How to control emergence of behaviours in a
holarchy

Massimo Cossentino
SeT
UTBM
Belfort, FRANCE
Email:massimo.cossentino @utbm.fr
ICAR-CNR, Palermo, ITALY

Vincent Hilaire
SeT
UTBM
Belfort, FRANCE
Email: vincent.hilaire @utbm.fr

Abstract—An open issue in self-organisation is how to control
the emergence of behaviour. This issue is also of interest for
engineering holonic multi-agent systems as any level of a holarchy
is dependant of the emergent behaviours of its sub-levels. In order
to tackle this specific feature of holonic multi-agent systems, the
capacity concept which abstracts a know-how from its concrete
realisation is introduced. The use of this concept is illustrated in
this paper through a case study using the ASPECS development
process which enables the analysis, design, implementation and
deployment of holonic multi-agent systems and integrates the
capacity as a core concept of its underlying metamodel.

I. INTRODUCTION

Works on self-organisation and emergence are common in
the Multi-Agent Systems (MAS) field [1]. As pointed out
in [2] a still open issue is how to engineer self-organising
applications or in other words how to define a global goal,
and to design local behaviours so that a global behaviour,
able to satisfy this goal, emerges. In [3] the capacity concept
is proposed as an abstraction that allows agents and holons to
exhibit self-organisation features. This abstraction is integrated
in a complete software development process from requirement
to code, namely ASPECS. In this paper the way how such an
abstraction may be useful to engineer self-adaptation and self-
organisation within a Holonic MAS (HMAS) dedicated to the
simulation of robot soccer games is shown.

ASPECS is based on a holonic organisational metamodel
and provides a step-by-step guide from requirements to code
allowing the modelling of a system at different levels of details
using a suite of refinement methods. Using a holonic perspec-
tive, the designer can model a system with entities of different
granularities. He can recursively model sub-components of a
bigger system until he achieves a stage where the requested
tasks are manageable by atomic easy-to-implement entities. In
multiagent systems, the vision of holons is someway closer to
the one that MAS researchers have of Recursive or Composed
agents. A holon constitutes a way to gather local and global,

Stéphane Galland

Belfort, FRANCE
Email: stephane.galland@utbm.fr

Nicolas Gaud
SeT
UTBM
Belfort, FRANCE
Email: nicolas.gaud @utbm.fr

SeT
UTBM

Abderrafida Koukam
SeT
UTBM
Belfort, FRANCE
Email:abder.koukam @utbm.fr

individual and collective points of view. A holon is a self-
similar structure composed of holons as sub-structures and a
hierarchical structure composed of holons is called a holarchy.
A holon can be seen, depending on the level of observation,
either as an autonomous whole entity or as an organisation of
holons (this is often called the Janus effect, in reference to the
two faces of a holon [4]).

This paper is organised as follow: section II discusses the
methodological background on our holonic framework, the
concept of capacity and the ASPECS development process.
Section III presents the robot soccer simulation model used to
illustrate the emergence control in a holarchy. Related works
are discussed in section IV. Finally some conclusions are
drawn in section V.

II. METHODOLOGICAL BACKGROUND
A. Holonic Modelling framework

A holon is a whole-part construct that may be composed of
other holons, but it may be, at the same time, a component
of higher level holons. Examples of holarchies can be found
in every-day life. Probably the most widely used example is
the human body. The body may be considered as a whole
or as a nested hierarchy of organs composed of cells, in
turn composed of molecules, etc. Holonic Systems have been
already applied to a wide range of applications and a number
of models and framework have been proposed for these
systems [5], [6], [7]. However, most of them are strongly
attached to their domain of application and use specific agent
architectures. In order to allow modular and reusable mod-
elling that minimises the impact on the underlying architecture
a framework based on an organisational approach is proposed.
The Role-Interaction-Organisation (RIO) model [8] is selected
to represent organisations since it enables formal specification,
animations and proofs based on the OZS formalism [9].

