
Composition of a New Process to Meet Agile Needs Using MethodEngineering

Massimo Cossentino, Valeria Seidita
Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)

Consiglio Nazionale delle Ricerche(CNR)
Viale delle Scienze, 90128 -Palermo- Italy

cossentino@pa.icar.cnr.it, seidita@pa.icar.cnr.it

Abstract

The need of developing a new software engineering pro-
cess (SEP) that could allow the quick prototyping of some
robotic applications and meet the requests coming from
some companies for a development process that was shorter
than PASSI, gave us the opportunity of applying our stud-
ies on the assembling of a new SEP by reusing parts (called
method fragments) from other processes. In this paper we
discuss our approach that, starting from the method engi-
neering paradigm, adapts and extends it considering spe-
cific agent-oriented issues like the multi-agent system meta-
model. The final result of our experiment (Agile PASSI) is
presented together with the requirements that motivated its
structure.

1 Introduction

Many different design methodologies for multi-agent
systems could already be found in literature and nonetheless
further works propose brand new approaches or the exten-
sions of existing ones. We think (but the opinion is largely
shared in the scientific community) this happens because
each methodology has been conceived to solve a specific
problem in a fixed context and this strongly limits the pos-
sibility of reusing it (without significant changes) in a dif-
ferent situation. Several developers respond to their needof
designing a specific system in some productive context by
creating a specific design methodology; this implies a big
effort and the cost of developing a MAS (multi-agent sys-
tem) becomes higher than the comparable object-oriented
solution (it is worth to note that in the object-oriented con-
text the Unified Process is an accepted standard and design-
ers does not need to add the design process construction cost
to the development effort).

A new branch of Software Engineering, called Method
Engineering [1, 2] proposes of creating a new methodology
starting from existing methodology parts, calledmethod

fragments, that a method engineer defines and stores in the
method base. When he wants to design a new methodology,
he extracts and assembles the fragments (each one com-
posed of some work to be done, the resulting artifacts and
supporting guideline) in order to obtain a methodology that
is suitable for his specific needs. Because of the great num-
ber of methodologies that could be used to extract method
fragments, it is necessary to represent them in a standard
way and to have a definition of the method fragments that
could fit it. This work consists in a re-engineering process
[3] of existing methodologies to identify and extract frag-
ments that could be used in the new methodology construc-
tion process. We think that in the AOSE (Agent-Oriented
Software Engineering) context, some confusion still ex-
ists among the use of the terms process, methodology and
method. In order to avoid misunderstandings, in this work,
from now on, we decided to refer to the (design) process
(avoiding the use of the word methodology) meaning with
it the collection of phases, activities and steps that produce
the project deliverables. The term method will be used with
the meaning of a way of performing some kind of activity
(at whatever level) within the design process (this includes
techniques, artifacts, and guidelines).

As a consequence of this adopted terminology, we will
refer to the final result of the method engineering activity
as a newprocessor indifferently SEP (Software Engineer-
ing Process). It will be composed by a set of method frag-
ments, each one of them specifying which phase/activities
or more generally work definitions should be carried on and
by which stakeholders. The most frequent aim of these
work definitions is producing/refining one or more artifacts
(text documents, diagrams, . . . ) and in so doing they of-
ten refer to some kind of style template (text documents) or
modeling language (diagrams). This process in order to be
successfully applicable should be complemented by some
guidelines that will help the involved stakeholders in per-
forming their duties according to some defined best prac-
tices. The process will also prescribe in which sequence
the phases and activities will be executed and if iterations

1



should be done or feedbacks provided to previous items;
this often relates to some common models like the waterfall
[4] and evolutionary [5] (including iterative and incremen-
tal) ones.

As already said, before proceeding to fragments assem-
bling, we need to describe and represent these parts in a
standard way so to make easy the composition of parts com-
ing from different processes. The first step of this work con-
sists in the creation of the meta-model that will be used to
describe the existing processes and the multi-agent system
structure. An important contribution to the solution of the
first issue comes from an OMG specification, the Software
Process Engineering Metamodel [6]; this is the natural can-
didate to become the adopted process meta-model, since it
is already an accepted standard in the OO context. We have
exploited the possibilities offered by SPEM in the specific
agent-oriented context obtaining interesting results in the
modular representation of PASSI [7] and the method frag-
ment extraction from it. In this paper we will present our
approach to the reuse of these fragments for assembling a
new process (Agile PASSI) that satisfies our specific robotic
applications development needs.

The paper is organized as follows: in the following sec-
tion we present an introduction to the key topics of this
work: method engineering and agile processes; in section
3 we present our general approach to the new process com-
position and related method fragments selection; in section
4 we quickly present the PASSI process from which we ex-
tracted the method fragments; in section 5 we report the
results of our experiment, and finally some conclusions are
drawn in section 6.

