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Implementing Proactive Means-End Reasoning
Luca Sabatucci and Massimo Cossentino ICAR-CNR, Palermo

Email: {sabatucci,cossentino}@pa.icar.cnr.it

Abstract

This work focuses on self-adaptation as a prominent property for developing complex distributed software
systems. Taking in account that notable approaches as the runtime goal model artifacts, this paper investigates how
it is possible to provide goal models at run-time that do not contain tasks, i.e. the description of how to address
goals, thus breaking the design-time tie up between Tasks and Goals, generally outcome of a means-end analysis. In
this vision the system is up to decide how to combine its available Capabilities: the Proactive Means-End Analysis.
The envisioned impact is to implement a goal-oriented form of self-adaptation where goal models can be injected
at runtime. The paper also introduces MUSA, a Middleware for User-driven Service self-Adaptation.

I. INTRODUCTION

In the last decade self-adaptation has emerged as a prominent property to tackle some of the most important
challenges for developing complex distributed software systems. Self-adapting systems are able to adapt their
behavior in response to their perception of the environment and the system itself. As long as software systems
grow in size, complexity, and heterogeneity, it becomes central to make them more versatile, flexible, resilient and
robust by making them able to dynamically self-adapt to changing environmental conditions.

Self-adaptation has deep roots in several research fields, as for instance, artificial intelligence, biological inspired
computing, robotics, requirements/knowledge engineering, control theory and fault-tolerant computing, and so on.
Researchers in these areas have investigated different research issues that the term self-adaptation unifies under a
common terminology.

Two research roadmaps [1], [2] indicates the contribution that research on software engineering may provide to
the topic. In particular up to date, little endeavor has been made to establish approaches for a systematic provision
of self-adaptation. In [1] authors agree that the way self-adaptation has to be conceived depends very much on
aspects as users, their needs and the characteristics of the environment. Modeling and monitoring these aspects is
the key for enabling a software to adapt its behavior.

The system must also maintain a set of high level invariant requirements that indicates the ultimate objective of
the system and that drives the adaptation regardless of the environmental changes or uncertainty. To this regards
traditional requirements specification languages need to evolve for explicitly encapsulating points of variability in
the behavior [3] and elements of uncertainty in the environment [4]. These elements must be first class entities the
system can exploit to decide how to act.

In the agent-oriented software engineering (AOSE) research area, one of the most common approaches for facing
the emerging challenges posed by self-adaptive software is the use of goal-directed behavior, where the goal is
the conceptualization of the objectives the system has to address. For instance, some BDI programming languages
explicitly introduce keywords for specifying goals [5].

However, to date, a semantic gap exists between requirement specifications defined at design-time and the concept
of goal used at run-time [6]. This represents a limitation especially in the development of self-adaptive and fault-
tolerant systems.

A solution has been presented [6] where authors use goal models at runtime and provide an operational semantics
for specifying the dynamics of goals, maintaining the flexibility of using different goal types and conditions.

Dalpiaz et al. [7] propose a new type of goal model, called runtime goal model (RGM) which extends the
former with annotation about additional state, behavioral and historical information about the fulfillment of goals,
for instance explaining when and how many instances of the goals and tasks need to be created.

The novelty of the proposed contribution is to present the concept of Proactive Means-End Reasoning as a
variation of the classic activity of means-end analysis. The latter represents one of the manual steps of methodologies
for modeling goal models. It aims at providing an operationalization of goals i.e. analyzing how to address the
desired result specified by a goal. At the best of our knowledge, to date this is a purely human activity. This
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paper aims to shown that under given assumptions, and simplifications, it is possible to introduce the proactive
means-end reasoning as a software agent ability to decide how to address a goal injected at runtime by the user
in the system. We exploit this property for building a self-adaptive system in which Goals and Capabilities are
two independent entities that may be deployed by different development team. We also developed a prototype
called MUSA (Middleware for User-driven Service self-Adaptation) that contains a concrete implementation of the
presented conceptual framework.

The paper is structured as follows: Section II presents the theoretical background that introduces the basic
concepts. Section 1 introduces the ingredients for the self-adaptation approach that is presented in Section IV. A
critical analysis is presented in Section V, and finally some conclusions are drawn in Section VI.

II. FORMAL FOUNDATION

This section illustrates the theoretical background that introduces the basic concepts of this paper.

A. State of the World Definition

We consider the software system has a (partial) knowledge about the environment in which it runs. The classic
way for expressing this property is (Bel a ϕ) [8] that specifies that a software agent a believes ϕ is true, where ϕ is
a generic state of affair. We decided to limit the range of ϕ to first order variable-free statements (facts). They are
enough expressive for representing an object of the environment, a particular property of an object or a relationship
among two ore more objects. A fact is a statement to which it is possible to assign a truth value. Examples are:
tall(john) or likes(john,music).

Definition 1 (Subjective State of the World). We define the subjective state of the world in a given time t as a set
W t ⊂ S where S is the set of all the (non-negated) facts (s1, s2 . . . sn) that can be used in a given domain.

W t has the following characteristics:

W t = {si ∈ S|(Bel a si)} (1)

where a is the subjective point of view that believes all facts in W t are true at time t; and

∀si, sj ∈ S if si ∧ sj `⊥ then

{
si ∈W t ⇒ sj 6∈W t

sj ∈W t ⇒ si 6∈W t (2)

i.e.: the state of the world is a consistent subset of facts with no (semantics) contradictions.