Horizontal Vertical

(level n)

Level n

Leveln-1

g3:Holonic Group
®
g4:Recruitment ofsing mane—rrt
Group

g5
Production Groups

Fig. 1. Horizontal and Vertical decomposition of a holon

In order to maintain this framework generic, two aspects
that overlap in a holon should be distinguished. The first is
directly related to the holonic nature of the entity (a holon,
called super-holon, is composed of other holons, called sub-
holons or members) and deals with the government and the
administration of a super-holon. This aspect is common to
every holon and thus called the holonic aspect. It describes
the decision making process and how members organise and
manage the super-holon. The second aspect is related to the
problem to solve and the work to be done. It depends on
the application domain and is called the production aspect.
It describes action coordination mechanisms and interactions
between members to achieve the objectives of the super-
holons, the tasks to fulfil, or to take a decision.

To manage the first aspect of a composed holon, a particular
organisation called Holonic Organisation is defined to describe
the government of a holon and its structure in terms of
authority, power repartition. In [10] three different structures
are proposed. The federation where all members of the holon
are equals with respect to the interactions with the outside
of the holon. The fusion where members disappear to form
a single entity and the moderated group where a subset of
the members are chosen to act as mediator with the outised
of the holon. In this work the moderated group is adopted
as management structure of the super-holon, due to the wide
range of configurations it allows. The Holonic Organisation
represents a moderated group in terms of roles (called holonic
roles) and their interactions. Three holonic roles have been
defined to describe the status of a member inside a super-
holon and one role to describe the status of non-members:
(1) Representative, interface of the holon: it is the externally
visible part of a super-holon, it is an interface between the
outside world (same level or upper level) and the other
holon members. It may represent other members in taking
decisions or accomplishing tasks (i.e. recruiting members,
translating information, ...). The Representative role can be
played by more than one member at the same time. (ii) Head,
decision maker: it represents a privileged status conferring
a certain level of authority in taking decisions inside the
holon. This role is not to be confused with the Representative
role. Indeed, Representative role-players are not allowed to

take decisions for the holon. Nevertheless, a holon can be
at the same time a Representative and a Head. (iii) Peer,
default member: Normally in charge of doing tasks assigned
by Heads, a Peer can also have an administrative duty,
and it may be employed in the decision making process. It
depends on the configuration chosen for modelling the super-
holon. (iv) Stand-Alone, non-member: This role represents a
particular status inside a holonic system. In contrast to the
previous holonic roles, it represents the way a member sees a
non-member, non composed, holon. Stand-Alone holons may
interact with the Representatives to request their admission
as new members of an existing super-holon. Admissions of
new holons are problem dependant and can be delt with many
different mechanisms.

The three first holonic roles describe the status of a member
within a super-holon and participate in defining the holonic
organisation. Each of these roles can be played by one or more
members, knowing that any super-holon must have at least
one Representative and one Head. The roles Head, Peer are
exclusive between them, while Representative may be played
simultaneously with one of the two others. Each of these
member holonic roles is parameterized using a specific status
that specifies if the corresponding holon member is shared
between various super-holons. The Part status represents mem-
bers belonging to only one super-holon while the Multi-Part
status represents sub-holons belonging to more than one super-
holon.

In our approach, every super-holon must contain exactly
one instance of the Holonic Organisation: the holonic group.
Every sub-holon must play at least one role in this group to
define its status inside the super-holon. Figure 1 illustrates
these different aspects of a composed holon and describes its
typical structure from an horizontal and a vertical point of
view. The vertical decomposition represents the decomposition
of a holon, the holon numbered 1 in the figure, in several
sub-holons, here 2, 3, 4 and 5. These sub-holons constitutes
the level just below the level of holon 1. The horizontal
decomposition represents the fact that an holon, whatever the
level it belongs to, can play different roles within groups. For
example, the holon 2 plays the roles Representative and Head
in the holonic group of the holon 1 and other roles in groups
4 and 5.

Super-holons are created with an objective and to perform
certain tasks. To achieve these goals/tasks, the members must
interact and coordinate their actions. Our framework also
offers means to model this second aspect of the super-
holons. This goal-dependent interactions are modelled using
organisations, namely Production Organisations since they are
specific to each holon and its goals/tasks. The behaviours
and interactions of the members can thus be described inde-
pendently of their roles as a component of the super-holon.
Any number of production organisations is possible. Each
organisation describes an aspect of the problem dependant
aspects of the problem tackled by the holons. The only
strictly required organisation is the Holonic organisation that
describes member’s status in the super-holon.