2 Theoretical Background

In studying the solutions presented in this paper, we
considered a specific problem, the rapid development of
an agent-oriented application accepting low compromises
on the quality of the design and its documentation. This
brought us to identify the need for an agile process that
could be supported by some design tool. Taking profit of
our previous experience with the PASSI process [8], pat-
terns reuse [9], and related design tools [10], we conceived
an agile version of PASSI by reusing some of its parts
(called method fragments) and building up the new required
portions of the process. This corresponds to applying the
method engineering approach that will be discussed in sub-
section 2.1 to the composition of this process. Several dif-
ferences exist in using the method engineering approach
in its original field (object-oriented systems) and in MAS
(multi-agent systems). All of these issues will be discussed
in the following sub-sections.

2.1 Agent-Oriented Method Engineering

In order to build our new design process we adopted (and
extended) the method engineering paradigm [11][12][13].
According to this approach, the new SEP (Software En-
gineering Process) is built by assembling pieces of the
process (method fragments) [2][1][3] from a repository of
methods. In this way we could obtain the best process
for our specific needs. We chose this approach because,
in the last years, it proved successful in developing many
object-oriented applications, for example information sys-
tems [14], and is now collecting a growing interest from the
agent community[15][16].

Some differences exist between the approach we used
in building Agile PASSI and the cited approaches in the
object-oriented context; the most relevant one is that in the
OO context the construction of method fragments, the as-
sembling of the new SEP with them and the execution of
the design rely on a common denominator, the universally
accepted concept of object and related model of the object
oriented system. In the agent context, there is not an uni-
versally accepted definition of agent nor it exists any very
diffused (meta-)model of the multi-agent system. Referring
to aMAS meta-modelwe mean a structural representation
of the elements (agent, role, behavior, ontology,. . . ) that
compose the actual system with their composing relation-
ships. Sometimes we can see that these concepts, for ex-
ample the role, are used, by different authors and in differ-
ent processes, with slightly distinct meanings or granularity.
We built Agile PASSI by adopting the MAS meta-model
represented in Figure 2, that will presented more in details
in sub-section 3.1.

Before introducing the process we adopted to create Ag-
ile PASSI, it is worth to provide a definition of method frag-
ment. In this work we consider amethod fragment (or
briefly a fragment) as composed by:

1. A portion of process;

2. One or more deliverables (artifacts like (A)UML/UML
diagrams, text documents and so on);

3. Some preconditions (like required input data or guard
conditions);

4. A list of concepts (related to the MAS meta-model) to
be defined/designed/refined by executing the specific
method fragment;

5. Guideline(s) that illustrates how to apply the fragment
and best practices related to that;

6. A glossary of terms used in the fragment;

2



7. Other information (composition guidelines, platform
to be used, application area and dependency relation-
ships useful to assemble fragments) complete this def-
inition.

In Figure 1 it is presented what we think to be the cor-
rect process for composing a new SEP under the evolution
of the method engineering paradigm that we call agent-
oriented method engineering. The process begins with the
introduction in the method base of the fragments extracted
from available processes and the specifically created new
ones; then the designer (or better the method engineer),
before building the new SEP, identifies the elements com-
posing the meta-model of the kind of MAS he wants to
build. The composition of the new SEP is performed under
the assistance of some specific software tool, called CAPE
(Computer Aided Process Engineering) or CAME (Com-
puter Aided Method Engineering) depending on its process
or method-oriented vocation. This tool will allow the se-
lection of the right method fragments from the method base
and will permit their introduction in the selected (or specif-
ically designed) process model.

In this process, the definition of the MAS meta-model
will help at both a logical and practical level. Firstly
this will be useful in the method fragment selection phase
(avoiding the selection of methods dealing with elements
that are not present in the defined MAS meta-model) and
secondly, the same fact of clearly declaring the structure of
the system will allow the design tool to check for model co-
herence and to find not completely defined parts. Once the
new SEP has been composed, the same CAPE/CAME tool
should permit the instantiation of a simpler tool (a CASE,
Computer Aided Software Engineering, tool) that will be
used by the designer when designing a system to solve some
specific problem.

Agile PASSI has been constructed according to this pro-
cess and in defining/composing our fragments we used a
CAME tool (MetaEdit+ by Metacase) that offered a spe-
cific support for the composition of a process from existing
fragments.

2.2 Agile Processes

Classic SEP are well disciplined and heavily oriented to
make a process predictable and have a great stress on plan-
ning. As a reaction to this way of developing a software,in
the last years a new kind of processes, called lightweight in
a first time but now known as agile, has been developed. An
important difference between the two kinds of processes is
the smaller quantity of documentation produced in the sec-
ond case, in fact agile ones are code-oriented being source
code the key element of documentation. The large quantity
of high level documentation we create while performing a
classic SEP induces some limitations in facing changes; a

