
1 23

Journal of Reliable Intelligent
Environments

ISSN 2199-4668
Volume 3
Number 3

J Reliable Intell Environ (2017) 3:159-175
DOI 10.1007/s40860-017-0047-9

Self-adaptive smart spaces by proactive
means–end reasoning

Luca Sabatucci & Massimo Cossentino

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

International Publishing AG. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

J Reliable Intell Environ (2017) 3:159–175
DOI 10.1007/s40860-017-0047-9

ORIGINAL ARTICLE

Self-adaptive smart spaces by proactive means–end reasoning

Luca Sabatucci1 · Massimo Cossentino1

Received: 30 June 2017 / Accepted: 20 July 2017 / Published online: 31 July 2017
© Springer International Publishing AG 2017

Abstract The ability of a system to change its behav-
ior at run-time is one of the foundations for engineering
intelligent environments. The vision of computing systems
that can manage themselves is fascinating, but to date, it
presents many intellectual challenges to face. Run-time goal-
model artifacts represent a typical approach to communicate
requirements to the system and open new directions for
dealing with self-adaptation. This paper presents a theoret-
ical framework and a general architecture for engineering
self-adaptive smart spaces by breaking out some design-
time constraints between goals and tasks. The architecture
supports software evolution because goals may be changed
during the application lifecycle. The architecture is respon-
sible for configuring its components as the result of a
decision-making algorithm working at the knowledge level.
The approach is specifically suitable for developing smart
space systems, promoting scalability and reusability. The
proposed architecture is evaluated through the execution of
a set of randomized stress tests.

Keywords Self-adaptive systems · Software architecture ·
Smart spaces

1 Introduction

In the past decades, technology has become pervasive in our
lives due to the variety of devices which are used by people of
all ages during their daily routine [32]. The miniaturization

B Luca Sabatucci
luca.sabatucci@icar.cnr.it

Massimo Cossentino
massimo.cossentino@icar.cnr.it

1 Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR),
National Research Council, Palermo, Italy

and the growth of performance of these devices constitute the
technological enabler for a new generation of systems called
intelligent environments [19].

An intelligent environment is one in which the physical
environment is enriched with sensing devices, and it is sup-
ported by intelligent software that orchestrates services and
provides holistic functionality that enhances occupants expe-
riences [4].

As long as software systems grow in size, complexity,
heterogeneity, and interconnection, it becomes central to
design and implement them in a more versatile, flexible,
resilient, and robust way. The IBM manifesto of autonomic
computing [37], released in 2001, suggests a promising direc-
tion for facing software complexity through self-adaptation.
The direction is shown through many research roadmaps
[18,26] of software engineering for a self-adaptive system
that defines self-adaptive systems as those systems able to
autonomously modify their behavior and/or their structure
in response to their perception of the environment, and the
operative context, to address their goals [26].

As declared by the manifesto [4], the ability to change the
behavior at run-time is one of the foundations for engineer-
ing intelligent environments. Self-adaptation has deep roots
in several research fields, as artificial intelligence, biologi-
cally inspired computing, robotics, requirements/knowledge
engineering, control theory, fault-tolerant computing, and so
on. In the past decade, the vast and heterogeneous num-
ber of works concerning self-adaptation investigated several
aspects of the problem, for instance, specific architectures
for implementing adaptive control loops [49], self-organizing
paradigms [5], adaptive requirements [25] and so on. How-
ever, to date, many of these problems remain significant
intellectual challenges [18,26].

Among others, one point is becoming clear: until self-
adaptive systems become a reality, human users (not only

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s40860-017-0047-9&domain=pdf
http://orcid.org/0000-0003-2852-9355

160 J Reliable Intell Environ (2017) 3:159–175

managers) will participate in the process of adaptation
[8]. This aspect is of paramount importance for the mod-
els@runtime community [10] that is looking for appropriate
artifacts to shorten the distance between user and system
through a model of requirements and functionality at a high
level of abstraction. However, traditional requirements speci-
fication languages need to evolve for explicitly encapsulating
points of variability in the behavior of the system [43] and
elements of uncertainty in the environment [62]. These ele-
ments must be first class entities the system can exploit to
decide how to act. Currently, goal-oriented methodologies
[15,25] represent the trend for specifying how a software
system may adapt through the conceptualization of system’s
objectives and system variation points. In particular, goal-
models allow describing alternative ways to address system’s
objectives. Goals represent “invariant points” that motivates
the whole mechanism of adaptation.

In previous works we observed that functional require-
ments could be run-time entities, to provide to the system
according to specific user needs. We also adopted goals as a
primary way to describe system’s objectives. Moreover, we
explored amechanism for injecting or changing goal-models
during system execution. To this aim, we defined a human-
oriented language for specifying system goals [58]. We also
set up a formal background, based on the concept of state of
the world, for allowing the system to run when the specifica-
tions of how to address goals are not provided together with
the goalmodel. The result is thePMR Ability, i.e., a facility of
the system for autonomously deciding how to operationalize
a given goal for which it has no hard-coded knowledge [54].

This paper aims at refining the problem of proactive
means–end reasoning and implementing a general architec-
ture for adaptation that, working at the knowledge level [45],
is independent of any specific application context, but it
rather can be reused in many domains. A particular focus
is given to atomic and self-contained portion of behavior,
called capabilities, which implement the paradigm of full-
reuse [7]. Indeed their peculiarity is of being automatically
composable, on demand, to build system functionalities and
to address dynamic and evolving goals. The proposed archi-
tecture integrates the MAPE-K model [16,49] to deal with
three characterizations of self-adaptation: system evolution,
self-configuration, and self-healing.

A prototype of the architecture has been implemented
in JASON [12], a declarative programming language based
on BDI theory [14]. We also randomly generated a set of
stress tests to evaluate the performance of self-adaptation.
The result provided us interestingfindings for planning future
works.

The paper is structured as follows: Sect. 2 presents the
theoretical backgroundanddefines somebasic concepts. Sec-
tion 3 presents a knowledge-level approach for solving the
proactive means–end reasoning problem through a top-down

strategy combined with an algorithm for capability composi-
tion. Section 4 presents the architecture based on the ability
to solve the proactive means–end reasoning problem and
the MAPE-K model. Section 5 presents the results of a set
of tests, compares the approach with some relevant works
from the state of the art and, finally, discusses strengths and
limits of the approach. Section 6 briefly summarizes the pro-
posed architecture. Other details of the prototype are in the
Appendix.

2 Background and definition

This section illustrates the theoretical background that intro-
duces the basic concepts of this paper.

The running example is a self-adaptive management sys-
tem for an exhibition center. Such a system shall manage
thousands of visitors each day. The aim is to support visitors
for improving their experience. Usually, there are multiple
areas and stands for different companies and products, and
also zones for meeting and conferences. Visitors have dif-
ferent interests; most of them are usually only interested
in some specific topics and products. They can use their
smartphone/tablet to register, declare their interests, get nav-
igational help, and discover new and different opportunities.
Big displays may help people find the right directions by
detecting the presence of people in their surrounding.

The system shall also support the organizers at managing
the crowd by properly distributing the different groups of
people, avoiding overcrowding and granting security norms.
The support in case of emergency is of paramount impor-
tance: the smart infrastructure shall also be to coordinate
people to safely get out by providing information about the
safest and nearest exits and by telling people to use all the
emergency exits uniformly.

2.1 State of the world and goals

We consider a software system has (partial) knowledge about
the environment inwhich it runs. The classicway for express-
ing this property is (Bel a ϕ) [63] that specifies that a software
agent a believes ϕ is true, where ϕ is a generic state of affairs.
We decided to limit the range of ϕ to first-order variable-free
statements (facts). They are expressive enough for represent-
ing an object of the environment, a particular property of an
object or a relationship between two or more objects. A fact
is a statement to which it is possible to assign a truth-value.
Examples are as follows: tall(john) or likes(john, music).

Definition 1 (State of the world) The state of the world in
a given time τ is a set W τ ⊂ S where S is the set of all
the (non-negated) first-order variable-free statements (facts)
s1, s2 . . . sn that can be used in a given domain.

123

Author's personal copy

J Reliable Intell Environ (2017) 3:159–175 161

W τ has the following characteristics:

W τ = {si ∈ S|(Bel a si), } (1)

where a is the subjective point of view (i.e., the execution
engine) that believes all facts in W τ are true at time τ .

W t describes a closed-world in which everything that is
not explicitly declared as true is then assumed to be false.

An example of W t is {tall(john), age(john, 16),
likes(john, music)}.

A State of theWorld is said to be consistent when∀si , s j ∈
S

if {si , s j } |�⊥ then

{
si ∈ W τ ⇒ s j /∈ W τ

s j ∈ W τ ⇒ si /∈ W τ ,
(2)

i.e., it contains only facts with no (semantic) contradic-
tions. For instance the set {tall(john), small(john)} is not
a valid state of the world since the two facts produce a seman-
tic contradiction.