This approach guarantees a clear separation between the
management of the super-holon and the goal-specific be-
haviours and favours modularity and re-usability.

B. The concept of Capacity

A Capacity describes what a behaviour is able to do or what
a behaviour may require to be defined. As a consequence, there
are two main ways of using this concept: (i) It specifies the
result of some role interactions, and consequently it specifies
results that an organisation as a whole may achieve with
its behaviour. In this sense, it is possible to say that an
organisation may exhibit a capacity. (ii) Capacities may be
used to decompose complex role behaviours by abstracting and
externalising (for instance by delegating to other roles) a part
of their role tasks into capacities. In this case the capacity may
be considered as a behavioural building block that increases
modularity and reusability of roles and organisations. Thanks
to this dual aspect, the capacity thus allows to make the
interface between two adjacent levels of abstraction in the
organisational hierarchy of the system. A role at level n
requires a capacity that is in turn provides by an organisation
at level n — 1.

To better illustrate this dual aspect of the capacity concept,
let’s consider the example of the capacity to find the shortest
path in a weighted directed acyclic graph G(N,E), from a s
source node to a d destination node. This capacity is formally
described in figure 3. The template gives the name of the
capacity, the required inputs and what is produced as outputs.
Constraints on the properties of inputs and outputs are defined
by requires and ensures slot respectively. A textual description
gives an informal description of the capacity.

This capacity may be realised in various ways. Dijkstra [11]
or Bellman-Ford [12] algorithms may be used if the know-how
of a single entity is considered. Besides other realisations may
be found, especially if the know-how of a group of entities
modelled by an organisation is considered. The Ant Colony is a
well-known organisation able to find a solution to the problem
of finding the shortest path in a graph [13]. The solution (the
shortest path) emerges from interactions among Ants in their
environment. Let us suppose that the environment represents
the G graph, the s source node is mapped to the Ant Hill and
the d destination to a food source. Figure 2 represents the
design of a portion of a system composed of several levels of
abstractions. At the level n+ 1, the Route Choice organisation
is responsible for providing the best route between two given
points to another organisation not represented in the diagram
(for instance the Motion Control organisation responsible to
control the movement of a robot). The request of finding the
route is done by the Route Requester role (possibly played
by a member of the Motion Control organisation) responsible
to obtain the required information. The route is chosen by
the Route Provider role that is, indeed, not able to do that
by itself, this latter requires the FindShortestPath capacity
that actually provides the result. This capacity provide the
solution of a problem that is effectively solved at a lower
level of abstraction (level n). Figure 2 proposes one possible

Name : FindShortestPath

Input : e« G = (N,E), directed graph. E=N X N
e w:E — R, weight function.
e s €N, source node.
e d € N, destination node.

Output :
P = <S = dg,i1, " ,ip_1,d = in>, with Vk €
{Ol’l}7 ir €N
the shortest path P between s and d.
Requires :
N # @ and E # @ and V(u,v) € E/w(u,v) >0
Ensures :

Vj €N, te{0.m}

ﬂ Q = <S :j()ajl "'ajm = d>/

m—1 n—1
PEON D> wiinj1) < Y wlikiks1)
t=0 k=0

There exists no path Q in the graph linking s to d
shorter than P.

Textual Description :
provides a solution to the single-source shortest path
problem for a directed graph with non-negative edge
weights.

Fig. 3. Formal description of FindShortestPath capacity

implementation to this capacity by means of an ant colony
thanks to the Ant Colony organisation that is located at a lower
level in the organisational hierarchy. The capacity concept
thus allows to define how an organisation at level n may
contribute to the behaviour of a role at level n + 1. Let us
consider the need of modelling a complex system behaviour.
It is assumed that it is possible to decompose the system from
a functional point of view into a set of finer grained (less
complex) behaviours interacting to meet the objectives of the
organisation. Depending on the considered level of abstraction,
an organisation can be seen either as a single behaviour or as
a set of interacting behaviours. The concept of organisation
is inherently a recursive one [14]. The same duality is also
present in the concept of holon. Both are often illustrated by
the same analogy: the composition of the human body. The
human body, from a certain point of view, can be seen as
a single entity with an identity and its own behaviour and
personal emotions. Besides, it may also be regarded as a
cluster/aggregate of organs, which are themselves made up
of cells, and so on. At each level of this nested hierarchy,
specific behaviours emerge [15]. The body has an identity and
a behaviour that is unique for each individual. Each organ
has a specific mission: filtration for kidneys, extraction of
oxygen for the lungs or blood circulation for the heart, etc. An
organisation is either an aggregation of interacting behaviours,
and a behaviour composing an organisation at an upper level
of abstraction; the resulting whole constitutes a hierarchy of
behaviours that has specific goals to be met at each level.
This recursive definition of the organisation will form the