very powerful way to take under control continuous changes
is modeling through little increments, producing working
portions of code as soon as possible, and then iterating to in-
clude other features. The concept of iterative development
has a fundamental consequence that is to continuously real-
ize working subsystem that have not (yet) all the functional-
ities of the final system but when tested and integrated, they
will provide the requested features. In each iteration, this
approach provides a base on which we can plan the follow-
ing increments. Finally we can say that agile processes (of-
ten called agile methodologies) are not complete processes
but they are a supplement to the already existing ones, they
begin where the other fault or better where the other needs
changes in order to perceive their objective. Our attempt is,
now, to reexamine PASSI, using principles and techniques
of agile processes [17], in order to create a lightweight SEP,
simple, easy to use and principally based on code produc-
tion rather than on documentation (that is still requested,
but mostly when it can be automatically produced). In our
work we followed the fundamental strategies of the Agile
Manifesto: (i) Individuals and interactions over processes
and tools, (ii) Working software over comprehensive doc-
umentation, (iii) Customer collaboration over contract ne-
gotiation, (iv) Responding to change over following a plan.
We also considered the sequence of activities defined in one
of the most used agile approaches, Extreme Programming
[18]: (i) Planning, (ii) Designing, (iii) Coding, and (iv) Test-
ing. As it will be presented later, this sequence will consti-
tute the center of the proposed SEP.

3 The proposed approach

This section proposes our approach to the composition
of a new process. In this specific work we will apply our
ideas to the reuse of PASSI fragments in order to build a
new process (Agile PASSI) accordingly to some require-
ments that will be presented later. In our research activity
we decided to adopt existing standards whenever possible
in order to remain as close as possible to industrial needs
in this direction; for this reason we adopt: SPEM (Software
Process Engineering Metamodel) by OMG [6] in modeling
our processes (and related fragments), UML (extending it
when necessary) in modeling our artifacts; FIPA [19] as the
reference agent architecture and XML for data representa-
tion.

In creating a new process, we consider that this is es-
sentially a design activity by itself and as such it should
be ruled by some kind of design process. The design pro-
cess we adopt (to design a new process) is composed of
four phases: requirements analysis, process model design,
fragments selection, and fragments integration (it includes
the assembly and adjustment activities performed to adapt
the fragments to the new process). Further iterations in this

3



Method


Base


Method


Fragments


 Extraction


New Process


Composition


System Design
 Specific


Problem


Deployment


MAS Meta-Model


New Method(s)


MAS Model


New Process


CAPE/CAME


Tool


Existing Processes


MAS running


on agent platforms


CASE Tool


Instantiation


Figure 1. The adopted Agent-Oriented Method Engineering pr ocess

sequence of phases should aim at process maturity as de-
scribed in the CMM [20] but these aspects are out of the
scope of this paper.

TheRequirements Analysisphase, consists in the iden-
tification of the important features of the process under con-
struction; for instance the need of an highly detailed level
of design that could derive from a defense contract project.
Another example could be the indisputable dependability
requested to a mission critical system like an avionic one.
TheProcess Model Designconsists in the selection of the
process model (waterfall [4], evolutionary or incremental
[5], transformation [21], spiral [22], . . . ), the phases that
constitute it and other process level requisite (for instance
the conditions that enable each new iteration). We consider
situational requirements as the most useful guidance for se-
lecting the right process model. The need of facing with
rapidly changing requirements could bring to the adoption
of an evolutionary process while, conversely the need of a
very formal development process, with high quality level in-
surance could lead to the adoption of some IEEE guidance
[4][23] and therefore to the selection of a waterfall model.
TheFragments Selectionphase aims at identifing the best
fragments for achieving the process goals (according to the
requirements identified in the first phase). Some authors
(Ralyté et al. [2]) identify method fragments (called ’chunk’
in that work) using a process-driven very structured and

complete heuristic. We think that this top-down method, al-
though very clear and well defined is not sufficient to meet
all the requirements (that are often expressed also in terms
of deliverables and architecture of the system to be devel-
oped). For this reason we found useful to complement a
process driven selection activity with another data-driven
one that considers aspects like diagrams/other documents
to be produced and the system architecture according to
some kind of MAS (multi-agent system) meta-model. From
the process-driven point of view, we consider four differ-
ent levels of method fragment granularity according to the
position of the fragment in the process (in this classifica-
tion we adopt the SPEM terminology):Phase(highest level
parts of the process, usually characterized by an entry con-
dition, a goal and the sequentiality constraint, for instance
System Requirements and Agent Society in PASSI),Work
Definition (a substantial part of the operations to be per-
formed in the process, usually it is composed of several
lower level elements; for instance Agent Identification, and
Domain Ontology Description in PASSI, see section 4),Ac-
tivity (usually the smallest reusable part of a process, an
activity is composed by the tasks, operations, and actions
that are performed by a role or with which the role may as-
sist, for instance Use Case Identification and Roles Depen-
dencies Analysis in PASSI [7]),Step(the atomic elements
that compose an activity, for instance the different steps of

4



the heuristic used for identifying agents from use cases in
PASSI)