A condition ϕ : W τ −→ {true, f alse} of a state of
the world is a logical formula composed by predicates or
variables, through the standard set of logical connectives
(¬,∧,∨). A condition may be tested against a given W τ

through the operator of unification.
For instance, the condition ϕ = likes(Someone, music)

∧ age(Someone, 16) is true in the state of the world
{tall(john), age(john, 16), likes(john, music)} through
the binding Someone �→ john that realizes the syntactic
equality.

In many goal-oriented requirements engineering methods
the definition of Goal [15] is the following: “a goal is a state
of affairs that an actor wants to achieve”. We refined this
statement to be compatible with the definition of W t as fol-
lows: “a goal is a desired change in the state of the world an
actor wants to achieve”, in line with [1]. Therefore, to make
this definition operative, it is useful to characterize a goal in
terms of a triggering condition and a final state.

Definition 2 (Goal) A goal is a pair: 〈tc, f s〉where tc and fs
are conditions to evaluate (over a state of the world). Respec-
tively, the tc describes when the goal should be actively
pursued and the fs describes the desired state of the world.
Moreover, given a W t we say that

the goal is addressed iff tc(W t)∧♦ f s(W t+k) where k >0,

(3)

i.e., a goal is addressed if and only if, given the trigger con-
dition is true, then the final state must be eventually hold true
somewhere on the subsequent temporal line. Some examples
of goals for the smart space case study are in the Appendix.

Fig. 1 Portion of goal model for the exhibition center

Definition 3 (Goal model) A goal model is a directed graph,
(G,R) where G is a set of goals (nodes) and R is the set
of Refinement relations (edges), i.e., relations that provide
a hierarchical decomposition of goals is sub-goals through
AND/OR operators. In a goal model there is exactly one root
goal, and there are no refinement cycles.

This definition has been inspired by [24] but we explicitly
removed Influence [24] relations and means–end [15] rela-
tions from the definition. The influence relation prescribes
a change in the satisfaction level of a goal affects the sat-
isfaction level of its adjacent goal. It is not currently used
in our theoretical model, whereas means–end links provide
a direct connection between a goal and the procedure the
system would engage to address it. They are not in the def-
inition of goal-model because the system generates them at
run-time.

Figure 1 is an excerpt of the goal model for the Exhibition
Center, resulting from the requirements and drawn according
to the i* notation. The example includes functional (hard)
goals and AND decompositions. The root goal, to manage
the exhibition center, is decomposed into three sub-goals: to
support visitors, to support organizers, and to grant security.

2.2 Proactive means–end reasoning

In many goal-oriented approaches, a Task is defined as the
operationalization of a Goal. It means each task, in a goal
model, is associated with one (or more) leaf goal(s). This
design-time association is the result of a human activity
called means–end analysis. In the i* conceptual model [64],
a means–end link introduces a means to attain an end where
the end can be a goal, task, resource or soft-goal, whereas
the means is usually a task. The TROPOS methodology [15]
introduces means–end analysis as the activity for identifying
(possibly several alternatives) tasks to satisfy a goal.

The task is, therefore, an analysis entity that encapsulates
how to address a given goal according to the following state-

123

Author's personal copy

162 J Reliable Intell Environ (2017) 3:159–175

ment: “a Task T is a means to a Goal G (G being the end)
when one or more executions of T produce a post-situation
that satisfies G” [34].

This paper introduces the concept of system Capability
for highlighting the difference between means–end analysis
made at design-time and at run-time.

Definition 4 (Capability) A capability 〈evo, pre, post〉 is
an atomic and self-contained action the system may inten-
tionally use to address a given evolution of the state of
the world. The evolution, denoted as evo : W → W , is
an endogenous change of the state of the world that takes
a state of the world W t and produces a new state of the
world W t+1 by manipulating statements in W t . The capabil-
ity may be executed only when a given pre-condition is true
(pre(W t) = true). Moreover, the post-condition is a run-
time helper to check if the capability has been successfully
executed (post (W t+1) = true).

Explicit differences between the concepts of Capability
and Task, will be discussed in the following. Some exam-
ples of capabilities for the smart space case study are in the
Appendix.

Capabilities and goals Whereas a task has an explicit link
to a goal, a capability is relatively independent of a specific
goal. The concept of capabilities raises up as the attempt to
provide goal-models at run-time (goal-injection) that do not
contain tasks. The system is assumed to own a repository
of capabilities to be used for addressing one of the injected
goals.

The connection between Capabilities and Goals relies
on the enclosed semantics. To evaluate if a capability may
satisfy a goal, the system generates and tries to solve a sys-
tem of equations obtained by the current state of the world,
the capability’s pre/post conditions, and goal’s trigger/final
state. Given W k , c j = 〈evo j , pre j , post j 〉 will address
gi = 〈tci , f si 〉 iff:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s = true,∀s ∈ W k

tci (W k) = true

pre j (W k) = true

evo j (W k) = W k+1

post j (W k+1) = true

f si (W k+1) = true

(4)

This problem can be easily translated, through predicate
resolution, into a boolean satisfiability problem [9] whose
details are out of the scope of this paper.

Composition of capabilities To increase the variability of
system behavior this work assumes that it is convenient to
decompose functionality in its atomic (but self-contained)
components. It is the contextual composition of these parts

that may produce a range of possible results. For this reason,
capabilities are composable entities.

Their composition is not specified in a design-timemodel,
but it can be deducted at run-time by checking the satisfia-
bility of pre and post conditions [9] . When capabilities are
composable, then system of Eq. 4 changes for including the
resulting evolution function as the sum of each single capa-
bility evolution.

Parametric capabilities a task is arranged for a particular
working context and, therefore, it is scarcely reusable. Con-
versely, a capability is conceived with the objective of being
reusable as much as possible.

To this aim a capability may be ‘parametric’ i.e., it may
specify some input/output ports. As a consequence pre/post
and evolution expressions contains some logical variables.
The robotic-style capability for moving an physical object
is an example of parametric capability; its pre-condition is
at (X1, Y1)whereas the post-condition ismoved_to(X2, Y2)

where X1, X2 and Y1,Y2 must be specified for making the
action concrete.

Intuitively, depicting the space of solutions as a Cartesian
plane where points represent states of the world, a Capabil-
ity may be intuitively expressed as a vector that induces a
movement from a state A to a state B. A parametric capa-
bility is drawn as a family of vectors where the initial state
and the final state are subject to variability. The strength of
parametric capabilities is that they could be used in different
circumstances and they are more versatile in compositions.

According to the principle that capabilities have not an
explicit link to goals, the proposed approach is based on del-
egating to the system the responsibility to establish which
capability to select (in alternative, which composition of
capabilities to compose) and to configure its parameters for
addressing a given goal.

Definition 5 (Operationalization) TheOperationalization is
defined as the tuple 〈g, h〉 where g is the goal to address and
h is the instance of a simple or composed capability, assigned
for making the goal operational, where all parameters have
been assigned to a ground value.

Setting the operationalization of a whole goal model is a
problem formalized as follows:

Problem 1 (Proactive means–end reasoning) Given the cur-
rent state of the world WI , a Goal Model (G, R) and a set of
available Capabilities C , the Proactive means–end Reason-
ing is the problem of finding a complete and minimal set of
operationalization for the goal model.

We denote with Configuration a solution to the Proactive
means–end Reasoning problem. AConfiguration is therefore
a set of tuple 〈gi , h j 〉 where gi ∈ G and h j may be a simple
or composed capability.

123

Author's personal copy

J Reliable Intell Environ (2017) 3:159–175 163

Given a goal model (G, R), a configuration cn f is said to
be

complete iff ∀gi ∈ G, ∃h j : 〈g, h〉 ∈ cn f ;
otherwise it is partial; (5)

minimal iff ∀gi ∈ G, �hk, hr : 〈gi , hk〉 ∈ cn f,

〈gi , hr 〉 ∈ cn f. (6)

It is worth noting the following:

1. Next sections are going to illustrate an approach for solv-
ing Problem 1; for the sake of claritywe use the following
terminology: Proactive means-end Reasoning is a short-
hand for Problem 1, whereas PMR ability refers to the
algorithm for solving the problem;

2. Problem 1 is different from a scheduling problem since
it does not require an exact timing of the activities and
it is different from a planning problem because it does
not require to create a workflow for executing the activi-
ties [27];

3. when solving the Proactive means–end Reasoning prob-
lem, discovering more configurations produces an addi-
tional value for the purpose of adaptation. Indeed, it
allows comparing them according tometa-properties (for
instance the quality of service). This is possible under the
assumption that C is a redundant set of capabilities, and,
therefore, it is possible to replace a capability either with
other simple or with composed ones. Indeed, redundancy
represents the common operative context for several
works in the area of self-adaptive systems [24,43,47].