W t describes a closed-world in which everything that is not explicitly declared is assumed to be false. An
example of W t is shown in Figure 1, whereas, for instance the set {tall(john), small(john)} is not a valid state
of world since the two facts produce a semantic contradiction.

tall(john)

likes(john,music)

likes(john,pizza)

age(john,16)

W t

Fig. 1. Example of a State of the World configuration at time t.

A Condition of a state of the world is a logic formula composed by predicates or variables, through the standard
set of logic connectives (¬,∧,∨ ). A condition may be tested against a given W t through the operator of unification.
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B. Goal Definition

In many Goal-Oriented requirement engineering methods the definition of Goal [3] is: “a goal is a state of affair
that an actor wants to achieve”. We refined this statement to be compatible with the definition of W t as: “a goal
is a desired change in the state of the world an actor wants to achieve”, in line with [9]. Therefore, to make this
definition operative, it is useful to characterize a goal in terms of a triggering condition and a final state.

Definition 2 (Goal). A goal is a pair: 〈tc, fs〉 where tc and fs are conditions to evaluate (over a state of the world)
respectively when the goal may be actively pursued (tc) and when it is eventually addressed (fs). Moreover, given
a W t we say that

the goal is active iff tc(W t) ∧ ¬fs(W t) = true

the goal is addressed iff fs(W t) = true.

It is worth noting that when the triggering condition is trivially defined as true, then the above reported definition
coincides with the classical definition of Goal.

It follows the definition of goal model, inspired by [7]:

Definition 3 (Goal Model). A goal model is a directed graph, (G,R) where G is a set of goals (nodes) and R is
the set of Refinement and Influence relationships (edges). In a goal model there is exactly one root goal, and there
are no refinement cycles.

Figure 2 is the partial goal model, represented with the i* notation, for the meeting scheduling case study. This
example, redesigned from [7], includes functional (hard) goals only, and AND/OR refinements. The root goal is
to provide meeting scheduling services that is decomposed in schedule meetings, send reminders, cancel meetings
and running a website. Therefore meetings are scheduled by collecting participant timetables, choosing a schedule
and choosing a location. Such a model is useful for analysts to explore alternative ways for fulfilling the root goal.

OR

To Call 
Participants 

To Check 
Calendars 

To Mail 
Participants

AND

To Provide 
Meeting 

Scheduling

To 
Schedule 
Meetings

To Sent 
Reminders

To Cancel 
Meetings 

To Run 
Website

AND

To Collect 
Timetables 

To 
Choose 

Schedule 

To 
Choose 
Location

[…] […]

[…] […]

[…]

Fig. 2. Portion of Goal Model taken from [7] for the Meeting Scheduling case study. For reasons of space, the tree has been truncated (with
respect to the original one) where the symbol [. . . ] appears.
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s1 s2

s3

W t

s4

s5

Wt+1

CAPi

s2

s3

pre(      )=trueW t post(      )=trueW t

evolution

Fig. 3. Graphical representation of how the execution of a system Capability will affect the state of the world.

C. Capability Definition

In many goal-oriented approaches, a Task is the operationalization of a Goal. This means that each task, in a goal
model, is associated to one (or more) leaf goal(s). This association is made at design time as the result of a human
activity called means-end analysis. In the i* conceptual model [10], a means-end link introduces a means to attain
an end where the end can be a goal, task, resource or softgoal, whereas the means is usually a task. The TROPOS
methodology [3] introduces means-end analysis as an activity for identifying (possibly several alternative) tasks to
satisfy a goal.

The task is therefore an analysis entity that encapsulates how to address a given goal according to the following
statement: “a Task T is a means to a Goal G (G being the end) when one or more executions of T produce a
post-situation which satisfies G” [11].

We explicitly introduce the concept of system Capability for introducing a difference between means-end analysis
made at design-time and at run-time.

Definition 4 (Capability). A capability is a run-time property of the system that may be intentionally used to address
a given result. The effect of a capability is an endogenous evolution of the state of the world. The evolution is
expressed as a function that takes a state of world W t and produces a new state of world W t+1 by manipulating
statements in W t. The evolution can start only if a given pre-condition is true over the current state of the world
(pre(W t) = true). If the capability has been successfully executed, then a post-condition must be true in the
resulting state of the world (post(W t+1) = true).

A representation of the evolution, preconditions and postconditions of a capability is shown in Figure 3.
The main difference between Capability and Task is that the former has not an explicit link with any goal.

Capability is like a ‘tool’ the system owns for changing the current state of the world. It is up to the system to
execute a reasoning process for establishing which capability or sequence of capabilities to select in order to address
a target goal.

Problem 1 (Proactive Means-End Reasoning). Given a current state of the world WI , a Goal Model (G,R) and a
set of available Capabilities C, the Proactive Means-End Reasoning concerns finding a set of capabilities CS ⊆ C
in which each capability will address one of the goals of the Goal Model (G,R), thus to grant the achievement of
the root goal groot.

In the next section, we introduce the role of ontology in our approach and the specific metamodel we refer to in
defining the ontological models for our systems.

III. ONTOLOGY-BASED SYSTEM SELF-AWARENESS

Self-* properties may related to software quality factors as defined in the ISO 9126-1 quality model. In particular
there are evidences that self-awareness, considered the base property for all the other self-* system properties,
impacts quality factors, such as maintainability, functionality, and portability [12].
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Self-awareness is often referred as the ability of a software agent to know (and reason on) its state and its
behavior. In Philosophy, the term awareness is often associated with theories of consciousness and of self-referential
behavior [13]. “Thinking that One Thinks” resumes a very high level of awareness that is common in human
consciousness [14].