The selection of method fragments (that in our approach
could be at thePhase, Work Definitionor Activity level of
granularity) is performed working on two dimensions: the
process dimension and the system architecture dimension.
The process dimensionenables a zooming on the analysis
done during the process model design and considers lower
level features of the process. For instance at this stage we
evaluate the need for a specific attention on security (from
which we will deduce the importance of introducing some
specific method fragment). Essentially in this phase we first
select the phases we want to introduce in the process (while
some process model like the waterfall one already prescribe
these phases, some others leave a considerable level of de-
gree in this choice), and then we select the lower level frag-
ments inside them. In so doing we follow some criteria:

• Process completeness: all phases (and their activities)
of the process are to be covered by appropriate method
fragments;

• Process coherence: generally speaking, each fragment
refers to some kind of ‘philosophical’ or ‘methodolog-
ical’ approach to the solution of the problem it faces.
It makes no sense to introduce fragments belonging to
contrasting approaches in the same process;

• Process applicability: the selected fragments should
compose a process that is realistic (not too complex
or simplistic for the faced problem) and lead to the fi-
nal solution in an optimal (or at least acceptable) way
(in terms of cost and time);

• Contracts accomplishing: each fragment has some
specific preconditions that should be enacted by previ-
ous parts of the process and when it has been applied,
it generates some postconditions that could trigger the
following fragments;

• Stakeholders adequacy: it consists in selecting a set of
fragments where the skills required for involved roles
(analyst, architect, programmer, ...) are adequate to
the situation (company, developing team, . . . ) where
the process will be applied;

• Stakeholders satisfaction: people involved in the pro-
cess application play a decisive role in the success of
the project. Their expectancy in terms of the kind of
work they will participate, is an important factor for
the selection of fragments.

• Specific requirements: they could help in the selection
of some fragments. For instance the need of designing
a real-time system will induce to consider fragments
that deal with time-related aspects of the design.

In thesystem architecture dimensionwe define the MAS
meta-model and from it we deduce the need for specific
fragments that with their resulting artifacts could contribute
to the definition of a system obeying to the defined meta-
model. We now deduce the models and views that are nec-
essary to define and refine the elements of the system (this in
someway resembles the product perspective of Brinkkem-
per et al. in [3]).

During theFragments Integration phase, the selected
fragments are disposed in the right position inside the pro-
cess and when necessary they are adapted to the new con-
text. Method fragment contracts (preconditions required by
each fragment and postconditions enacted by it) are used
to verify the possibility of directly connecting some frag-
ments. An interesting approach to the adaptation of frag-
ments is described in [24].

3.1 The Agile PASSI process composition experi-
ment

The reported experiment started from two different mo-
tivations, the first was that we needed a short design pro-
cess to let designers focus on the implementation of rela-
tively small robotic applications; the second motivation was
that during the development of large projects some of ours
industrial partners underlined the benefit that could come
from the availability of a versatile process that could substi-
tute PASSI in the development of minor parts of the whole
project. Because of space concerns, in the following we
will only refer to the first motivation but the other has been
considered too during the Agile PASSI construction and
the resulting process proved good in the developing of non
robotics applications too. Our robotic systems are deployed
on mobile robots moving at a relatively low speed (only a
few meters per second) and usually performing missions re-
lated to the use of cognitive capabilities (for example we
designed systems for museum guide, surveillance and envi-
ronment discovery applications). We now want to design a
process that, taking profit of the successful experience al-
ready done with PASSI, could be the best solution for this
kind of problems in our laboratory context.

The requirements that we could identify for our new pro-
cess are centered on the main goal of not distracting de-
velopers from their main objective of implementing/tuning
some kind of new algorithm with a long design process;
nevertheless, we do still need to maintain a reasonable qual-
ity of design documentation for enabling the knowledge
transfer among people in our laboratory. Another wish is
related to the possibility of quickly reusing contributions
coming from other projects in order to restrict the effort re-
lated to the development of a new application to the solution
of its novelty aspects. The last concern is about the design
of the real-time aspects of the application. Although our

5



-Name : String


-Knowledge : Ontology


Agent

-name : String


Task


Ontology


Concept


-Act


Action
 Predicate


-Name


-Exchanged Knowledge : Ontology


-Content Language


Communication


-Name : String


Agent Interaction Protocol


-Comm_act : Performative


Message


1


*


Implementation Task


1


1


Implementation Agent


1

1


1


1..*


Requirement


1..*


1


Non Funct. Req.


0..*


1..*


1
 *


1
 *


Figure 2. The Agile PASSI MAS meta-model

robots move slow, the use of low efficiency agent platforms
(Java-based) could bring to an unacceptable decay in per-
formance if no specific attention is given to this problem.

As regards the other dimension we consider in our com-
position approach (the system architecture), the require-
ments of the new process regard our decision of signifi-
cantly reducing the dimension of the conventional PASSI
MAS meta-model [25] because of the direct relationship
that exists between the number of elements of the meta-
model and the design artifacts (and activities). The chosen
MAS meta-model is reported in Figure 2, it is composed of
four different categories of elements: requirements (func-
tional and non functional requirements), domain ontology
(concept, predicate, action), agent logical (abstract) struc-
ture (agent, task, communication, message, agent interac-
tion protocol), and agent implementation structure (imple-
mentation agent and implementation task).