3 Solving the problem at the knowledge level

In this section, we introduce an approach to Problem 1 that is
based on the concept of state of the world tomodel a dynamic
knowledge base.

We make the assumption that the solution to the Proac-
tivemeans–endReasoning problem should not depend on the
actual data of the environment, but rather its flow of opera-
tions and interactions depend on how the data are represented
in abstract form.

Reasoning at the knowledge level [45], it is possible to
represent complex abstract data that are instantiated only at
run-time. This simplifies the problem by onlymodeling those
features of the environment that are relevant for the execution

(properties to monitor and environment entities to manipu-
late).

In order to make the algorithm affordable we obtain the
knowledge level automatically from specifications of goals
and capabilities. Therefore, evaluating the contextual ful-
filment of goals and the compatibility of capabilities in
composition may be done through symbolic checking tech-
niques.

The proposed approach for implementing a PMR Ability
uses a two-step strategy that combines a top-down ‘divide’
method with a bottom-up ‘merge’ method.

The top-down goal decomposition explores a hierarchy
by decomposing the problem space into smaller disjoint sub-
spaces according to the structure of the goal model and
available capabilities. Then it uses a STRIPS-based [28]
approach for bottom-up composition of simpler capabilities
into more complex ones.

3.1 Top-down goal decomposition

Given a goal model (G, R) where groot ∈ G is the top goal
of the hierarchy, the first step of the proposed procedure is
to explore the hierarchy of goals, starting from groot in a
top-down recursive fashion.The algorithmexploitsAND/OR
decomposition relationships to deduct the addressability of
a goal according to its sub-goals. The objective is to obtain
at least a complete configuration that addresses the problem.
However, when possible, it will return a set of alternative
configurations.

Let us indicate with cn fi = (o1, o2, . . . , on) a com-
plete/partial configuration for the fulfillment of the goal
modelwhereoi = 〈gi , hi 〉 are the operationalizations. There-
fore, we use the following notation for indicating a generic
solution_set generated by the algorithm: {cn f1, cn f2 . . .

cn fk}.
For instance, {(〈gA, h1〉), (〈gB, h2〉)} indicates a solu-

tion_set made of two configurations, each one composed
by only one operationalization. Conversely, {(〈gC , h3〉,
〈gD, h4〉)} represents a solution_set that contains only one
configuration, made of a couple of operationalizations.

The first step of the algorithm is to check if a goal is either
a leaf or it is decomposed into sub-goals.

When the goal is not a leaf, if the relationship is an AND
decomposition the result is the permutation of all the solu-
tions found for each children node. Example: if a goal gA

is AND-decomposed in two sub-goals gB and gC , and the
algorithm finds

123

Author's personal copy

164 J Reliable Intell Environ (2017) 3:159–175

ALGORITHM 1: Means End Reasoning (part I - exploring goal hierarchies)

Input: GM is the goal-model to address, gtarget is the goal analyzed at this step of the
procedure, WI is the current state of the world and C is the set of available
capabilities.

Output: The set of solutions sol set.

Function means end reasoning(GM, gtarget, C) begin
if gtarget is leaf then

h set ← compose capabilities(gtarget,WI , C);
foreach hi ∈ h set do

add solution(sol set, 〈(gtarget, h)〉);
end

else
dec type ← get decomposition type(gtarget, GM);
subgoals ← get subgoals(gtarget, GM);
foreach gi ∈ subgoals(gtarget) do

sub sol ← means end reasoning(GM, gi, C);
if dec type is AND then

sol set ← permutation(sol set, subsol);
else if dec type is OR then

sol set ← union(sol set, sub sol);
end

end
end
return sol set

end

{
sol_setB = {(〈gb, c1〉), (〈gb, c2〉)}
sol_setC = {(〈gc, c3〉)},

(7)

then the composed solution of gA is

sol_setA = {(〈gb, c1〉, 〈gc, c3〉), (〈gb, c2〉, 〈gc, c3〉)}
(8)

If the relationship is an OR decomposition the result is the
union of all the solutions found for each children node. Exam-
ple: if a goal gA is OR decomposed in two sub-goals gB and
gC , and the algorithm finds

{
sol_setB = {(〈gb, c1〉), (〈gb, c2〉)}
sol_setC = {(〈gc, c3〉)},

(9)

then the composed solution of gA is

sol_setA = {(〈gb, c1〉), (〈gb, c2〉), (〈gc, c3〉)} (10)

Otherwise, when the target goal is a leaf goal then it is
necessary to search for a capability or a composition of capa-
bilities that is able to satisfy such a goal. This procedure is
discussed in the next section.

3.2 Bottom-up capability composition

A capability produces a state of the world evolution. In
the same way, the composition of capabilities produces a
multi-step world evolution. The capability composition is a
procedure that explores the potential impact of a sequence of
capabilities with respect to the initial state of the world and
the desired goal to address.

The outcome of composing capabilities is modeled as a
state transition system where nodes are states of the world
and transitions are due to component capabilities:

Definition 6 (State of the world transition system) A State of
theWorldTransitionSystem (WTS) is a 5-tuple 〈S, WI , C, E,

L〉 where
– S is the finite set of reachable states of world;
– WI ∈ S is the initial state of the world;
– C is the finite set of available capabilities;
– E is the transition relationmade as a finite set of evolution
functions where evo ∈ E : W × W

– L : S → Score is the labeling function that associates
each state to a score that measures (1) the distance from
the final state and (2) the quality of the partial paths and
therefore it estimates the global impact in satisfying the
whole goal-model.

123

Author's personal copy

J Reliable Intell Environ (2017) 3:159–175 165

ALGORITHM 2: Means End Reasoning (part II - composing capabilities)

Input: GM is the goal-model to address, gtarget is the goal for which we want to find a
capability or a composition of capabilities, WI is the current state of the world and
C is the set of available capabilities.

Output: h is a capability or a composition of capabilities that satisfies gtarget.

Function compose capabilities(gtarget,WI , C) begin
WTS ← initialize space(WI);
while |h set| < max h set AND |WTS| < max space do

Wi ← get highest scored state(WTS);
CS ← path from to(WTS,WI ,Wi);
if check cs is solution(CS, gtarget) then

add solution(h set, CS);
mark as solution(WTS,CS);

else
cap set ← get next capabilities(Wi, CS,WTS);
expand and score(WTS,Wi, cap set);

end
end
return h set

end

The procedure for incrementally building the WTS is
reported in Algorithm 2. The inputs of the algorithm are the
current state of the world WI , a generic goal gtarget ∈ G of
the goal model, and the set of available capabilities C . The
objective is to explore the endogenous effects of combina-
tions of capabilities with the aim of addressing gtarget .

At each step the algorithm getsmost promising state of the
world Wi to explore (this is evaluated through a score that is
discussed later in this section). Then it extracts the C S as the
shortest sequence of capabilities that produces the evolution
from WI to Wi .

First, it checks if C S satisfies the goal gtarget according
to Eq. 3. In other words, given the Triggering Condi-
tion and the Final State of the goal, the sub-procedure
check_cs_is_solution explores the evolution sequence to
check if both TC and FS are satisfied by states of the world
and if FS=true occurs after that TC=true (see Fig. 2). In the
case C S satisfies the goal then the capability sequence rep-
resents a solution and it is added to the h_set .

Conversely, the procedure selects a set of capabilities that
may be used to expand the W T S. The first criterion to select
capabilities filters those that may be executed in Wi : i.e., it
considers only capabilities whose pre-conditions are true in
Wi :

Fig. 2 Illustration of the procedure for evaluating the satisfaction of a
goal along a state of the world evolution. First the algorithm searches
for a state of the world in which T C = true. After that, it proceeds
searching for a state of the world in which F S = true

cap_set ′ = {〈evo, pre, post〉 ∈ C |pre(Wi) = true}
(11)

However this set may be further restricted to exclude irrele-
vant capabilities that do not produce significant changes into
the state of the world:

cap_set = {〈evo, pre, post〉 ∈ cap_set ′|
evo(Wi) ∩ {WI , W1, . . . , Wi }} (12)

Finally, the sub-procedure expand_and_score for each
ci ∈ cap_set creates a new transition in the W T S from
Wi to the new state of the world evoci (Wi). The generated
states of the world are subsequently labeled with the score
function.

The score function provides an indication of quality of a
sequence of states of the world seq = {WI , W1, . . . Wi }with
respect to the goal to address, and, therefore, it measures how
promising is the corresponding sequence of capabilities C S.
The score function has been designed to drive the algorithm
to explore combinations that aremore promising for the satis-
faction of the goal, decreasing at the same time the size of the
explored space. For instance, a sequence of states in which
T C = true ismore interesting than onewhere T C = f alse.