In Artificial Intelligence this property is often implemented for enabling a software agent to plan its behavior.
The theory of self-knowledge and action [15] asserts an agent achieves a goal by doing some actions if the agent
knows what the action is and it knows that doing the action would result in the goal being satisfied [16].

With the aim of implementing self-aware software agents we consider Goals and Capabilities as first-class entities
for agent deliberation. The abilities an agent needs to address a goal that is provided at run-time are: 1) to know
its own capabilities, their usage and effect and 2) to decide which capability to execute (and in which order) for
addressing a desired result.

The aim of the remaining part of this section is to describe how we provide our agents with the proposed self-
awareness skills (Section III-D). In order to better detail the approach, before that, we introduce the ingredients
needed to achieve our purpose: the way we depict the problem domain using an ontology, a language for specifying
goals that refers to ontological elements as keys for grounding the goals on the problem and, finally, a language for
declaring capabilities that supports the separation between an abstract description of the capability and its concrete
implementation.

A. The Domain Ontology Description

An ontology is a specification of a conceptualization made for the purpose of enabling knowledge sharing and
reuse [17]. An ontological commitment is an agreement to use a thesaurus of words in a way that is consistent
(even if not complete) with respect to the theory specified by an ontology [18].

A Problem Ontology (PO) [19] is a conceptual model (and a set of guidelines) used to create an ontological
commitment for developing complex distributed systems. This artifact aims at visualizing an ontology as a set of
concepts, predicates and actions and how these are related to one another.

In this section we exploit the PO for encoding a specific domain of interest as the baseline for implementing
system self-awareness of Goals and Capabilities.

The metamodel of a PO artifact (Figure 4) has been inspired by the FIPA (Foundation for Intelligent Physical
Agents) standard [20] and refined for being used in the ASPECS methodology [19], [21]. It is shown in Figure 4
and explained below.

• A Concept is a general term usually used in a broad sense to identify “anything about which something is
said” [22] that has a unique meaning in a subject domain. We use the term Concept just for representing
classes of domain entities;

• a Predicate is the expression of a property, a quality or a state of one (ore more) concept(s). It could define
a formal structure for statements and rules that relate instances of those concepts;

• an Action is defined as “the cause of an event by an acting concept” (adapted from [23]). Actions are classified
as intentional and unintentional [24] where intentionality implies a kind of consciousness to act, whereas
Unintentional Action is an automatic response governed by fixed rules or laws;

• a Position is a specialization of concept performing Actions (both Intentional and Unintentional).
• finally, an Object represents all the concepts that can perform only unintentional actions.
For what concerns relationships, the PO metamodel supports:
• is-a (or is-a-subtype-of) that is the relationship that defines which objects are classified by which class, thus

creating taxonomies;
• part-of relationship (or the counterpart has-part), in which ontological elements representing the components

of something are associated with the ontological element representing the entire assembly;
• association that is a general purpose relationship for establishing propositions that links two ontological

elements. They are particularly useful for defining a formal structure for instances of related concepts.
This representation, mainly human-oriented, is particularly relevant for developing cognitive system that are able

of storing, manipulating, reasoning on, and transferring knowledge data directly in this form [21]. As an example,
many Belief-Desire-Intention (BDI) [25] system implementations use first-order predicates for describing entities
of the environment (and their properties) that can be perceived and manipulated by a software agent.
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PROBLEM
ONTOLOGY

ONTOLOGY
RELATIONSHIP

ONTOLOGY
ELEMENT

IS-A

PART-OF

ASSOCIATION

ACTION CONCEPT
PREDICATE

POSITION OBJECTINTENTIONAL
ACTION

UNINTENTIONAL
ACTION

describes

executes

has target

executes

Fig. 4. Metamodel of the PO artifact.

Here let’s consider how a requirement analyst uses the ontology diagram to provide a denotation to significant
states of the world, thus allowing to give a precise semantics to goals and capabilities. Given that a state of the
world is made of statements (that are considered true in a given time instant), then ontology-based propositions are
built with a formal structure by grounding on concepts, predicates and actions. Translation of formal ontology into
representation systems is a well-known topic in the state of art about knowledge representation [26].

For instance, with reference to the ontology of the meeting scheduling application (Figure 5), a state of the world
may have the form shown in Figure 6, where m123 is an instance of the Meeting concept, mario.rossi is an instance
of Attendee and so on. At the same way, the statement notified(m123,mario.rossi) is an instance of the Notified
predicate of the PO.

B. A Goal Specification Language

The GoalSPEC language [27] has been specifically designed for enabling runtime goal injection and software
agent reasoning. It takes inspiration from languages for specifying requirements for adaptation, such as RELAX [4],
however GoalSPEC is in line with Definition 2. The language is based on structured English and it adopts a core
grammar with a basic set of keywords that must be extended by plugging-in a domain ontology.

As already stated, the core grammar of GoalSPEC is in line with Definition 2. Figure 7 represents its metamodel.
The main entity is Goal (wanted by some subject) that it is composed of a Trigger Condition and a Final State.
The subject is a noun that describes the name of the involved person, role or group of persons that owns the
responsibility to address the goal. The trigger condition is an event that must occur in order to start acting for
addressing the goal. The final state is the desired state of the world that must be addressed.

It is worth underlining that both Trigger Conditions and Final States must be expressed by using a State of the
World, that in turn is expressed through domain ontology predicates.