In this meta-model, the concept of agent represents the
entity performing the system functionalities. Each function-
ality descends from one or more requirements elicited dur-
ing meetings with clients, users, developers and designers
and then represented in a conventional use case diagram.
Agent knowledge is described in terms of instances of the
domain ontology, that is a composition of concepts (entities
and categories of the domain), predicates (assertions about
elements of domain) and actions (that agents can perform
in the domain, so affecting the status of concepts). In Agile
PASSI we think to an agent as composed of tasks represent-
ing a portion of its behavior and embodying its capabilities
of pursuing a specific goal. An agent uses communications
to realize its social relationships and asking for collabora-
tions from other agents. Each communication is composed

of messages expressed in an encoding language and refers
to an element of the ontology, besides the flow of messages
is ruled by an interaction protocol (AIP)

From all of these requirements we deducted some
choices for our new process:

• we decided to adopt an agile process. This introduces
a specific structure of process model: (a) it should be
short (composed of only a few phases), iterative, and
incremental (as a consequence we need some itera-
tion planning activities) and (b) a specific attention is
devoted to coding and testing in order to have a fre-
quent delivery of functional portions of the final sys-
tem; this solves the developer ’anxiety’ of focusing on
algorithm implementation rather than system design.

• The process should be composed of a quick design
phase and should encourage the reuse of portions of
existing design artifacts and applications in form of
patterns; it should enable the automatic production of a
consistent documentation at different levels of abstrac-
tion by re-engineering the produced code.

• The design aspects we decided to maintain from con-
ventional PASSI are related to the initial part of the
process (use case based requirements analysis) and the
agent society model (functionality-based agents identi-
fication and a detailed domain ontology design). This
satisfies the expectancy of already skilled PASSI de-
signers that do not want to study a totally new process.

• Finally, the process has to be supported by a specif-
ically conceived design tool in order to limit all the

6



operations that are performed ‘by hand’ (this also in-
cludes design documentation production) because they
contribute in significantly slowing down the process
and could introduce mistakes in the final result.

The resulting process is reported in Figure 3 and it is
composed of five different phases: (i)Requirementswhere
the new iteration is planned (in terms of risks and require-
ments to be faced) and a use case based analysis of system
requisites is performed; (ii)Agent Societywhere the agents
that will constitute the system are identified and the domain
application ontology defined; (iii)Test Planwhere starting
from requirements, a detailed plan of the test that will be
applied to the code is prepared; (iv)Codingwhere code is
produced (with patterns reuse); and (v)Testingwhere the
produced portion of the system is tested accordingly to the
previously prepared test plan.

4 PASSI Description

PASSI [8] is a process for multi agent systems develop-
ment that covers all the design activities from the require-
ments analysis to the system implementation and deploy-
ment. The design work is carried out adopting five phases
composed by twelve sequential and iterative work defini-
tions used to produce the MAS specification.

Briefly the phases and work definitions of PASSI (in Fig-
ure 4 a SPEM diagram representing them) are:

1. System Requirements. It is composed of four dif-
ferent work definitions and produces a description of
the functionalities required for the system and an ini-
tial decomposition of them accordingly to the agent
paradigm. The four work definitions are: (i) theDo-
main (Requirements) Description, where the system
is described in terms of functionalities; (ii) theAgent
Identificationwhere agents are introduced and the al-
ready identified requirements assigned to them; (iii)
the Role Identificationwhere agents’ interactions are
described by using traditional scenarios; (iv) theTask
Specificationwhere the operational plan of each agent
is draft.

2. Agent Society. It composes a model of the social in-
teractions and dependencies among the agents of the
solution. It is composed of four work definitions: in
theDomain Ontology Descriptionthe elements occur-
ring in the system domain are represented in terms of
concepts, predicates, actions and relationships among
them; in theCommunication Ontology Descriptionthe
focus is on agent’s communications that are explained
in terms of referred ontology, content language and
agent interaction protocol; in theRole Descriptiondis-
tinct roles played by agents in the society and the in-
volved tasks/behaviors are detailed; in theProtocol

Definitionnon-standard agent interaction protocols are
defined.

3. Agent Implementation. It is a model of the solution
architecture in terms of classes and methods required.
It is composed of four work definitions organized in
two streams of activities (structure definition and be-
havior description) both performed at the single-agent
and multi-agent levels of abstraction.

4. Code. It is a model of the solution at the code level.
It is largely supported by patterns reuse and automatic
code generation.

5. Deployment. It is a model of the distribution of the
parts of the system across hardware processing units.
The Deployment Configurationwork definition, de-
scribes the allocation of agents in the units and any
constraint on migration and mobility.