Following this idea, given that a state of the world is made
of statements, it is necessary to introduce the principle that
each of these statements may provide (or not) a contribution
for asserting a goal is satisfied. For instance if the goal is
to print and send a document, the statement printed(doc)
could produce a positive impact to the goal. According to this
observation, we state two principles for comparing states of
the world obtained by capability composition:

123

Author's personal copy

166 J Reliable Intell Environ (2017) 3:159–175

Fig. 3 Line chart of the score
function highlights trends of the
value when making either
num_statements(W) or
num_relevant_statements
(W, g) constant

2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

The SCORE function

num statements
sc

or
e

num relevant
statements

0
1
2
3
4

– the principle of convergence, i.e., the more a state of the
world contains statements that provide a positive impact
to a goal, the more the solution is near to be complete for
addressing it, according Eq. 5;

– the principle of precision, i.e., the more a state of the
world contains statements that do not provide a positive
impact to a goal, the more it is minimal for addressing it,
according Eq. 6;

As a consequence we can specify the function as follows:

score(Wi , gtarget)

= 1 + num_relevant_statements(Wi , gtarget)

num_statements(Wi)
(13)

where, given a state W , num_statements(W) is the car-
dinality of W , i.e., the number of statements contained in
W , whereas num_relevant_statements(W, g) is defined
as the number of statements contained in W that positively
contribute to make T Cg ∧ F Sg = true. For instance, if
W = {s1, s2, s3, s4, s5} and g = 〈s2 ∧ s8, s4 ∨ s5〉, then
num_statements = 5 and num_relevant_statements =
3 because {s2, s4, s5} are relevant for g.

Figure 3 illustrates Function 13 plotted as a stacked
line chart for highlighting the score trends. Making the
num_relevant_statements constant, the value increases
when the total number of statements in Wi decreases (princi-
ple of precision). Therefore, a state of the world that contains
fewer statements is considered more promising than another
that contains more statements.

At the same time, making the num_statements constant
in the formula, the value is higher the more the state is close
to goal satisfaction (principle of convergence). It means that
a state of the world that contains statements relevant for a
goal is considered more promising than another that does
not contain relevant statements.

The algorithm terminates when a pre-defined number of
solutions has been discovered, or after a maximum number
of states of the world has been explored.

4 A general architecture for self-adaptation

This section illustrates how the PMR Ability may be the
basis for a domain-independent self-adaptive software sys-
tem. This section discusses the relationship between the
approach presented in this paper and three fundamental
characteristics for a self-adaptive system: system evolution,
self-configuration, and self-healing [18,37]. More informa-
tion about the customization of the architecture for a smart
space case study is in the Appendix.

4.1 System evolution

Software evolution is a discipline of software engineering
that aims at modifying existing software for ensuring its reli-
ability and flexibility over time.

In particular, we focus on adaptive maintenance [17] an
aspect of software evolution that refers to modification per-
formed to keep software usable in a dynamic environment.
The real-world changes continuously and, therefore, user’s
needs evolve. Software that runs in an environment is likely
to continually adapt to varying circumstances. This is trans-
lated into functional enhancement and into the improvement
of performances to reflect requirements evolution.

A prominent characteristic of the proposed architecture
is to handle the run-time addition of new requirements and,
therefore, to amount to system evolution [56,58]. The PMR
Ability allows moving a step forward traditional system
defined for satisfying a fixed set of hard-coded requirements.
It allows adding or changing requirements during run-time
(in the form of goal-models).We called this mechanismGoal

123

Author's personal copy

J Reliable Intell Environ (2017) 3:159–175 167

Fig. 4 Overview of the
three-layer architecture for
self-configuration

Injection [56]. The user may specify new requirements to
inject into the system at run-time, and they become a stim-
ulus for modifying its behavior. It is a responsibility of the
system via the PMR Ability to adapt itself to the new needs.
The goal injection is enabled by two components:

– on the one hand, the systemowns a goal injection monitor
that waits for goals from the user;

– on the other hand, user-goals are run-time entities, aswell
as other environmental properties. The system acquires
goals from the user and maintains knowledge of them
thus to be able to reason on expected results and finally
conditioning its global behavior.Of course, existing goals
may retreat as well.

Goal injection enables user-requirements to evolve over
time [35] without either user-management or restarting the
system. It could be fundamental for some categories of
domains in which continuity of service is central (financial,
service providing and so on).

In addition, it is possible to increase or to enhance the
functions of the system just injecting a new set of require-
ments and updating the repository with new domain-specific
capabilities. Given that connections between goals and capa-
bilities are discovered on demand, the architecture is robust
to evolution and itmay be used for different problemdomains
with little customization.

4.2 Self-configuration

Self-configuration is the ability of the system to automatically
set up the parameters of its components thus to ensure the
correct functioning with respect to the defined requirements
[13,37,48].

This subsection shows a three-layer architecture that
exploits the PMR Ability for generating business logic for
requirement fulfillment. In other words, the proposed archi-
tecture implements self-configuration intended as the ability
of as system to autonomously (without explicit management)

select and compose a subset of its capabilities to achieve
user’s goals.

The operative hypothesis is to consider the system owns
a repository of capabilities. This set is redundant, i.e., to
solve the same problem the system may exploit different
combinations of capabilities. Some of these capabilities have
input/output parameters that must be configured to be used.

The proposed architecture is made of three layers (Fig. 4):
the goal layer, the capability composition layer, and the ser-
vice execution layer.

The uppermost layer of this architecture is theGoal Layer,
in which the user may specify the expected behavior of the
system in terms of high-level goals, according toDefinition 2.
Goals are not hard-coded in a static goal-model defined at
design time. The goal injection phase allows the introduction
of user-goals defined at run-time. Goals are interpreted and
analyzed and, therefore, trigger a new system behavior.

The second layer is the Capability Composition Layer,
based on the problem of Proactive means–end Reasoning.
It aims at selecting capabilities and configuring them as a
response to requests defined at the top-layer. It corresponds
to a strategic deliberation phase in which decisions are taken,
according to the (incomplete) knowledge about the environ-
ment. However, this layer does not reason on concrete data,
and it does not consider possible changes in the environment
because it would be very costly from a computational per-
spective.

Algorithm 2 is explicitly built for self-configuration;
indeed, in the meanwhile a Con f iguration solution is dis-
covered, it searches for dependencies among the capabilities
that are selected and it also resolves these dependencies by
connecting their input/output ports. The consequent output
is a concrete business process obtained by instantiating capa-
bilities into task and data into data objects. In this phase, the
procedure also specifies dependencies among tasks and how
data items are connected to task input/output ports.

The third layer is the Service Execution Layer that exe-
cutes the business process generated at the second layer. It
consists of atomic blocks of computation, used for acquir-

123

Author's personal copy

168 J Reliable Intell Environ (2017) 3:159–175

ing and analyzing data from the environment and to act
for producing the desired state of the world. This layer is
implemented as a MAPE-K model [16,49], well known in
the literature. It requires (1) a Monitoring component that
acquires information from the environment, and it updates the
system knowledge accordingly; (2) an Analyze component
that uses the knowledge to determine the need for adaptation
with respect to expected states of the world or capabilities
failure; (3) a Plan component that uses the acquired knowl-
edge to synchronize the available capabilities according to
the goal hierarchy and, finally, (4) an Execute component
that modifies the environment by using the appropriate capa-
bility.

4.3 Self-healing

Self-healing is the ability of the system to automatically dis-
cover whenever requirements fail to be fulfilled and to work
around encountered problems, thus to restore fulfillment of
the requirements and to grant continuous functioning with
respect to the defined requirements [36,37].

In the previous section, we have adopted the MAPE-K
model [16,49] for implementing the business layer of the
presented architecture. According to the roadmap of self-
adaptive systems [18], one of the principles for implementing
self-healing is to explicitly focus on the ‘control loop’, to be
used as an internal mechanism for controlling the system’s
dynamic behavior. The most famous control architecture is
theMAPE-Kmodel andwepropose to place the PMRAbility
on top of the MAPE-K architecture to generate a macro-loop
for self-healing, as shown in Fig. 5. The macro activities of
the resulting architecture are monitor goal injection, proac-
tive means–end reasoning and MAPE-K loop.

In the Goal injection phase the user communicates her
requirements to the system. The system reacts to the injec-
tion of new goals by activating the PMR Ability to assemble
a solution for addressing the whole goal model, and if at
least one solution is discovered, then the system selects the
highest scored Con f iguration and instantiates the corre-
sponding business process, reserving proper resources for its
execution. At this stage, it is impossible to predict all possible
changes in the environmental conditions.