For a complete specification of the syntax of GoalSPEC see [27]. Some examples of GoalSPEC productions for
the domain of the Meeting Scheduling are listed below:

1) WHEN schedule(Usr,Meeting) THE system SHALL PRODUCE canceled(Meeting) OR confirmed(Meeting)

2) WHEN pending(Meeting) AND meeting datetime(DT) AND attendee(Meeting,A) THE system SHALL PRODUCE
notified(A,Meeting,DT)
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usrmsg

Meeting <<position>>
Attendee

<<position>>
Initiator Calendar

Timeslot

<<predicate>>
Confirmed

<<predicate>>
Canceled

<<predicate>>
Pending

<<action>>
Schedule

<<action>>
Accepted

<<action>>
Rejected

<<predicate>>
MinAttendees

Meeting 
DateTime

<<predicate>>
Notified

<<position>>
User

is-a

is-a

Contact Info

Email Skype Id

<<predicate>>
Busy

ISO 8601 
DateTime

is-a

is-a is-a

<<predicate>>
Free

Fig. 5. Example of Problem Ontology for the Meeting Scheduling application context. Ontology elements represented without stereotypes
are to be read as concepts by default.

W t notified(m123,mario.rossi)

pending(m123)

accepted(john.smith,m123, dt(2015,01,06,10,30))

email(mario.rossi, m.rossi@gmail.com)

Fig. 6. A state of the world built in conformance to a domain ontology.

3) AFTER 2 days SINCE WHEN notified(Usr,Meeting,DT) THE system SHALL PRODUCE accepted(Usr, Meeting,DT)
OR rejected(Usr, Meeting,DT)

Each of the items shown before are goals. For purpose of clarity we put in uppercase the keywords of the
language, and in lowercase the domain specific predicates constrained by the problem ontology (Figure 5). Goal
1 indicates that ‘when the software agent knows a user is going to schedule a meeting, then it should bring the
meeting to a state of canceled or confirmed’. Goal 2 states that ‘when a meeting is yet in a state of pending, but
a date-time is going to be proposed to a set of attendees, then each of these attendees has to be notified about’.
Finally, Goal 3 says that ‘when two days past since the notification has been sent, then the system must collect the
results (accepted or rejected)’.

After that a set of goals has been completed, it can be injected into the running system, thus to let the system
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GOAL

SUBJECT
TRIGGER

CONDITION
FINAL 
STATE

EVENT STATE OF 
THE WORLD

wants

is active when is addressed 
when

generated by composed of

Fig. 7. The Core Metamodel of the Goal Specification Language.

try to address them. We called this mechanism goal injection [28].

C. A Capability Specification Language

In AI, the need for representing software agent’s actions in order to implement reasoning directed towards action
is a long-dated issue [8], [15], [16], [29]. An agent is able to achieve a goal by doing an action if either the agent
knows what the action is and knows that doing the action would result in the goal being satisfied [15]. This topic
has become even more actual because the amount of services deployed in the web is exponentially growing and
researchers are looking for ways for automatically searching, selecting and composing them [30].

We use Capability as an internal representation of an atomic unit of work that a software agent may use for
addressing changes in the state of the world. A Capability is made of two components: an abstract description (a
set of beliefs that makes an agent aware of owning the capability and able to reason on its use), and a concrete
body implementation (a set of plans for executing the job).

Whereas we define a template for providing the abstract description of a capability, we do not provide any language
for the body, leaving the choice of the specific technology to the developer. The proposed template (Table I) is a
refinement of that presented in [30] for LARKS (language for advertisement and request for knowledge sharing).

Tables II and III are two examples of capabilities that work with emails. The Proposal Mail Sender capability
encodes a question into the content of an email, thus the receiver can select two links, for answering yes or not.
The second capability, Collect Response, looks at all the received answers to a given question and returns an array
in which there is an item for each user who replied.

There is also a special category of capabilities that is Cloud Capability. These capabilities have been created for
interacting with a REST application on the cloud. An example is the Google Calendar Check capability reported
in Table IV. The aim of this capability is to interact with users’ google calendar account for obtaining whether a
given time slot is free or busy.

D. Implementing Self-Awareness

Reasoning about knowledge and belief is still an issue of concern in philosophy and artificial intelligence. For
the purpose of this work, some simplifications have been assumed for aiming at the core of this research problem.
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TABLE I
TEMPLATE FOR DOCUMENTING A CAPABILITY DESCRIPTION.

Name Unique label used to refer to the capability

InputParams Definition of the input variables necessary
for the execution.

OutputParams Definition of the output variables pro-
duced by the execution.

Constraints Optional (logical or structural) constraints
on input/output variables.

Pre-Condition Condition that must hold in the current
state of the world in order to execute the
capability.

Post-Condition Condition that must hold in the final state
of the world in order to assert the capa-
bility has been correctly executed.

Evolution Function of evolution evo : W −→W as
described in Section II

TABLE II
ABSTRACT SPECIFICATION OF THE PROPOSAL MAIL SENDER CAPABILITY.

Name PROPOSAL MAIL SENDER

InputParams QUESTION : TEXT,
RESPONSEID: STRING
USERMAIL : STRING

OutputParams NONE

Constraints format(UserMail,
RFC 5322 Address Specification)

Pre-Condition email(Usr, UserMail)

Post-Condition notified(Question, Usr)

Evolution evo = {add(notified(Msg,Usr)),
add(mailed(UserMail,Question))
add(questioned(Usr,ResponseId))}

The principle at the base of the approach is that a software agent can store injected goals, its capabilities,
the computational state and the execution process by using the same belief baseFirst-order logic provides a well-
understood model-theoretic semantics and it enables characterization of reasoning on goals and capabilities in terms
of classical notions of deduction and consistency [31].

The issue of implementing injected user-goals into a BDI [25] agent has been already considered in some recent
works in literature [32]. Similarly, also annotating agent’s capabilities/services with a first-order logic semantics is
an open branch of research [5].

