident duality in software between its structure
and dynamic behavior; in dealing with patterns this has been
well captured in the approach of Gamma et al. [11]. They
classified patterns according to two criteria: purpose and
scope. With purpose the authors refer to what the pattern
does and with scope they separate patterns that apply to
classes or object. The same duality should be the guidance
in representing patterns for agents. We found particularly
useful to represent the structure of the pattern with a class
diagram reporting the agent base class and all the agent’s
behaviors as different classes. This diagram results to be
very near to the implementation since agent and behaviors
(classes in the diagram) are represented with their attributes
and operations. The pattern behavior representation is done
with an activity diagram. In Figure 5 we can see an example
of the proposed notation applied to the Request Participant
pattern that is a behavior-sized pattern. The diagram is divided
in two different swim lanes: the right one describes the flow
of control within the pattern, the left one contains activities
belonging to other agents that interact with the previous one.
Exchanged information is represented as an object.

Participant : Agent

Initiator - Agert
Partic ipart

———

T Request
Fese e

Analyze
Request
Send ARMU

= message

Refuse or Mot
Understood

<> ®
Agree
.

The Request pattern behavior description

AgreesRefusemlot Understood
_ Message

Message. .
Message
Request T
= Ifomm/Failre
= —Message <~ —

Fig. 5.

The Request Participant pattern, when applied to an agent
adds to it the capability of playing the participant role in a
communication based on the FIPA Request communication.
As it can be seen, an external agent begins the communica-
tion sending the Request message (represented by the object
“Request:Message”). The Participant Agent (right-hand swim
lane) receives the message, analyzes its content (this part is
domain specific and therefore it is not part of the pattern)
and decides to send one of the three possible answers (Agree,
Refuse, and Not Understood). This diagram is particularly
expressive and provides the designer with a simple but com-
plete description of the pattern functionalities. In the structural
description, we represent the pattern in terms of the two consti-
tutive elements of an agent: the agent itself and its behaviors.
The first is the agent base class obtained specializing a generic
AgentShell class (that, for example, represents the JADE agent
class or FIPA-OS Fipaosagent class) while the behaviors are
obtained specializing the TaskShell class (that for example in
JADE stands for the behavior class and in FIPA-OS for the
Task class) and are identified by the “Task™ stereotype. We
use to tightly relate (in terms of names used) the operations
of these elements to the activities shown in the dynamic pattern
representation in order to allow an easier understanding of the
pattern functionalities.

B. Patterns Implementation

In the cited Gamma’s approach, the implementation of the
suggested patterns was provided only in a few cases with
partial solutions in one specific language. This is obviously
justified by the broad audience and the generality of that
work but we think it remains a limit in a real application
context. Working with agents, it exists a natural solution
to this observation that consists in restricting the possible
implementation platforms to the FIPA ones. This hypothesis
has a great simplifying effect since it reduces the implemen-
tation language to JAVA, and as another consequence, all
the platforms share a very similar structure and comparable
services. At this point an obvious goal will be the definition
of an architecture that allows the pattern platform-independent
definition though maintaining the possibility of easily pro-
ducing the pattern code for each specific platform. This

architecture already exists and it is part of an OMG standard,
it is the MDA (Model Driven Architecture) [12]. Its objective
is separating the specification of the system operations from
the implementation details (the way the system interacts with
its platform). According to the MDA specifications, the system
is to be described with three different and successive models.
The first model is the Computation Independent Model (CIM)
that is a sort of domain model that totally neglects all the
details about the system structure but describes the situation
in which the system will be used. The second model is
the Platform Independent Model (PIM) that represents the
system implementation without dealing with its use of the
deployment platform (often modeled as a technology-neutral
virtual machine). The last model is the Platform Specific
Model where details on the way of implementing the system
with a specific platform are provided. A similar approach
has been already applied to agents with interesting results
[13]; it starts considering a design representation stage of
the pattern functionalities and initial structure that is usually
performed with the diagrams described in the last subsection;
this is similar to the MDA Context Independent Model. These
representations, are related to a meta-pattern level, that is
platform independent and contains all the elements that are
common to patterns of the different environments. For example
meta-patterns refers to class constructors, mother-classes from
which agents and their standard elements inherit their behavior,
setup and shutdown methods and so on. Meta-patterns are
described using XML and can be regarded as an MDA
Platform Independent Model. From this model, applying an
XSL transformation we substitute the meta-level placeholders
with the concepts used in the selected platform and if the case
the values introduced by the designer (for example the specific
name of the agent or some parameters). In the resulting XML
file, an agent is described within an Agent tag and its properties
(attributes and operations or tasks) are represented as inner
elements of that structure. This is an MDA Platform Specific
Model. The last phase consists in the code generation and this
can be done with another XSLT application. This is possible
because the pattern at this stage intrinsically represents an
implementation viewpoint. It is, in fact, possible to look at the
source code as one of the possible abstractions representing an
agent: it is at an intermediate layer between agent design and
agent deployment. The use of XSLT enables code generation
for different FIPA-compliant frameworks by only changing
the transformation sheet. At this stage the JAVA skeleton of
the agent (and it’s tasks) is complete. While this result is
considered the final target by several CASE tools we think that
(with agents) it is possible to go beyond this goal introducing
significant parts of the inner code of methods. Specific portions
of code (related to a precise action) are therefore stored in a
database and the correct one, for each method, is selected
referring to the value of a specific tag in the XML method
description. The final result is therefore that starting from an
high level design representation of the solution that the pattern
offers for some problem, we obtained a platform independent
description. From that we “instantiated” the platform specific