Fig. 5 Graphical representation of the self-healing loop

Therefore, the agent activates a sub-cycle of monitoring,
analyzing, plan and execution driven by the knowledge of
the environment (MAPE-K). If everything goes as planned,
the goal will eventually be addressed. However, given that
the Algorithms 1 and 2 do not consider exogenous changes
of the state of affairs, it is possible that unexpected events
occur in the environment, during the execution. When sys-
tem’s monitors capture an unexpected state of the world,
and the capabilities in the Con f iguration are not sufficient
to deal with that, then the system recognizes a situation of
failure for one of the requirements. This raises a need for
adaptation event and the PMR Ability executes again with a
different WI (the current one). The result will be a different
Con f iguration (if possible) for overcoming the unexpected
state. The self-adaptation cycle also considers cases in which
the execution of a capability terminates with errors. In this
case, the PMR Ability is re-executed with the shrewdness to
mark the capability that failed as ‘unselectable’.

5 Evaluation and discussion

The architecture, presented in Sect. 4, has been implemented
in MUSA, a Middleware for User-driven Service Adap-
tation [23]. MUSA is built as a multi-agent system and
developed in JASON [12], a declarative programming lan-
guage based on the AgentSpeak language [51] and the BDI
theory [14]. The state of an agent together with its knowl-
edge of the operative environment is modeled through its
belief base, expressed by logical predicates. Self-awareness
is supported by translating high-level goals’ and capabili-
ties’ specifications into agent’s beliefs [55]. This enabled
the development of the agent PMR Ability for reasoning on
Goals and Capabilities as first class entities [23,54]. Addi-
tional details on MUSA are provided in the Appendix.

The rest of this section presents and discusses an evalua-
tionbenchmark forMUSAin the context of self-configuration
and self-healing.

5.1 Evaluating self-configuration

The proposed architecture relies on a couple of algorithms
for analyzing the goal model and exploring the space of
solutions for composing capabilities. The latter algorithm
incrementally builds a state transition system where each
edge is generated through the evolution function of a capa-
bility and each node is a possible state of the world. The state
transition system takes the form of a tree where each branch
is a different partial/complete configuration for the fulfill-
ment of a given goal. Exploring the whole space of solutions
would take an exponential time to complete. However, the
score function has been designed to drive the order of explo-
ration, thus exploring first most promising directions.

123

Author's personal copy

J Reliable Intell Environ (2017) 3:159–175 169

Fig. 6 Data obtained by comparing the algorithms presented in Sect. 3 with a breath-first strategy. Configurations are the result of 120 executions
with random input and increasing of 10 the number of capabilities every 20 runs

Here we present the methodology we adopted to gener-
ate sequences of stress test to evaluate the algorithms with
respect of self-configuration and self-healing.

1. Random generation of a working context: this step con-
sists in randomly extracting a fixed number of statements
from a repository. That context represents the dictionary
of terms describing an abstract working context.
Example: Dictionary = [b(e), q(u), l(a), g(a), v(o),

z(u), r(u), z(a), v(i), d(e)].
2. Random generation of goals to satisfy: each goal is gen-

erated by randomly selecting terms from the dictionary.
Example: goal(′′g38′′, condition(not (z(u))), condi
tion(z(a))) triggers when the state of the world does not
contain the statement z(u) and it is addressed when the
state of the world does contain z(a).

3. Randomgeneration of the current state of theworld: pick-
ing an arbitrary number of statements from the dictionary
generates a random WI . Example: world([r(u)]).

4. Finally, randomgeneration of a repository of capabilities.
Each capability is produced by selecting couples of terms
from the dictionary. The first term is the pre-condition
and the second term is the post-condition. The evolution
function is built consequently.
Example: cap(′′c1′′, evo([remove(r(u)), add(z(u))]),
condition(r(u)), condition(z(u))).

For operating a comparative benchmark we selected (1)
the couple of algorithms presented in Sect. 3 in which capa-
bilities are filtered (see Equations 11 and 12) andWTS nodes
are scored (thereafter “score-driven search”) , and (2) the
same algorithms where the score function is replaced with a
breath-first strategy (thereafter “exhaustive search”).

Therefore, we ran a series of tests with an incremen-
tal number of capabilities, starting from 20, until 70. Each
test executes both the score-driven search and the exhaus-
tive search with the same input. We measured the number
of visited nodes in the WTS and the number of discovered

Table 1 Analysis of means (t test) of Visited States of World obtained
by the two methods

Name Mean Median SD p value Effect size

1 Score 128.23 200 86.04

2 Breath 148.80 201 83.76

3 Difference −20.57 −1 49.50 0.01 −0.42

solutions. Charts of Fig. 6 reports the results obtained by
repeating the test 120 times, starting from 20 capabilities
and increasing of 10 after every 20 runs. We used a paired t-
test for verifying that visited nodes (obtained through the two
methods) are significantly different (p value=0.01) (Table 1).

The number of visited nodes (and, therefore, the time-to-
complete) is polynomial, compared the number of capabili-
ties in both the score-driven search and the exhaustive search
(see ‘visited states of the world’ in Fig. 6). To some extent,
this was surprising because we expected an exponential time,
given the algorithm is in the class of combinatorial search. A
deeper analysis shows that the activity of capability filtering
(Eqs. 11 and 12), done at each step of the algorithm, greatly
reduces the space of evolution and therefore state explosion
is limited.

Figure 6 reveals that the exhaustive search represents an
upper boundary for the score-driven algorithm for what con-
cerns performance. Indeed the score-driven search provides
better results, in the number of visited nodes, and for what
concerns the number of discovered solutions.

We also noted that taking in consideration only those set-
tings inwhich at least one solution exists, the average number
of nodes visited through the score function is definitively
better than an exhaustive search strategy (see ‘scenario with
solutions’ in Fig. 6).

5.2 Evaluating self-healing

For evaluating this property, we have added other three items
to the previous methodology for testing.

123

Author's personal copy

170 J Reliable Intell Environ (2017) 3:159–175

Fig. 7 Result of the sequence
of tests for self-healing. The
dark gray area represents the
size of the space of solutions
discovered at the first run of
self-configuration for each
scenario. The light gray area
represents the additional space
of solutions built as a result of
self-healing

5. Execute the PMR Ability with the input obtained at pre-
vious steps and select one output configuration.

6. Simulate the execution of the configuration and randomly
generate an adaptation event.

7. Update the initial state of theworld to the current situation
at the moment of failure and execute again point 5.

Therefore, we ran a sequence of tests with a fixed number
of 40 capabilities, measuring the number of solutions discov-
ered: i) at the first run of self-configuration and ii) after the
self-healing.

Figure 7 represents as filled areas the space of configura-
tions obtained by executing the PMRAbility before and after
the self-healing event. Among the 13 scenarios, the adapta-
tion failed only in three cases (scenarios 3,4 and 13). The
cause was the available capabilities, not enough to repair the
failure. In all the other cases the procedure performed well,
increasing the space of configuration to allow the goal ful-
fillment.

As a final note, we calculated that new configuration,
obtained for overcoming a failure, in average reuses the
72.25% of capabilities used in the first configuration.

5.3 Related works

This section describes similar approaches to implement self-
adaptation.

The architecture we have presented in Sect. 4 is based
on the concept of goals. Other works in the literature adopt
similar run-time elements. Morandini et al. [43,44] propose
an approach based on goal models extended with an oper-
ational semantics for specifying their dynamics and, at the
same time, maintaining the flexibility of using different goal
types and conditions.

Dalpiaz et al. [24] propose a new type of goal model,
called runtime goal model (RGM). It extends the former
with annotation about an additional information about the
fulfillment of goals. For instance, it explains when and how
different instances of the same goals and tasks need to be
created. The common element of these couple of approaches
is that the behavior of the system is wired into tasks that in
turn are wired to goals of the model. Therefore even if the

system may select many alternative OR decomposition rela-
tionships, it can adapt its behavior but it can not evolve over
the pre-defined tasks.

Baresi et al. [6] introduce the concept of adaptive goals
as means to conveniently describe adaptation countermea-
sures in a parametric way. An adaptive goal is described
as an objective to be achieved, a set of constraints and a
sequence of actions to fulfill the aforementioned objective.
The same author proposes A-3 [5], a self-organizing dis-
tributed middleware aiming at dealing with high-volume
and highly volatile distributed systems. It focuses on the
coordination needs of complex systems, yet it also provides
designers with a clear view of where they can include con-
trol loops, and how they can coordinate them with the aim
of global management. As well as our approach they con-
sider requirements as run-time entities even if they do not
propose a dynamic execution model in which their goals
are injected at run-time. Also, they introduce fuzzy goals
for expressing the satisfaction degree of requirements that
is a possible future direction for extending our definition of
goals.

SAPERE [65] (Self-Aware Pervasive Service Ecosys-
tems) is a general framework inspired from natural self-
organizing distributed ecosystems. SAPERE does promote
adaptivity by creating a sort of systemic self-awareness. As
well as our approach, their components have, by design,
an associated semantic representation. These live semantic
annotations are similar to service descriptions and enable
dynamic unsupervised interactions between components.