Here it is a couple of examples of how respectively Goal 1 and Goal 2 reported in Section III-B may be encoded
in a software agent’s belief base:

agent_goal(
params( [usr,mtg] , [

category(usr, attendee),
category(mtg, meeting) ]),

tr_condition( schedule(usr,mtg)),
final_state( or(

canceled(mtg),
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TABLE III
ABSTRACT SPECIFICATION OF THE COLLECT RESPONSE CAPABILITY.

Name COLLECT MAIL RESPONSES

InputParams RESPONSEID : STRING

OutputParams RESPONSEARRAY : ARRAYOF(
RESPONSE(USR,{yes | not}))

Constraints NONE

Pre-Condition questioned(Usr,ResponseId))

Post-Condition accepted(Usr,ResponseId)∨
rejected(Usr,ResponseId)

Evolution evo = {add(accepted(Usr,ResponseId))
add(rejected(Usr,ResponseId))
remove(questioned(Msg,ResponseId))}

TABLE IV
ABSTRACT SPECIFICATION OF THE GOOGLE CALENDAR CHECK CAPABILITY.

Name GOOGLE CALENDAR CHECK

InputParams SLOT : TIMESLOT, USERCALENDAR :
CALENDAR

OutputParams RESPONSEARRAY : ARRAYOF(
SLOT(USR,{free | busy}))

Constraints format(Slot,
slot(dt(year,month, day, hour,minute),
dt(year,month, day, hour,minute)))

Pre-Condition calendar(Usr, UserCalendar)

Post-Condition free(Usr, T imeslot)∨
busy(Usr, T imeslot)

Evolution evo = {add(notified(Msg,Usr)),
add(free(Usr, T imeslot))
add(busy(Usr, T imeslot))}

confirmed(mtg) ) ),
system

)
agent_goal(

params( [mtg,dt,a], [
category(mtg, meeting),
category(dt, meetingdatetime),
category(a,attendee) ) ,

tr_condition( and(
pending(mtg),
meeting_datetime(dt),
attendee(mtg,a) ) ),

final_state( notified(a,mtg,dt ),
system

)

This code has to be read as follows: the agent knows to own a couple of goals. The first goal is linked to two
concepts of the ontology: Attendee and Meeting. It has, as triggering condition, the formula schedule(usr,meeting)
and, as final state, a logical OR condition between two statements: canceled(meeting) and confirmed(meeting).
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The second goal grounds over three concepts of the domain: Meeting, MeetingDateTime and Attendee. The goal
precondition is the logical AND condition of three elements, whereas the final state is the formula notified(a,mtg,dt).

The first advantage of having goals in the agent belief base is that they can dynamically change during the agent
life. Indeed, new goals can be added into the belief-base, or existing goals can be retreat. An injected goal is not
automatically committed by the agent through a plan (as it happens in many rule-based systems): goal commitment
is the result of agent reasoning.

In a similar encoding style, the agent can also store abstract capabilities. Here a couple of examples of the
proposal mail sender and collect mail responder capabilities, respectively.

agent_capability( proposal_mail_sender,
in_params([question,response_id,usermail]),
out_params( [] ),
precondition( email(user,usermail) ),
postcondition( notified(question, user) ),
evolution( [

add( notified(question, user) ),
add(mailed(usermail, question) ),
add( questioned(user,response_id) ) ] )

)
agent_capability( collect_mail_responder,

in_params( [response_id] ),
out_params([array(response(user,boolean))]),
precondition( questioned(user,response_id) ),
postcondition( or(

accepted(user,response_id),
rejected(user,response_id) ) ),

evolution( [
add( accepted(user,response_id) ),
add( rejected(user,response_id) ),
remove(questioned(user,response_id))])

)

This code is the faithful reproduction of information in form of logical predicates, shown in Table II and Table III.

IV. SELF-ADAPTATION AS THE RESULT OF AGENT DELIBERATION

The principle at the base of this approach for software agent deliberation is that each agent knows to know
something.

Let us suppose the software agent a knows W t (the current state of the world), and a goal g is injected. The
agent must be able of understanding if g is already addressed in W t by evaluating the goal triggering condition
and final state, respectively tc(W t) and fs(W t). If g is yet to be addressed, then the agent starts considering the
opportunity to pursue that and therefore it reasons on the set of capabilities C it owns, and for each capi ∈ C
how the generic capability affects W t. We call Goal/Capability Deliberation the ability of discovering a sequence
of capi ∈ C which execution will lead to address g (Problem 1).

The BDI software architecture [25], inspired by human attitudes (beliefs, desires, intentions), is a common model
for implementing a goal-directed behavior. The assumption of the BDI model is that computer programs can have a
mental state. Thus BDI systems are computer programs having computational features that are analogues to beliefs,
desires and intentions [25]. BDI software agents offer the required level of abstraction to build an autonomous, self-
aware and self-adaptive system. However, the basic BDI approach is not sufficient to implement the Goal/Capability
deliberation as it has been described before. It is a common practice in current BDI application to develop collections
of plans at design time. The objective of the agent is then solved by pursuing these plans for their execution at run
time. This mechanism lacks of flexibility because i) plans are directly connected to goals they address and ii) the
attitude of an agent to deal with changing circumstances is dependent on how plans are coded for it by the agent
programmer.



12

A. Proactive Means-End Reasoning

We implement an agent execution framework based on an architecture that lays upon the BDI model; it exploits
beliefs for storing the knowledge about W t, Goals and Capabilities, and it allows the agent to reason on how
to achieve goals injected at runtime by using the capabilities they own. This is achieved by means of a Proactive
Means-End Reasoning algorithm and a Goal/Capability Deliberation algorithm that are implemented through desires
and intentions.