model that can be used to generate code skeletons. These,
completed with portions of code taken from a repository
constitute a real executable implementation of the pattern.

V. CONCLUSIONS

The aim of the paper is to try to cope with the important
issues connected to the transition from the design phase to the
implementation phase. At first glance the work presented may
seem composed of three loosely connected parts; in reality this
is due to the nature of the problem. As a matter of fact moving
towards the implementation phase means solving several issues
connected with the refinement of the design models in order to
move towards the code, with the deployment of the system and
with the necessity of reducing the prototype implementation
time. But, there is more. Indeed more work needs to be
done; other issues should be tackled. An issue, that needs to
be addressed, deals with non-social situatedness. An agent’s
surroundings comprise not only its acquaintances, but also
several non-agent entities such as the resources it uses and
manages, the events it can perceive, the concrete actions it
can perform. Another issue deals with the testing of MAS.
These further studies are left as subject for future work.

REFERENCES

[1] M.Cossentino and C. Potts, “A case tool supported methodology for the
design of multi-agent systems,” The 2002 International Conference on
Software Engineering Research and Practice. Las Vegas (NV), USA:
SERP’02, June 24-27 2002.

[2] Agent UML - AUML Home Page. Available at http://www.auml.org.

[3] J. Odell, H. van Dyke Parunak, and B. Bauer, “Extending uml for
agents,” in Proc. of the 2nd Int. Workshop on Agent-Oriented Infor-
mation Systems, G. Wagner, Y. Lesperance, , and E. Yu, Eds., Berlin.
iCue Publishing, 2000.

[4] FIPA Modeling Technical Committee.
http://www.fipa.org/activities/modeling.html.

[5] OMG, “Uml2.0 superstructure, 2nd revised submission,” March 2003,
object Management Group, document ad/03-03-03.

[6] B. Bauer, “Uml class diagrams: Revisited in the context of agent-based
systems,” in Agent-Oriented Software Engineering (AOSE), vol. Proc.
of Agents 2001, Montreal, 2001.

[7]1 Y. Aridor and D. B. Lange, “Agent design patterns: Elements of agent
application design,” in Second International Conference on Autonomous
Agents, Minneapolis, 1998, pp. 108-115.

[8] E. A.Kendal, P. V. M. Krishna, C. V. Pathak, and C. B. Suresh, “Patterns
of intelligent and mobile agents,” in Second International Conference on
Autonomous Agents, Minneapolis, 1998, p. 9299.

[9] J. Lind, “Patterns in agent-oriented software engineering,” in AOSE

Workshop at AAMAS 2002, vol. Bologna (Italy), 2002.

C. Alexander, The Timeless Way of Building. Oxford University Press,

1979.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns

Elements of Reusable Object Oriented Software. Addison-Wesley, 1994.

OMG, “Guide version 1.0.1,” June 2003, object Management Group,

document omg/2003-06-01.

[13] M. Cossentino, L. Sabatucci, and A. Chella, “A possible approach to

the development of robotic multi-agent systems,” in IEEE/WIC Conf.
on Intelligent Agent Technology (IAT’03), vol. Halifax (Canada), 2003.

Available at

[10]
(1]
[12]