Gorlick et al. [31] present an approach to handle runtime
change called Weaves. A weave is an arbitrary network of
tool fragments that communicate asynchronously. Similar to
our concept of capability, a tool fragment is a small software
component that performs a single, well-defined function and
may retain state.

Blanchet et al. [11] present theWRABBIT framework that
supports self-healing for service orchestration through con-
versation among intelligent agents. Each agent is responsible
for delivering services of a participating organization. Glob-
ally they can discover when one agent’s workflow changed
unilaterally because it may incur conversation errors with
other agents. An agent also recognizes mismatches between

123

Author's personal copy

J Reliable Intell Environ (2017) 3:159–175 171

its workflow model and the models of other agents.The limit
of such approach is that it is domain oriented since the
possible errors must be defined at design-time. Extending
the WRABBIT’s approach for handling unexpected not-
understood situations could be an interesting direction for
our work.

Kramer andMagee [38] propose a three-layer architecture
for self-adaptation inspired from robotics. The architecture
includes (1) a control layer, i.e., a reactive component consist-
ing of sensors, actuators and control loops, (2) a sequencing
layer which reacts to changes from the lower levels by
modifying plans to handle the new situation and (3) a delib-
eration layer that consists in time consuming planning which
attempts to produce a plan to achieve a goal. The main dif-
ference with our architecture is that we introduce a layer for
handling goal evolution.

Gomaa and Hashimoto [30], in the context of the SASSY
research project, look into software adaptation patterns
for Service-Oriented applications. Their intuition is that
dynamic reconfiguration can be executed by assembly archi-
tectural patterns. The objective is to dynamically adapt
distributed transactions at run-time, separating the con-
cerns of individual components of the architecture from
concerns of dynamic adaptation, using a connector adap-
tation state-machine. Like our approach, SASSY provides
a uniform approach to adaptive software systems, how-
ever, to date, goals evolution is out of the scope of their
work.

Souza et al. [60] focus on evolution requirements that play
an important role in the lifetime of a software system in that
they define possible changes to requirements, along with the
conditions under which these changes apply.

Ghezzi et al. [29] propose ADAM (ADAptive Model-
driven execution), a mixed approach between model trans-
formation techniques and probability theory. The modeling
part consists in creating an annotated UML Activity dia-
gram whose branches can have a probability assigned,
plus an annotated implementation. Then an activity dia-
gram becomes an MDP (Markov Decision Process). It is
possible to calculate the possible values for the differ-
ent executions and thus to navigate the model to execute
it.

The MUSIC middleware [53] provides a self-adaptive
component-based architecture to support the building of sys-
tems in ubiquitous and SoA environments where changes
may occur in service providers and service consumers
contexts. Applications are assembled through a recursive
composition process. The middleware uses utility func-
tions to calculate utility scores for each application vari-
ant. The highest utility score indicates the most suitable
variant for the current context and it is selected for adap-
tation.

5.4 Strengths, weakness, and future works

The main strengths of the proposed architecture are summa-
rized below:

Reusability capabilities support the paradigm of Full-
Reuse [7]. Capabilities are atomic, self-contained, and
created for being composed. They must be designed for
being usable in several contexts, and parameters are the
key to achieve a finer tuning for a specific problem. Self-
configuration is obtained by handling any change by reusing
available capabilities. In practice, capabilities are the key ele-
ment of reuse.

Support for evolution the approach relies on the idea that
goals, capabilities, and their links are not hard-coded. Indeed
goals and capabilities are decoupled, and goals are injected
at run-time. The dynamic connection between capabilities
and goals must be discovered at run-time. In addition, the
repository of capability can be evolved without restarting the
system.

Domain independence Working at the knowledge level,
the problem ismodeled through those features of the environ-
ment that are relevant for the execution (elements to monitor
and to manipulate). The adopted solution is to enclose all the
necessary semantics into goals and capabilities. The PMR
Ability does not require further information for producing
a configuration. The proposed architecture exploits general
representation of knowledge for reasoning about capabilities
that is independent of the particular application that is driving
it [50]. Therefore, it is possible to translate from a domain
to another one just injecting a new set of requirements and
updating the repository with new domain-specific capabil-
ities. The same architecture may serve different problem
domains, even at the same time, without any other specific
customization.

Concluding, a critical analysis of the approach highlights
some issues that could be the starting point for improving the
proposed architecture.

In this approach, as well in state-change models [28],
actions are instantaneous, and there is no provision for assert-
ing what is true while an action is in execution (transitory).
Such systems cannot represent the situationwhere one action
occurs while some other event or action is occurring [3].
As a future work, we intend to extend this state-of-world
based model towards one that includes times, events, and
concurrent actions [3]. For instance, it will be possible to
add temporal operators and to test a predicate over some
time interval [2,39].

Another point of discussion concerns the real degree of
decoupling between Capabilities and Goals. The authors
have introduced the use of an ontology for enabling semantic
compatibility between these two elements during the Proac-
tive means–end Reasoning.

123

Author's personal copy

172 J Reliable Intell Environ (2017) 3:159–175

Wealready employedMUSA infive researchprojectswith
heterogeneous application contexts, from dynamic work-
flow [56] to a smart travel system [57]. However, in our
in-vitro evaluation, the same development team created both
Capabilities and Goals and thus the ontology commitment
was ensured. Our experimental phase is based on the assump-
tion that the ontology is built correctly, thus allowing the
system to work properly.

Another interesting aspect to consider is the impact of
the maintenance phase over the ontology, and as a direct
consequence, the degree of degradation of capabilities. We
experienced that even changing the definition of a single
predicate in the ontology has a detrimental impact on the
reliability of the system in using its capabilities.

6 Conclusion

We have presented a theoretical framework for specifying
the problem of Proactive means–end Reasoning regarding
states of the world, goals, and capabilities. Solving the prob-
lem at the knowledge level provided us the opportunity to
define a general architecture for engineering self-adaptive
smart spaces. This architecture is based on the idea that a
user, at run-time, may inject his goals in a high-level lan-
guage. The smart space will (re-)configure its services as
the result of reasoning and deductions made at the knowl-
edge level. Moreover, system evolution is the result of a
process of goals management, obtained through the ability
to solve the proactive means–end reasoning. The strengths of
the proposed architecture are to be domain independent and
to support reusability across many application contexts.

Appendix: engineering the exhibition center with
MUSA

MUSA (Middleware for User-driven Service Adaptation)
[23] is a multi-agent system for the composition and orches-
tration of services in a distributed and open environment. It
aims at providing run-timemodification of the flow of events,
dynamic hierarchies of services, and integration of user pref-
erences together with a system for run-time monitoring of
activities that is also able to deal with unexpected failures
and optimization.

The middleware1 is coded in JASON [12], a declara-
tive programming language based on the AgentSpeak lan-
guage [51] and the BDI theory [14]. The state of an agent
together with its knowledge of the operative environment is
modeled through its belief base, expressed by logical predi-
cates. Desires are states the agent wants to attain according

1 Available, as open source, at https://github.com/icar-aose/musa_2

to its perceptions and beliefs. When an agent adopts a plan,
it transforms a desire to an intention to be pursued.

In JASON the specification of plans is strictly connected to
the desire that triggers its execution. Therefore,we developed
a high-level language (GoalSPEC [58]) with the twofold aim
of (1) allowing the user to specify requirements in the form
of goals and (2) supporting the idea of decoupling what the
system has to do, and how it must do that.

The theory of self-knowledge and action [42] asserts an
agent achieves a goal by doing some actions if the agent
knows what the action is and it knows that doing the action
would result in the goal being satisfied [40]. Therefore, we
also defined a high-level language to specify system’s capa-
bilities.

Since software agents are deployed in a distributed envi-
ronment, MUSA implements a distributed version of Algo-
rithms 1 and 2. The knowledge level is supported by goals’
and capabilities’ specifications that are translated from high-
level languages into agent’s beliefs [55]. A configuration
represents a contract among the agents specifying how to
collaborate. Therefore, service composition is obtained at
run-time, as the result of a self-organization phenomenon.

In the following, we detail the ingredients needed to
achieve our purpose: the way we depict the problem domain
using an ontology, a goal specification language that refers to
ontological elements as keys for grounding the goals on the
problem and, finally, a capability language that supports the
separation between the abstract description and the concrete
implementation.

6.1 The domain ontology description

Working at the knowledge level implies an ontology commit-
ment between who develops Capabilities and who specifies
Goals. An ontology is a specification of a conceptualization
made for the purpose of enabling knowledge sharing and
reuse [59]. An ontological commitment is an agreement to
use a thesaurus of words in a way that is consistent with the
theory specified by an ontology [33].

A Problem Ontology (PO) [21,52] is a conceptual model
(and a set of guidelines) used to create an ontological com-
mitment to developing complex distributed systems [22].
This artifact aims at visualizing an ontology as a set of con-
cepts, predicates, and actions and how these are related to
one another. An example is shown in Fig. 8.