<<organization=>z|
Route Choice

<eroles>
Route provider

<<roles>

request route Route Requester

+environment: Graph

+setEnvironment (graph:Graph)

<<organization==
Ant Colony

<<role>>

Ant

launch
Pheromon

perceive

from Ato B
requires
<<capacitys=> Level n+1
FindShortestPath |
Level n
+giveshortestPath(origin:Mode,destination:Node)
provides
spawn <<role>>
Supervisor
<<boundary role==
Environment provides
graph

Fig. 2. The concept of capacity as a link between two adjacent levels of abstraction during the analysis

basis of the analysis activities performed within ASPECS de-
velopment process. The system global behaviour is recursively
decomposed into a set of interacting sub-behaviours, each of
these latter being in turn decomposed until the lowest level of
elementary sub-behaviours is reached. It means that at a given
level, composed behaviours are modelled by using organisa-
tions. These organisations are composed of roles which can be
in turn decomposed as organisations of a lowest level. In most
systems, it is somewhat arbitrary as to where the partitioning is
left off and what subsystems are taken as elementary (cf. [16,
chap. 8]). This choice remains a pure design choice. During the
design phase, the hierarchical organisation structure resulting
from the analysis will be mapped to a holarchy (hierarchy
of holons) in charge of its execution. Each of the previously
identified organisations is instantiated in forms of groups.
Corresponding roles are then associated to holons to obtain
a holarchy able to execute the various behaviours identified
during the analysis.

C. The ASPECS development process

The ASPECS software development process can be con-
sidered as an evolution of the PASSI [17] methodology for
modelling HMAS and it also collects experiences about holon
design coming from the RIO approach [8]. The construction
of the new process has been performed according to the
situational method engineering paradigm [18], [19] and the
approach described in [20]. The complete description of the
method adopted for building the ASPECS process is out of the
scope of this paper. It is sufficient to say that the definition
of the MAS metamodel adopted by the new process has been
the first step and from this element all the others (activities,
guidelines, workflow) have been deducted [20].

The ASPECS process structure (in terms of process meta-
model) is based on the Software Process Engineering Meta-

model Specification (SPEM) [21] proposed by the OMG. At
the core of SPEM is the idea that a software development
process is a collaboration between abstract active entities,
called Roles, that perform operations, called Activities, on
concrete, tangible entities, called Work Products. SPEM clearly
separates reusable Method Content from its application in
Processes. More precisely a process model is built out of
Process Elements. Each Process Element can be specialised
to describe one aspect of a software engineering process.
According to this metamodel, the software process of ASPECS
is based on three main levels: Phases, Activities and Tasks. A
Phase delivers a composite work product (composed of one
or more documents that can belong to different work product
types), a phase is composed of a number of activities that are
in turn decomposable into tasks. An Activity delivers a main
work product (like a diagram or a text document) and it is
composed of a number of Tasks. A task contributes to the
production of a work product (usually by delivering a part of
it), and it instantiates/relates/refines MAS metamodel elements.

The ASPECS process is composed of three phases: Sys-
tem Requirements, Agency Society and Implementation and
Deployment. The system requirements aims at defining re-
quirements and identifying organisations that will fulfil them.
Agency society aims at defining roles, communications and
holons architecture. Eventually, implementation and deploy-
ment consists in implementing and deploying the concepts of
the precedent phase with a dedicated platform. The System Re-
quirement phase is detailed in figure 4. This figure presents the
SPEM diagram defining the activities of that phase. Roughly,
this phase starts with the depiction of requirements, then the
definition of problem ontology and the identification of or-
ganisations fulfilling the requirements and the set of roles that
compose them. The last activity, named Capacity Identification
aims at defining capacities and role dependencies.