Testing in PASSI is divided in two different stages: the
Agent Testwhere each single agent is tested after its im-
plementation (Code phase) and theSociety Testwhere the
whole multi-agent system is tested (after the Deployment
phase).

This great number of steps may take a long time to ob-
tain the first prototype code. Also, the process is iterative
both among the phases and in the whole life cycle; this
configures PASSI as a traditional process in which the cod-
ing phase is positioned somehow late in the process and
like many other classical approaches it is oriented to high
level documentation production, and it is more adequate for
projects with a low level of changes in requirements.

From PASSI we extracted several fragments some of
which will be reused or adapted for the creation of the Agile
PASSI process. In the following subsection we will describe
the PASSI method fragments extraction process.

4.1 PASSI fragments

Before performing the fragments extraction from PASSI,
we re-engineered it in order to represent all the process
aspects (activities, artifacts, constraints and conditions) in
a way that could enable the method fragments identifica-
tion. SPEM (Software Process Engineering Metamodel [6])
was adopted as a process meta-modeling language; this lan-
guage allows an intuitive description of the software devel-
opment process and its components and includes an UML
profile that can be used to graphically represent the process
using UML activity, class and use case diagrams. The core
of SPEM is in its conceptual model: a software develop-
ment process can be seen as a collaboration between ab-
stract active entities calledProcess Rolesthat perform some
operations calledActivitieson concrete entities calledWork
Products.

7



Requirements
 Agent Society
 Coding
 Testing


[New complete iteration]


[Refactoring iteration]


Test Plan


Figure 3. The phases of the Agile PASSI process

We represented the PASSI process in SPEM using two
sequential steps, in the first we considered the whole pro-
cess with the involved disciplines, in the second we detailed
the separate phases and work definitions, following the con-
ceptual model described above and the method fragment
structure already defined in section 3. Starting from the pro-
cedural representation of PASSI composed of five phases
(Figure 4), we decided to extract one different fragment for
each one of the PASSI work definitions (refer to the begin-
ning of this section for their list). In so doing we obtained a
substantial simplification of our new process creation work:
the assembly process will only deal with two levels of frag-
ments (phase and work definitions); another consequence is
that the modifications of them during fragments integration
will be easier since it will mainly deal with work definition
level fragments (and rarely with their composing activities).

At the end of our PASSI re-engineering and fragments
extraction work we obtained seventeen work definition level
fragments and five phase level ones; they constitute the frag-
ments repository from which we selected the elements for
composing the Agile PASSI process

5 The Resulting Agile PASSI Process

Starting for the considerations proposed in the previous
sections we selected from the PASSI process some frag-
ments that we consider in line with the new process require-
ments (see subsection 3.1) and our ‘philosophy’ in agents
development (use case based agents identification and cen-
tral role of ontology); the selected method fragments: Do-
main Requirements Description (a description of the sys-
tem requirements in terms of use cases), Agent Identifica-
tion (the clustering of system functionalities into packages
associated to agents), Domain Ontology Description (an on-
tological description of the solution domain in terms of con-
cepts, predicates and actions), Code reuse (a comprehensive
pattern reuse technique that allows the automatic production
of code) and Testing (of agents and societies). The new Ag-
ile Process (reported in Figure 5 in form of a SPEM activity
diagram), resulting from the composition of these work def-
initions in the five phases of the general model proposed in
Figure 3, it is composed of eight work definitions (Planning,

Sub-Domain Requirements Description, Domain Ontology
Description, Agent Identification, Pattern Reuse, Coding,
Test Plan, Test) and eleven artifacts (seven UML diagrams
and four text documents).

More in details, the first phase (Requirements) consists
in an high level analysis of the system under construction
through two sequential work definitions:

• Planning, where through the communication among
team elements and sequential iterations the problem is
divided into sub-problems so to make possible a cor-
rect risks management and activities scheduling. This
first activity should result in a text document (Iteration
Plan) summarizing the considerations and the solution
proposed by team elements.

• Sub Domain Requirements Description, a functional
description of the system through common UML use
case diagrams. This work definition corresponds to
the PASSIDomain requirements Description, the ‘Sub
Domain’ prefix has been added to stress the incremen-
tal concepts that are behind this process.

In theAgent Societyphase, developer identifies the agents
involved in the solution (assigning the previously identified
functionalities to them), and then he defines the ontology of
the domain. The phase is composed of two parts:

• Agent Identification, in this activity, starting from the
previously produced use case diagram, another one is
composed clustering use cases in packages that repre-
sent the functionalities assigned to agents; in this way,
each agent will be responsible for the satisfaction of
some requisites.

• Domain Ontology Description, the domain is ex-
pressed in terms of its ontology through a class dia-
gram where classes represent concepts, predicates and
actions.

We expect that this two work definitions are carried on
iteratively; after the identification of an agent the definition
of its knowledge and actions starts and this could bring to
some changes in the list of functionalities assigned to it.

8



System Requirements


Agent Society
 Agent Implementation
 Code


Deployment


Syst.