The metamodel of a PO artifact, inspired by the FIPA
(Foundation for Intelligent Physical Agents) standard [46],
is briefly summarized as follows:

– a Concept is a general term commonly used in a broad
sense to identify “anything about which something is
said” [20] that has a uniquemeaning in a subject domain;

123

Author's personal copy

https://github.com/icar-aose/musa_2

J Reliable Intell Environ (2017) 3:159–175 173

Fig. 8 Example of problem
ontology for the exhibition
center. Ontology elements
represented without stereotypes
are to be read as concepts by
default

– a Predicate is the expression of a property, a quality or a
state of one (ore more) concept(s);

– an Action is the cause of an event by an acting con-
cept [41]);

– a Position is a specialization of concept performing
Actions;

– finally, an Object represents physical or abstract things.
– the relationship is-a (or is-a-subtype-of) defines which

objects are classified by which class, thus creating tax-
onomies;

– the relationship part-of (or the counterpart has-part) rep-
resents the structure by composition;

– the relationship association establishes links between
ontological elements.

6.2 A goal specification language

The GoalSPEC language [58] has been specifically designed
for enabling runtime goal injection and software agent rea-
soning. It takes inspiration from languages for specifying
requirements for adaptation, such as RELAX [62]. However,
GoalSPEC is in line with Definition 2 and adopts a domain-
independent core grammar with a basic set of keywords that
may be extended with a domain ontology.

Themain entity of theGoalSPEC language is theGoal that
is wanted by some Subject and it is structurally composed
of a Trigger Condition and a Final State. It is worth under-
lining that both Trigger Conditions and Final States must be
expressed by using predicates defined in a domain ontology.

Some examples of GoalSPEC productions for the domain
of the Exhibition Center are listed below. For a complete
specification of the syntax of GoalSPEC, see [58].

1. WHEN registered(Usr,Event) AND NOT attending
(Urs,Event) THE system SHALL PRODUCE notifica-
tion(Event,Usr)

2. BEFORE moving(Urs,Loc) AND exhibition_area(Loc)
THEvisitor SHALLPRODUCEmoving(Urs,Reception)
AND check-in(Urs)

We use uppercase for the keywords of the language, and
lowercase for domain-specific predicates. Logical variables
start with an uppercase letter. Goal 1 indicates that ‘if a visitor
has registered for an event, the user will be notified about
time-table until he goes to the event’. Goal 2 states that ‘A
condition to enter the exhibition center area is to go to the
reception and check-in’.

6.3 A capability specification language

There is an obvious need for a semantic-based language to
describe agent capabilities in a common language in a way
that (1) the agent knows how to execute the capability and
(2) it knows the effects of executing it [42].

So far we use a refinement of LARKS [61] a language for
advertisement and request for knowledge sharing used in the
context of web services.

A Capability is made of two parts: an abstract description,
and a concrete body implementation (a set of plans for exe-
cuting the job). The abstract description is defined through
the following fields: (1) Name: unique label used to refer
to the capability, (2) Input/OutputParams: variables that is
necessary to instantiate for the execution, (3) Constraints:
structural constraints on input/output variables, (4) Pre/Post
Condition: conditions that must hold in the current state of
the world and in the final state of the world and finally, (5)
Evolution: function evo : W −→ W as described in Sec-
tion 2.2.

We do not provide any language for the body, leaving the
choice of the specific technology to the developer. We fre-
quently used Java to code this part of our capabilities because
of the smooth integration with Jason on the one side and the
flexibility in the invocation of web services on the other side.

Figure 9 shows two examples of capabilities. The Alert
Sender capability that uses smartphones to advert about the
event and provide alerts about the timetable. The second
capability is the Cloud Calendar Check capability that inter-
acts with a calendar application for retrieving information
about an event timetable.

123

Author's personal copy

174 J Reliable Intell Environ (2017) 3:159–175

Fig. 9 A couple of capabilities
described through the capability
specification language

References

1. Abeywickrama DB, Bicocchi N, Zambonelli F (2012) Sota (2012)
Towards a general model for self-adaptive systems. In: Enabling
technologies: infrastructure for collaborative enterprises (WET-
ICE), 2012 IEEE 21st international workshop, IEEE, pp 48–53

2. Allen JF (1983) Maintaining knowledge about temporal intervals.
Commun ACM 26(11):832–843

3. Allen JF (1991) Planning as temporal reasoning. KR 91:3–14
4. Augusto JC, Callaghan V, Cook D, Kameas A, Satoh I (2013)

Intelligent environments: a manifesto. Hum Centric Comput Inf
Sci 3(1):12

5. Baresi L, Guinea S (2011) A3: self-adaptation capabilities through
groups and coordination. In: Proceedings of the 4th India software
engineering conference, ACM, New York, pp 11–20

6. Baresi L, Pasquale L, Spoletini P (2010) Fuzzy goals for
requirements-driven adaptation. In: Requirements engineering
conference (RE), 2010 18th IEEE international, IEEE Press, Syd-
ney, pp 125–134

7. Basili VR (1990) Viewing maintenance as reuse-oriented software
development. Softw IEEE 7(1):19–25

8. Bennaceur A, France R, Tamburrelli G, Vogel T, Mosterman PJ,
CazzolaW,Costa FM,PierantonioA,TichyM,AkşitMet al (2014)
Mechanisms for leveragingmodels at runtime in self-adaptive soft-
ware. Models@ run. time. Springer, pp 19–46

9. BiereA, HeuleM, vanMaarenH (2009) Handbook of satisfiability,
vol 185. IOS Press, Amsterdam

10. Blair G, Bencomo N, France RB (2009) Models@ run. time. Com-
puter 42(10):22–27

11. Blanchet W, Stroulia E, Elio R (2005) Supporting adaptive web-
service orchestration with an agent conversation framework. In:
Web services, ICWS 2005. Proceedings 2005 IEEE International
Conference, IEEE

12. Bordini RH,Hübner JF,WooldridgeM (2007) Programmingmulti-
agent systems in AgentSpeak using Jason, vol 8. Wiley, Hoboken

13. Braberman V, D’Ippolito N, Kramer J, Sykes D, Uchitel S (2015)
Morph: a reference architecture for configuration and behaviour
self-adaptation. arXiv:1504.08339

14. Bratman ME, Israel DJ, Pollack ME (1988) Plans and resource-
bounded practical reasoning. Comput Intell 4(3):349–355

15. Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J
(2004) Tropos: an agent-oriented software development method-
ology. Auton Agents Multi-Agent Syst 8(3):203–236

16. Brun Y, Serugendo GDM, Gacek C, Giese H, Kienle H, Litoiu M,
Müller H, PezzèM, ShawM (2009) Engineering self-adaptive sys-
tems through feedback loops. SoftwEngSelf-Adapt Syst, Springer,
pp 48–70

17. Chapin N, Hale JE, Khan KM, Ramil JE, TanWG (2001) Types of
software evolution and software maintenance. J Softw Maint Evol
Res Pract 13(1):3–30

18. Cheng BHC, De Lemos R, Giese H, Inverardi P, Magee J, Anders-
son J, Becker B, BencomoN,BrunY,CukicB et al (2009) Software
engineering for self-adaptive systems: a research roadmap. Softw
Eng Self Adapt Syst, Springer, pp 1–26

19. Coen MH et al (1998) Design principles for intelligent envi-
ronments. In: AAAI ‘98/IAAI ’98 Proceedings of the fifteenth
national/tenth conference on Artificial intelligence/Innovative
applications of artificial intelligence, American Association for
Artificial Intelligence, Menlo Park, pp. 547–554

20. Corcho O, Gómez-Pérez A (2000) A roadmap to ontology spec-
ification languages. Knowl Eng Knowl Manag Methods Models
Tools 2000:80–96

21. Cossentino M, Dalle Nogare D, Giancarlo R, Lodato C, Lopes S,
Ribino P, Sabatucci L, Seidita V (2014) GIMT: a tool for ontology
and goalmodeling in BDImulti-agent design. In:Workshop “Dagli
Oggetti agli Agenti”

22. Cossentino M, Gaud N, Hilaire V, Galland S, Koukam A (2010)
ASPECS: an agent-oriented software process for engineering com-
plex systems. Auton Agents Multi-Agent Syst 20(2):260–304

23. Cossentino M, Lodato C, Lopes S, Sabatucci L (2015) Musa: a
middleware for user-driven service adaptation. In: Proceedings of
the 16th workshop “From objects to agents”, Naples, 17–19 June
2015

24. DalpiazF,BorgidaA,Horkoff J,Mylopoulos J (2013)Runtimegoal
models: keynote. In: Research challenges in information science
(RCIS), 2013 IEEE seventh international conference, IEEE, pp 1–
11