Given a goal model (G,R) where groot ∈ G is the top goal of the hierarchy, the Proactive Means-End Reasoning
algorithm explores the hierarchy, starting from groot in a top-down fashion. The objective is to check the root goal
addressability according to available capabilities. The algorithm exploits AND/OR decomposition relationships to
deduct a goal addressability according to its subgoals.

Algorithm 1 meansend resoning(GM, gtarget,WI , C)

1: meansend← goal cap deliberation(WI , gtarget, C)
2: if gtarget IS leaf then
3: sol set← meansend
4: else if meansend = ∅ then
5: dec type← get decomposition type(gtarget, GM)
6: children← get subgoals(gtarget, GM)
7: for all gi ∈ children do
8: sub sols← meansend resoning(GM, gi,WI , C)
9: if dec type == ’and’ then

10: if sub sols 6= ∅ then
11: sol set← permut(sol set, sub sols)
12: else
13: return ∅
14: end if
15: else if dec type == ’or’ then
16: sol set← union(sol set, sub sols)
17: end if
18: end for
19: end if
20: return sol set

The first step of the algorithm is to check whether at least one solution exists for addressing the given goal
(by using the Goal/Capability Deliberation procedure in Algorithm 2). If the target goal is a leaf goal the adopted
solution is the one returned by the sub procedure, otherwise, if no solution has been found, the algorithm proceeds
with a top-down recursive approach.

• If the relationship is an AND decomposition the result is the permutation of all the solutions found for each
children node.

• If the relationship is an OR decomposition the result is the union of all the solutions found for each children
node.

Let us indicate with {.} a complete/partial solution for the fulfillment of a goal where the ‘dot’ is to be replaced
by a capability or a sequence of capabilities, expressed in the form 〈c1, c2, . . . , cn〉. Therefore, a generic solution set
generated by the algorithm has the following form: {〈c1, c2, . . . , cn〉, 〈c1, c2, . . . , cm〉, . . . }

If a goal gA is AND-decomposed in two sub-goals gB and gC , and the algorithm finds {〈c1〉, 〈c2〉} as solutions
to gB and {〈c3〉} as solution of gC , then the solution of gA is {〈c1, c3〉}, {〈c2, c3〉}.

Conversely, if a goal gA is OR decomposed in two sub-goals gB and gC , and the algorithm finds {〈c1〉, 〈c2〉} as
solutions to gB and {〈c3〉} as solution of gC , then the solution of gA is {〈c1〉, 〈c2〉, 〈c3〉}.
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B. Goal/Capability Deliberation

Algorithm 1 is mainly intended for exploring the goal model hierarchy and composing partial solutions into a top
level solution that addresses groot. However, the core of Algorithm 1 is the procedure called at the first instruction.
The procedure for the Goal/Capability Deliberation is reported in Algorithm 2. It exploits agent’s mental states in
order to evaluate what happens when capabilities are pursed through a simulation of evolution of possible worlds.

The inputs of the algorithm are the current state of the world WI and a generic goal gi ∈ G of the goal model.
At each step the algorithm explores the space of solutions by simulating the employment of one of the available
capabilities, thus generating a tree of possible evolution paths of the current state. Each path in the tree represents
a sequence of capabilities and their endogenous effects over WI . An instance of execution of the Algorithm 2 is
shown in Figure 8. Let us suppose to be able of representing the solution space as a surface in which each point
indicates a different configuration of statements si ∈ S. Some areas of this surface are marked as ‘forbidden’,
meaning that those configurations are not valid. Therefore, the algorithm analyzes at each step the most promising
path. This is evaluated by considering a score function that measures (i) the distance from the final state and (ii)
the quality of the partial configuration.

Forbidden Space

Forbidden Space

WI

W1

W2
W2.2

W2.1

W1.2

W1.1

W2.2.2

W2.2.1

W2.1.2

W2.1.1

W2.1.3

goal 
fulfillment

c1

c2

c3
c2

c3

c4

c5
c6

c7
c6

c7

<c2,c3,c6>

Fig. 8. Abstract representation of the strategy used to explore a space of solutions for building a plan.

When an evolution path is selected the algorithm checks whether it addresses the goal gi: in this case the set
of capabilities used to obtain the path is marked as one of the possible solutions. Otherwise the algorithm tries to
expand the current path by employing other available capabilities. The output of this algorithm is a list of all the
solutions that have been discovered.

The algorithm takes an exponential time to complete. To simplify its execution, we assume of: i) selecting (at
each step) only a subset of all possible capabilities to expand the tree, ii) exploring a limited space of solutions in
which some areas are forbidden (see Figure 8) and iii) employing domain-specific utility functions to measure the
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quality of the partial solutions.

Algorithm 2 goal cap deliberation(WI , g, C, Space[= ∅])
1: CS ← extract highest scored path(Space)
2: if g is satisfied by CS from WI then
3: sol set← put(CS, sol set)
4: if dim(sol set) > max dim then
5: return sol set
6: end if
7: else
8: cap set← select capabilities(C,CS,WI)
9: Space← expand and score(CS, cap set, Space)

10: end if
11: return goal cap deliberation(WI , g, C, Space)

C. Self-Adaptation

The proactive means-end reasoning procedure may be the ground for engineering a self-adaptative software
system. According the roadmap of self-adaptive systems [1], one of the principles for implementing such a system
is to explicitly focus on the ‘control loop’ as an internal mechanism for controlling the system’s dynamic behavior.