Req.


Model


Agent


Impl.


Model


Code


Model


Agent


Society


Model


Deploy


ment


Model


Figure 4. The phases of the PASSI process

Testing is a continuous activity during an agile devel-
opment process, in Agile PASSI this is divided in two
phases; the first isTest Plan, that has been conceived re-
ferring to the agile processes principles and particularlyto
eXtreme Programming [18] rules; according to these rules
the testing phase starts before the coding activity, the de-
signer/programmer has to first prepare the test plans and
then coding the component that must satisfy them (this will
be proved during the followingTestingphase).

The Code phase is composed of two strictly coupled
parts.

• Patterns reuse, where we try to reuse portions of prece-
dent projects through the reuse of patterns of services
(interactions among agents), agents, tasks and actions.
In this activity the Agent Factory tool proves very use-
ful allowing us the automatic generation of relevant
portions of code and a reduction of development time
and costs.

• Coding, consists in the introduction of the code that
cannot be derived from patterns (for instance problem
specific algorithms).

Coding phase is the core of Agile PASSI and it is largely
supported by a tool, APTK (Agile PASSI Toolkit), that is an

add-in of a commercial design tool (Metaedit+). APTK of-
fers several features to the designer, its main functionalities
are :

• Automatic compilation of diagrams - this allows the
partial drawing of some diagrams, for instance the
Agent Identification diagram is initially drawn report-
ing the use cases of the previous work definition, and
the complete design of some others starting from the
code re-engineering and other design information (like
applied patterns), for instance the Communication On-
tology diagram is composed in this way.

• Support of changes - our tool, interacting with the
Metaedit+ functionalities, allows the user to modify all
the design models (even those automatically generated
by the tool), and to profitably perform an incremental
and iterative development of the project.

• Consistency check - the developer can perform a check
on all the generated models to verify their consistency
or he can use the MetaEdit+ checking feature for ver-
ifying the correctness and consistency of each single
diagram.

• Report and project documentation generation - APTK

9



Planning


Requirements
 Code
 Testing
Agent Society


MABD


SASD


MASD


Iteration


Plan


Sub Domain


Requirements Description


SDR


Domain


Ontology


Description


Agent


Identification


DOD


AID


Test Plan


Test Plan


Test


Plan

Test


Results


Coding


Code


Testing


Pattern


Reuse


[New complete iteration]


[Refactoring iteration]


COD


Text


Document


KEYS

UML


Diagram

Work


Definition


Figure 5. The Agile PASSI process

allows the creation of MS Word or HTML documents
representing all the design aspects.

• Patterns reuse - the user interacts with Agent Factory,
that is totally integrated with APTK, to apply patterns
to the system and generate their code.

• Automatic code generation and reverse engineering -
Code generation and reverse engineering are entirely
done by the Agent Factory application, through its in-
tegration in APTK.

Testing, after code completion, is the phase where the
real test accordingly to the previously defined test plans is
performed.

Agile PASSI has been created starting from conventional
PASSI with the precise aim of having a lighter design pro-
cess that could fit the needs arising from the development of
small-medium size projects. As a consequence there are not
fundamental differences between the two processes with the
exception of those that we can individuate between a classic
SEP and an agile one. Even one of the most agent-oriented
aspects of a design process (the MAS meta-model) is not
very different. In building Agile PASSI we referred to the
MAS meta-model represented in Figure 2 whose elements
are a subset of the conventional PASSI MAS meta-model
[25].

Being our process agile, it is iterative, composed by a
low number of steps and it strongly involves the end-user
(or customer) during the development phases. These are

choices we did in order to be compliant with the agile mani-
fest principles[17], and as a consequence some of the phases
of traditional SEPs are not considered (this is the case of the
system architecture design that is left to the agent society
organization) or performed very quickly. Quality assurance
is enhanced by the large reuse of patterns, the automatic
production of relevant portions of code and the consistency
check performed by the tool on the design artifacts.

6 Conclusions and Future Works

This work started from the need of developing a new
software engineering process (SEP) that could allow the
quick prototyping of agent-oriented applications. In pre-
vious experiences we used the PASSI process that proved
good for the development of medium-large size applica-
tions but it was too time consuming for the development
of smaller size applications. This gave us the opportunity
of applying our studies on the assembling of a new SEP
by reusing parts (called method fragments) from other pro-
cesses. This approach already known as method engineer-
ing in the object-oriented context it is now diffusing in the
agent-oriented community as a logical attempt of rationaliz-
ing and reusing the great number of development processes
proposed in literature.

In this paper we discuss our approach that is composed
of four phases: (new SEP)Requirements Analysis, Pro-
cess Model Design, Fragments Selection, Fragments Inte-

10



gration. In these phases we also consider specific agency
peculiarities like the MAS meta-model that differently from
what happens in the object-oriented context is not a-priori
known and fixed, but it is one of the most important dif-
ferences that can be found in the development processes
proposed in literature. The final result of this work (the
Agile PASSI process) is finally presented starting from the
requirements that motivated its structure.