!/’/- Use Case
i,. Diagram

u / <=<=mandatory, output==>

<<=mandatory, input>> ‘—. -

Rt N

Text Usage Scenario

<-<optional, input==
Domain Requirement Problem
Description Ontology

u Description

Interviews of future Users,
Commissioner and Experts
<<mandatory, output>>

Organizational !,//-
Use Case Diagram i,l

/

=

Ontology
' m Class Diagram

=<=mandatory, output==

Organizational
Design Pattern

<<optional, input>=>

Organization
Identification

Interaction and Role

Class Diagram

<<mandatory, m‘h

Role Plan

Identification

\ <=mandatory, output==>
!/l
i// m Class Diagram

Scenario Description

<=mandatory, output==

Capacity <<mandatory, output== “m
Identification !//
o
L0
i/l Sequence Diagram

Activty Diagram

Fig. 4.

III. CASE STUDY

The FIRA Robot soccer competitions began in 1996 using
real robots and simulators [22]. It is an example where real-
time coordination is needed. Indeed, the principle consists in
two teams of five autonomous robots (for the specific case of
Mirosot medium league) that play a game similar to human
football. It constitutes a well-known benchmark for several
research fields, such as MAS, image processing and control. A
simulator for such games based upon HMAS using the ASPECS
development process was developed. In this paper some parts
of the System Requirements phase concerning this simulator
are presented. All activities are not detailed since it is out of
the scope of this paper. The described activities are Domain
Requirement Description, Interaction and Role Identification
and Capacity Identification. The interested reader can find the
entire case study on the ASPECS website!.

A. Analysis

The global objective of the Domain Requirements Descrip-
tion (DRD) activity is gathering needs and expectations of
application stakeholders and providing a complete description
of the behaviour of the application to be developed in terms
of functional and non-functional requirements described using
an UML use case diagram. Figure 5 details the use cases
associated to the development of a simulator for the FIRA
Robot Soccer cup. Eight use cases and one actor have been

Uhttp://www.aspecs.org/

ASPECS System Requirements Phase

identified. The actor represents the user of the simulator who
can simulate matches and tune the strategy of each team.
Simulating a match implies the simulation of two autonomous
teams that can choose their own strategy and are responsible
for simulating the individual robots behaviour. The goal of
the Organisation Identification activity is to bind each require-
ment to a global behaviour, embodied by an organisation.
Starting from the results of the DRD activity, use cases are
clustered and a first set of organizations that will compose
the application is identified following a combination between
a structural (or ontological) approach mainly based on the
analysis of the problem structure described in the Problem
Ontology Description and a functional approach based on
requirement clustering. This step relies on analysis decision.
In the example described a functional criterion is used and
organisations are clustered according to use dependencies,
specifically includes relationships. For example, the top level
organisation consists in game simulation. This organisation is
dedicated to the realisation of simulate matches use case and
is composed of simulate team organisation which is dedicated
to simulate team’s global behavior use case.

According to this first hierarchy of organisations, the objec-
tive is now to decompose each organisation in terms of roles
and interactions, and precise the behavioural contributions of
sub-level organisations to an upper-level ones. In this example
a top-down behavioural decomposition is used and for each
level a test is done to determine if it is still necessary to
continue the decomposition process. Figure 6 describes the

ooiba a el

includes : : —
simulate Matches T Simulate Team's
i global behavior

Robot Soccer
Team Manager

includes

includes

Tune strategy's includes
parameters - Choose automatically
a strategy

Simulate Player
Behavior

includes
\!
Assign role according
to the chosen strategy
Y [>

Assign automatically
role according to the
chosen strategy

=
includes

-
g

Assign statically
role according to the
chosen strategy

Fig. 5.

result of this decomposition: the various organisations and
their respective contributions. At the top of the hierarchy,
the Game Simulation organisation is decomposed using only
one interaction and one role: Team. An OCL constraint is
added to specify that only two instances of this role are
allowed in each instance of this organisation. This role is in
charge of simulating the behaviour of a robot soccer team. Its
complexity at this level is considered as too high and it will
be decomposed into smaller interacting behaviours.