Figure 9 shows the adaptation cycle whose core activities are: goal injection, proactive means-end reasoning, goal
commitment, environment monitoring, and capability execution. The agent reacts to goal injection by activating the
proactive means-end reasoning and by trying to assemble a solution for addressing the goal. If at least one solution is
discovered the agent selects the highest scored set of capabilities (according to capability costs, reliability and other
QoS factors) for enabling the goal commitment. As a consequence the agent enters in a sub-cycle of monitoring
and execution. If everything goes as planned, the goal will be eventually addressed. However, the goal/capability
deliberation procedure did not considered exogenous changes of the state of affairs. As a consequence the agent is
not ready to act in case of unexpected changes coming from outside the model. When this happens, the proactive
means-end reasoning is executed again, but with a different current state of the world. The result will be a new set of
capabilities (if possible) for overcoming the unexpected state change. The self-adaptation cycle also considers cases
in which the execution of a capability terminates with errors. In this case too, the proactive means-end reasoning
is executed, with the shrewdness to mark the capability that failed as ‘unselectable’.

V. DISCUSSION AND EVALUATION

Sections III-IV faced Problem 1 by exploiting a semantic approach for bridging Capabilities and Goals.
This work tries to improve the state of the art in at least two ways. First, the idea of a proactive means-end

reasoning strongly grounds on the research line that explores goal models as mechanisms for software agents
to reflect upon their requirements during their operation. In particular, Dalpiaz et al. [7] propose runtime goal
model (RGM) that annotate goals with additional information about the fulfillment of goals. Despite RGM is an
exceptional instrument for system reasoning, we observed the behavior of the system is wired into tasks of the
RGM. The system may adapt its behavior only by selecting (hard-coded) task among alternative OR decomposition
relationships. Therefore the research question we raise up is: what if tasks are not provided together with the goal
model?

Second, the idea of goal injection comes from observing that functional requirements could be a runtime entity,
to be provided to the system on the need [4]. GoalSPEC is a language for specifying requirements in form of goals
for self-adaptive systems. With respect to the work of Whittle et al. [4], GoalSPEC has a simpler syntax but a
limited support to uncertainty. The authors have planned of extending GoalSPEC with a new set of keywords for
handling uncertainty and high/low priority among goals as future work.

The following subsection introduces the middleware we developed to concretely implement and experiment the
above reported theories.
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Fig. 9. Graphical representation of the Self-Adaptation Cycle.

A. A Middleware for User-driven Service self-Adaptation

MUSA (Middleware for User-driven Service Adaptation) is a holonic multi-agent system for the composition and
orchestration of services in a distributed and open environment. MUSA aims at providing run-time modification of
the flow of events, dynamic hierarchies of services and integration of user preferences together with a system for
run-time monitoring of activities that is also able of dealing with unexpected failures and optimization.

The concept of holon, coined in the field of biology and social science for explaining emergence, equilibrium
and self-adaptation, has been recently used in software engineering too [19], [33].

Holon is a general term for indicating a concrete or abstract entity that has its own individuality, but at the same
time, it is embedded in larger wholes. The main principle that rules an holon is the Janus effect, that is a principle
of duality: the same entity has its own individuality but at the same time it is made of many parts. An example
of concrete holon is an organ that is a part of an organism, but a whole with regard to the cells of which it is
comprised. An example of abstract holon is a word that is part of a sentence, but a whole with regard to the letters
that compose it.

IN MUSA holons have been used for bridging self-organization and self-adaptation. A composed service may be
seen as a holarchy, i.e. a hierarchy of elements in which each component is a whole and a part at the same time.
When developing a complex service, each part maintains its autonomy but it also has to collaborate with other
entities for providing a composed functionality. In MUSA this is implemented as a multi-agent system in which
elements are able of organizing themselves in holonic structures [34].

Requests for service composition are injected at runtime through the use of user-goal specified in GoalSPEC.
Services are deployed in the web as usual, but agents own specific capabilities for dealing with classes of them. Since
software agent are deployed in a distributed environment, MUSA implements a distributed version of Algorithm 2
in which the result is not only a set of capabilities for addressing goals, but also a contract among the agents for
working in collaboration. Therefore, service composition is obtained at run-time, as the result of a self-organization
phenomenon.

The whole system has been implemented by using JASON and CArtAgO. The JASON [35] platform is based
on the AgentSpeak language [5] and the BDI theory [25]. AgentSpeak is a programming language based on events
and actions. The state of an agent together with its environment and eventual other agents represent its belief base.
Desires are states which the agent wants to attain based on its perceptions and beliefs. When an agent adopts a plan
it transforms a desire to an intention to be pursued. In JASON, the agent’s knowledge is expressed by a symbolic
representation by using beliefs, that are simple predicates that state what the agent thinks to be true.
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JASON agents are not aware neither of their goals nor of their capabilities. The specification of a goal is strictly
connected to the plans to be executed for achieving it. In order to implement self-awareness we use the belief base
as illustrated in Section III-D.

CArtAgO (Common ARTifact infrastructure for AGents Open environments) [36] is a general purpose frame-
work/infrastructure that makes it possible to model and program the agents’ environment. In MUSA the body of
Capabilities for interacting with web services exploits CArtAgO.

MUSA have been employed in the following research project and case studies:
• Project IDS (Innovative Document Sharing) started in 2011-closed in 2014 and funded by the Autonomous

Region of Sicily within the Regional Operative Plans (PO-FESR) of the EU Community. MUSA is the core en-
gine for executing dynamic workflows in small/medium enterprises. The architecture includes a BPMN2GOAL
component that translates a BPMN 2.0 specification file into a set of GoalSPEC goals. Therefore these goals are
injected into the system in which agents are responsible of 1) automatic tasks (as the document classification)
2) to interface with human workers (BPMN Resources) and 3) monitoring manual tasks (as the document
supervise) [28].