25. Dalpiaz F, Giorgini P, Mylopoulos J (2013) Adaptive socio-
technical systems: a requirements-based approach. Requir Eng
18(1):1–24

26. De Lemos R, Giese H, Müller H, Shaw M, Andersson J, Litoiu M,
Schmerl B, Tamura G, Villegas NM, Vogel T et al (2013) Software
engineering for self-adaptive systems: a second research roadmap.
Springer. Softw Eng Self Adapt Syst II:1–32

27. Dean TL, Kambhampati S (1997) Planning and scheduling. In:
CRC handbook of computer science and engineering. CRC Press,
Boca Raton, pp 614–636

28. Fikes RE, Nilsson NJ (1972) Strips: a new approach to the
application of theorem proving to problem solving. Artif Intell
2(3):189–208

29. Ghezzi C, Pinto LS, Spoletini P, Tamburrelli G (2013) Manag-
ing non-functional uncertainty via model-driven adaptivity. In:
Proceedings of the 2013 international conference on software engi-
neering, IEEE Press, Piscataway, pp 33–42

123

Author's personal copy

http://arxiv.org/abs/1504.08339

J Reliable Intell Environ (2017) 3:159–175 175

30. Gomaa H, Hashimoto K (2012) Dynamic self-adaptation for dis-
tributed service-oriented transactions. In: Software engineering for
adaptive and self-managing systems (SEAMS), 2012 ICSE Work-
shop, IEEE Press, Piscataway, pp 11–20

31. Gorlick M, Razouk RR (1991) Using weaves for software con-
struction and analysis. In: Software engineering. Proceedings 13th
international conference, IEEE, pp 23–34

32. Gu T, Wang XH, Pung HK, Zhang DQ (2004) An ontology-
based context model in intelligent environments. In: Proceedings
of communication networks and distributed systems modeling and
simulation conference, San Diego, vol 2004, pp 270–275

33. Guarino N, Carrara M, Giaretta P (1994) Formalizing ontological
commitment. AAAI 94:560–567

34. Guizzardi R, Franch X, Guizzardi G (2012) Applying a founda-
tional ontology to analyze means-end links in the i framework.
In: Research challenges in information science (RCIS), 2012 sixth
international conference, IEEE, pp 1–11

35. Harker SDP, Eason KD, Dobson JE (1993) The change and evo-
lution of requirements as a challenge to the practice of software
engineering. In: Requirements engineering. Proceedings of IEEE
international symposium, IEEE, pp 266–272

36. Jureta IJ, Borgida A, Ernst NA, Mylopoulos J (2014) The require-
ments problem for adaptive systems. ACM Trans Manag Inf Syst
TMIS 5(3):17

37. Kephart JO, ChessDM (2003) The vision of autonomic computing.
Computer 36(1):41–50

38. Kramer J, Magee J (2007) Self-managed systems: an architectural
challenge. In: Future of software engineering, 2007. FOSE’07,
IEEE, pp 259–268

39. Lamport L (1994) The temporal logic of actions. ACMTrans Progr
Lang Syst TOPLAS 16(3):872–923

40. Lesperance Y (1989) A formal account of self-knowledge and
action. IJCAI, Citeseer, pp 868–874

41. Lowe EJ (2002) A survey ofmetaphysics. Oxford University Press,
Oxford

42. Moore RC (1979) Reasoning about knowledge and action. PhD
thesis, Massachusetts Institute of Technology

43. Morandini M, Penserini L, Perini A (2008) Towards goal-oriented
development of self-adaptive systems. In: Proceedings of the 2008
international workshop on software engineering for adaptive and
self-managing systems, ACM, New York, pp 9–16

44. Morandini M, Penserini L, Perini A (2009) Operational semantics
of goal models in adaptive agents. In: Proceedings of the 8th inter-
national conference on autonomous agents andmultiagent systems,
International Foundation for Autonomous Agents and Multiagent
Systems, vol 1, ACM, Richland, pp 129–136

45. Newell A (1982) The knowledge level. Artif Intell 18(1):87–127
46. O’Brien PD, Nicol RC (1998) Fipa—towards a standard for soft-

ware agents. BT Technol J 16(3):51–59
47. Oreizy P, Gorlick MM, Taylor RN, Heimbigner D, Johnson G,

Medvidovic N, Quilici A, Rosenblum DS, Wolf AL (1999) An
architecture-based approach to self-adaptive software. IEEE Intell
Syst 3:54–62

48. OreizyP,MedvidovicN,TaylorRN (1998)Architecture-based run-
time software evolution. In: Proceedings of the 20th international
conference on software engineering, IEEE Computer Society,
Washington, pp 177–186

49. Patikirikorala T, Colman A, Han J, Wang L (2012) A systematic
surveyon the designof self-adaptive software systemsusing control
engineering approaches. In: Software engineering for adaptive and
self-managing systems (SEAMS), 2012 ICSEworkshop, pp 33–42

50. Pistore M, Marconi A, Bertoli P, Traverso P (2005) Automated
composition of web services by planning at the knowledge level.
IJCAI 19: 1252–1259

51. Rao AS (1996) Agentspeak (l): BDI agents speak out in a logical
computable language. In: Agents breaking away, Springer, pp 42–
55

52. Ribino P, Cossentino M, Lodato C, Lopes S, Sabatucci L, Seidita
V (2013) Ontology and goal model in designing BDI multi-agent
systems. WOA@ AI* IA 1099:66–72

53. Rouvoy R, Barone P, Ding Y, Eliassen F, Hallsteinsen S, Lorenzo J,
Mamelli A, Scholz U (2009) Music: middleware support for self-
adaptation in ubiquitous and service-oriented environments. Softw
Eng Self Adapt Syst, Springer, pp 164–182

54. Sabatucci L, Cossentino M (2015) From means-end analysis to
proactive means-end reasoning. In: Proceedings of 10th inter-
national symposium on software engineering for adaptive and
self-managing systems, Florence, 18–19 May 2015

55. Sabatucci L, Cossentino M, Lodato C, Lopes S, Seidita V (2013)
A possible approach for implementing self-awareness in Jason.
EUMAS, Citeseer, pp 68–81

56. Sabatucci L, Lodato C, Lopes S, Cossentino M (2013) Towards
self-adaptation and evolution in business process. AIBP@AI* IA,
Citeseer, pp 1–10

57. Sabatucci L, Lodato C, Lopes S, Cossentino M (2015) Highly cus-
tomizable service composition and orchestration. In: Dustdar S,
Leymann F, Villari M (eds) Service oriented and cloud computing.
Lecture notes in computer science, vol 9306. Springer, Berlin, pp
156–170

58. Sabatucci L, Ribino P, Lodato C, Lopes S, Cossentino M (2013)
Goalspec: a goal specification language supporting adaptivity and
evolution. Eng Multi-Agent Syst, Springer, pp 235–254

59. Saeki M (2010) Semantic requirements engineering. Intent Per-
spect Inf Syst Eng, Springer, pp 67–82

60. Souza VES, Lapouchnian A, Mylopoulos J (2012) (Requirement)
evolution requirements for adaptive systems. In: Software engi-
neering for adaptive and self-managing systems (SEAMS), 2012
ICSE workshop, pp 155–164

61. Sycara K, Widoff S, Klusch M, Jianguo L (2002) Larks: dynamic
matchmaking amongheterogeneous software agents in cyberspace.
Auton Agents Multi-Agent Syst 5(2):173–203

62. Whittle J, Sawyer P, Bencomo N, Cheng BH, Bruel JM (2009)
Relax: incorporating uncertainty into the specification of self-
adaptive systems. In: Requirements engineering conference.
RE’09. 17th IEEE international, IEEE, pp 79–88

63. WooldridgeMJ (2000)Reasoning about rational agents.MITPress,
Cambridge

64. Yu E (2011) Modelling strategic relationships for process reengi-
neering. Soc Model Requir Eng 11:2011

65. Zambonelli F, Castelli G, Mamei M, Rosi A (2014) Programming
self-organizing pervasive applicationswith SAPERE. Intell Distrib
Comput VII, Springer, pp 93–102

123

Author's personal copy

	Self-adaptive smart spaces by proactive means–end reasoning
	Abstract
	1 Introduction
	2 Background and definition
	2.1 State of the world and goals
	2.2 Proactive means–end reasoning

	3 Solving the problem at the knowledge level
	3.1 Top-down goal decomposition
	3.2 Bottom-up capability composition

	4 A general architecture for self-adaptation
	4.1 System evolution
	4.2 Self-configuration
	4.3 Self-healing

	5 Evaluation and discussion
	5.1 Evaluating self-configuration
	5.2 Evaluating self-healing
	5.3 Related works
	5.4 Strengths, weakness, and future works

	6 Conclusion
	Appendix: engineering the exhibition center with MUSA
	6.1 The domain ontology description
	6.2 A goal specification language
	6.3 A capability specification language

	References