At the second level, the organisation Team Simulation is
decomposed in four roles: three roles representing the con-
tributions of previously identified sub-level organisations and
a boundary role useful to provide required information about
the game situation (players and ball position, score, etc). The
Strategy Selector role is in charge of determining the best
strategy to adopt according to the current situation. Each
strategy corresponds to a distribution of strategy roles like
goalkeeper, near-defender, midfielder, shooter, etc. among the
different players. Each robot soccer team is composed of five
players. Applying a strategy thus consists in assigning to each
player one of the roles defined by the strategy. The association
between players and roles defined by the strategy is done by
the Role Assigner role. The Players Simulator role is in charge
of simulating the behaviour of the various players according to
the chosen strategy. The global state of the game (players and
ball positions, score, time, etc.) is maintained by the boundary
role Game Observer. This role is also in charge of providing
required perceptions to the others.

The result of the Interaction and Role Identification activity
is thus a three levels holarchy composed of the organisations
depicted in figure 6. The analysis is obviously not finished
and many decisions have to be taken before being able to
implement and deploy the system. The behaviours of the roles
need to be defined. The Strategy Selector role, for example,
is in charge of choosing a strategy for a team according to a
game situation. This role is of an uttermost importance for the
team efficiency and the choice of a strategy is not so trivial.
However there exist several techniques in order to exhibit such
a behaviour.

Domain Requirements Description of the Robot Soccer Simulator Analysis

An arbitrary choice is made to abstract the choice of a
strategy with a capacity namely ChooseStrategy capacity. This
strategy takes as input a game situation and a non empty set
of strategies and returns a single strategy as result. At this
step, this capacity may be considered as a new requirement
to identify sub-level organisations able to fulfil it. The next
subsection presents an organisation based upon the theory of
immune system which enables to implement this capacity.

B. The Immune System Organisation

From a computational viewpoint the human immune system
can be viewed as a parallel, distributed system that has the
capacity to control a complex system over time [23]. The hu-
man immune system is composed of several layers of defence
such as: physical (skin), innate and adaptive. The adaptive
part of the human immune system has been mostly taken
into consideration in this paper. The adaptive system improves
its response to a specific pathogen at each exposure. Thus,
the adaptive system has three key functionalities: recognition,
adaptation and memory. The adaptive immune system can be
divided into two major sections: the humoral immune system
and the cellular immune system. The former acts against
antigens by means of proteins called immunoglobulins or
antibodies which bind to antigen. This binding mechanism
allows an antibody to either tag an antigen for attack by other
part of the immune system or neutralise antigens. The latter,
among other duties, destroys virus-infected cells.

Among numerous theories which try to explain the human
immune system, Nobel Laureate N. K. Jerne proposed a model
based on interactions between antibodies [24]. These interac-
tions take the form of stimulation and inhibition. This theory
is known as Jerne’s Idiotypic Network. The network is defined
by stimulation/inhibition links between antibodies. From now
on, immune system term will be used as a reference to the
immune network. The region by which antibodies stimulate
or inhibit other antibodies is called idiotope. Idiotopes play
the roles of antigens for other antibodies. It means that each
antibody may be seen by other antibodies as an antigen if
its idiotope corresponds to the paratope of these antibodies.

<<grganization=>|
Game Simulation

inv: self.Team allInstances-=size = QBI

<<riles>>
1
Level 1 _wiitor Team | _ _ | Context GameSimulation
-local [1
requires
<<capacity>>

SimulateTeamBehavior

T provides

+execute()

<<0 rganlzatmnr—v
Team Simulation

requires
associates tactical Assigns
<<role>> role and player <<role>> strategy <<role>> <<capacity>>
Players Simulator Role Assigner Strategy Selector ChooseStrategy
. +execute(strategySet:Set<Strategy=, gameState: GameSituation)
Level 2 perceives
perceives .
. perceives >
provides <<boundary role=> % <<mnles>>
players positions .
Game Observer E
L» Context PlayerSimulation
s | inv:
! *] self.PlayersSimulator.allInstances-»size = 1
requires requires requires self.StrategySelectnr.aHInstance;‘v»slze =1
self.GameObserver.allInstances-»size = 1
“=capacity=> =<capacity=> ==capacity>> self.RoleAssigner.alllnstances-»size = 1
PlayStrategy ObserveGame LogCapacity

+execute(): GameSituation

+execute (strategy:Map<StrategyRole,Player=)

+execute (level:Loglevel,arg: Object)

provides

<<organization=>
Player Simulation

___________ B <<niles>>
"role:StrategyRole ,
srrmiees <<boundary role=> Context PlayerSimulation
Level 3 Player perceives Flayfield |l - A)
self.Player.allInstances-»size = 5
self Playfield.allInsances-»size = 1
playswith |1 moves on
Fig. 6.