• Project OCCP (Open Cloud Computing Platform) started in 2014-to close in late 2015 and again funded by the
Autonomous Region of Sicily within the PO-FESR initiative. MUSA is currently employed for the automatic
mash-up of cloud application. The expected result is to allow a user to define a new cloud application as the
integration (in terms of data and process) of existing cloud applications.

• Project PON SIGMA (integrated cloud system of sensors for advanced multi-risk management) started in 2013-
to close in early 2015. This project explores how to merge protocols for emergency when many disasters (for
instance earthquake and fire) happen at the same time. MUSA is going to be employed for simulating security
operations according to goals and norms.

• Case study on a Smart Travel Agency. This state-of-the-art benchmark has been used for testing the possibility
to adopt MUSA in the context of a final user fine configuration of service composition. In this context user
goals are indeed used for requesting a fine grained configuration for a ‘travel’ product. The system is also
able to monitor the traveler during its journey and to propose variation to the planned travel when something
changes in the context (i.e. a delay or a new user goal).

• Case study on an Exhibition Center system. This case study is still in progress. It aims at testing MUSA in
the context of a socio-technical system in which technical aspects are as important as social assets.

B. Limits

This subsection presents a critical analysis of the approach. The first and most relevant topic regards computational
complexity. The proposed Algorithm 2 is a search algorithm that improves a breadth-first search even if the time
complexity for the worst case is yet O(bd) where b is the branching factor and d is the depth. This algorithm is
a starting point for exploring the research direction. Below we will quickly review some alternative approaches to
improve the performance.

Planning/Scheduling algorithms. It could be natural to think that a solution to Problem 1 can be designed by
exploiting the state of the art in planning and scheduling. Algorithms for planning are concerned with figuring out
what actions need to be carried out for addressing a given result, whereas algorithms for scheduling are concerned
with when to carry these actions for the same purpose [37], [38].

SAT solver. Searching in the space of State of Worlds is a combinatorial problem, and therefore it may afforded
by a SAT solver. Despite the fact that the Propositional Satisfiability is a NP-complete problem, recently many
algorithms (i.e. DPLL, CDCL [39]) reach impressive performances with several hundreds of variables and several
thousand of clauses in worst conditions [40].

Case Based reasoning. Case-based reasoning [41] is a problem solving paradigm that in many respects is
fundamentally different from other major AI approaches since it is able to utilize the specific knowledge of
previously experienced, concrete problem situations. A new problem is solved by finding a similar past case,
and reusing it in the new problem situation. This approach would be applied together with a divide and conquer
strategy (Algorithm 1) in which a complex problem is decomposed in simpler sub-problems to front them separately.

Another point of discussion concerns the real degree of decoupling between Capabilities and Goals. The authors
have introduced the use of an ontology for enabling a semantic compatibility between these two elements. By
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committing to the same ontology, Capabilities and Goals can be implemented and delivered by different development
teams. Our experimental phase has provided evidences that if the ontology is built correctly then the approach works
properly. However it must be yet considered how changes in the PO affect the maintenance of Capabilities and
Goals. For instance, changing de definition of a predicate in the ontology could have a detrimental impact over
the effectiveness of the approach by implying a revision of deployed Capabilities. Authors are already working on
building a reasoning algorithm more robust to changes of the language [42], thus to deal with conceptual ambiguities
and linguistics flaws (as, for instance similarities and synonyms).

VI. CONCLUSION

This work is a preliminary step for answering to the research question whether how to implement self-adaptive
system in which tasks are not provided together with the goal model. In this vision, system’s functional requirements
are not hard-coded, but rather they are provided at run-time as Goals. It is necessary an autonomous and proactive
software agent able of deciding how to combine its available Capabilities for addressing injected goals. The first
result, presented in this work is MUSA, a Middleware for User-driven Service self-Adaptation that implements in
a belief-desire-intention programming language an ontology-based algorithm for finding capabilities for addressing
a generic goal. The work can evolve in several ways: i) to improve the performance of searching a solution,
ii) handling uncertainty and high/low priority among goals iii) to relax the dependency of the approach on an
ontological commitment.
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[35] R. Bordini, J. Hübner, and M. Wooldridge, Programming multi-agent systems in AgentSpeak using Jason. Wiley-Interscience, 2007,

vol. 8.
[36] A. Ricci, M. Piunti, M. Viroli, and A. Omicini, “Environment programming in cartago,” in Multi-Agent Programming:. Springer,

2009, pp. 259–288.
[37] T. L. Dean and S. Kambhampati, “Planning and scheduling.” CRC Press, 1997, pp. 614–636.
[38] R. Basseda, M. Kifer, and A. J. Bonner, “Planning with transaction logic,” in Web Reasoning and Rule Systems. Springer, 2014, pp.

29–44.
[39] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. IOS Press, 2009, vol. 185.
[40] B. Selman, D. G. Mitchell, and H. J. Levesque, “Generating hard satisfiability problems,” Artificial intelligence, vol. 81, no. 1, pp.

17–29, 1996.
[41] D. B. Leake, “Case-based reasoning,” The knowledge engineering review, vol. 9, no. 01, pp. 61–64, 1994.
[42] L. Steels, “Language as a complex adaptive system,” in Parallel Problem Solving from Nature PPSN VI. Springer, 2000, pp. 17–26.