In the future we aim at further detailing the different as-
pects of our approach, by formalizing a sufficient number of
techniques and guidelines that could efficiently support the
work of the method engineer. As regards the Agile PASSI
process, after having applied it in a couple of small projects,
we can say that it fully achieved the goals we were pursu-
ing from the methodological point of view while the design
tool (APTK) has still to be significantly improved in order
to reach the flexibility and extensive support offered by the
conventional PASSI support tool (PTK).

References

[1] Brinkkemper, S., Lyytinen, K., Welke, R.: Method
engineering: Principles of method construction and
tool support. International Federational for Informa-
tion Processing 6565 (1996) 336

[2] Ralyte, J., Rolland, C.: An approach for method
reengineering. Lecture Notes in Computer Science
(2001) 27–30

[3] Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-
modelling based assembly techniques for situational
method engineering. Information Systems24 (1999)

[4] Board, I.S.: Ieee std 1074-1997, standard for develop-
ing software life cycle processes (1997)

[5] Gilb, T.: Principles of Software Engineering Manage-
ment. Addison-Wesley Reading (1988)

[6] OMG: Software Process Engineering Metamodel
Specification. http://www.omg.org (2002)

[7] Cossentino, M., Sabatucci, L., Seidita, V.: Spem
description of the passi process. Technical Re-
port 20-03, ICAR-CNR (2003) Available on-
line at http://www.pa.icar.cnr.it/ cossentino/ FI-
PAmeth/metamodel.htm.

[8] Cossentino, M., Sabatucci, L.: Agent system imple-
mentation. In Paolucci, M., Sacile, R., eds.: Agent-
Based Manufacturing and Control Systems: New Ag-
ile Manufacturing Solutions for Achieving Peak Per-
formance, CRC Press (2004)

[9] Cossentino, M., Sabatucci, L., Chella, A.: A possible
approach to the development of robotic multi-agent
systems. In: IEEE/WIC IAT’03 Conference, Halifax -
Canada (2003)

[10] M.Cossentino, L.Sabatucci, S.Sorace, A.Chella: Pat-
tern reuse in the passi methodology. In: ESAW’03,
Imperial College London, UK (EU) (2003)

[11] Brinkkemper, S.: Method engineering: engineer-
ing the information systems development methods
and tools. Information and Software Technology37
(1995)

[12] Kumar, K., Welke, R.: Methodology engineering: a
proposal for situation-specific methodology construc-
tion. Challenges and Strategies for Research in Sys-
tems Development (1992) 257–269

[13] Saeki, M.: Software specification & design methods
and method engineering. International Journal of Soft-
ware Engineering and Knowledge Engineering (1994)

[14] Tolvanen, J.P.: Incremental method engineering with
modeling tools: Theoretical principles and empirical
evidence (ph.d. thesis). Jyvskyl Studies in Computer
Science (1998) 301

[15] Henderson-Sellers, B., Debenham, J.: Towards open
methodological support for agent-oriented systems
development. In Far, B., Rochefort, S., Moussavi, M.,
eds.: Proceedings of the First International Confer-
ence on Agent-Based Technologies and Systems, Uni-
versity of Calgary, Canada (2003) 14–24

[16] Juan, T., Sterling, L., Winikoff, M.: Assembling
agent oriented software engineering methodologies
from features. In: Third International Workshop on
Agent-Oriented Software Engineering, Bologna - Italy
(2002)

[17] Beck, K., al.M. Beedle, van Bennekum, A., Cock-
burn, A., Cunningham, W., Fowler, M., Grenning,
J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J.,
Marick, B., Martin, R., Mellor, S., Schwaber, K.,
Sutherland, J., Thomas, D.: (Agile manifesto)
http://www.agilemanifesto.org.

[18] Wells, D.: (Extreme programming - a gentle introduc-
tion) http://www. extremeprogramming.org.

[19] O’Brien, P., Nicol, R.: Fipa - towards a standard for
software agents. BT Technology Journal16 (1998)
51–59

[20] Paulk, M., Weber, C., Curtis, B.: The Capability Ma-
turity Model for Software. Addison Wesley (1995)

11



[21] Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamen-
tals of Software Engineering. Prentice Hall Interna-
tional (1991)

[22] Boehm, B.: A spiral model of software development
and enhancement. IEEE Computer21 (1988) 61–72

[23] Board, I.S.: Software life cycle processes (1998)

[24] Ralyte, J., Rolland, C.: An assembly process model
for method engineering. In: Proceedings of the 13th
Conference on Advanced Information Systems Engi-
neering, CAISE01, Interlaken (Switzerland) (2001)

[25] Bernon, C., Cossentino, M., Gleizes, M., Turci, P.,
Zambonelli, F.: A study of some multi-agent meta-
models. In: Agent-Oriented Software Engineering
Workshop (AOSE’04), New York (USA) (2004)

12