This regulation mechanism enables the immune system to
maintain an effective set of cells and to self-organise in order
to deal with antigens. Indeed, the stimulation/inhibition links
are based on affinities between antibodies to deal with specific
antigens. If two types of antibodies are able to match two
similar type of antigens then they will have affinity and will
stimulate each other. On the contrary if antibodies are built
to deal with very different types of antigens they will inhibit
themselves.

Jerne’s Idiotypic Network has already been used as agent
architecture, for example in [25]. Such architecture is an
interpretation of the Jerne’s theory. Concepts developed in
that work are used for a single agent case as a basis for
the approach presented in this paper. The main principle of
this architecture is that each antibody represents a possible
behaviour of the agent with its preconditions and affinities
with other antibodies. It is an arbitration mechanism which
allows both the choice of a single behaviour according to some
stimulations, the antigens, and learning with the continuous
computation of affinities between these antibodies. In our case
the behaviour will be associated to a strategy and the choice
of a behaviour is then equivalent to the choice of a strategy.

Figure 7 describes the organisation model of the immune
system. It is composed of two roles: Idiotypic Network and
Antibody. The Antibody role describes the behaviour exhibited

Results of Interaction and Role Identification, and Capacity Identification activities of the Robot Soccer Simulator Analysis

by Antibodies in the network. Antibodies influence each other
through the affinities interaction. When appropriate, antibod-
ies will send stimulation/inhibition stimuli, according to the
affinities values of the antibody, to other antibodies. With
these stimulations/inhibitions and the present antigens, each
antibody computes its concentration. The antibodies then send
their concentrations to the Idiotypic Network for selection.
The antibody with the greater concentration is chosen and
executes its behaviour. After execution the results are analysed
by the Idiotypic Network which sends rewards or penalties to
antibodies in order to update their affinities. Figure 8 details
the interactions resulting from the perception of an antigen by
the immune system. The perception and encoding of antigens
is done by an analysis of the environment. The perceived
antigens are sent to all antibodies. Each antibody checks if
it is stimulated by the antigen and if stimulated it broadcasts
its affinity values. It means that a stimulated antibody will
either stimulates or inhibits other antibodies.

C. Self-Adaptation

The major reason for the choice of the idiotypic network as
a realisation of the ChooseStrategy capacity is that idiotypic
networks exhibit self-adaptation characteristics. In the case of
complex systems such as robot soccer games this kind of
technique is very helpful as it is very difficult to decide a

< £ CAPACity> >
ChooseStrategy

+ executelstrateqySet - Set, gameState : GameSituation) ; Strategy

A
I provides

< <organization s >

stimulation e Immune System

« antigen
<<roles > é/(_\\‘_ < <roles >
Antibody '6'-—-_._.______ Idiotypic Network
<« reinfarcement

Fig. 7. Organisational model of the Artificial Inmune System

‘ IdiotypicNetwork:ImmuneSystem ‘

environmentAnalysis() i

‘ Antibody:ImmuneSystem

*antigens() o
stimulationTest()
| *[stimulated]broadcast()
! sendConcentration() computeConcentration()
chooseWinningAntibody() |
execute() L
behavior()

analyseAction()

*reinforcement()

updateAffinities()

Fig. 8. A complete step of the Immune System interactions

priori, without knowledge about the opponent team, heuristics
for strategy choice. As reported in [26] experiments conducted
with the example described in this paper has proven that the
architecture is able to self-adapt to game situations. Figure 9
presents some results from these experiments. It shows that the
team using idiotypic networks develops the ability to control
the ball. Here it is measured with the minimum distance
between robots and the ball. Of course other techniques could
have been used in place of idiotypic networks such as learning
architectures, BDI-agent, etc. In fact, it is one objective of the
capacity concept to abstract from the concrete realisation of
a know-how, for choosing a strategy. The capacity ChooseS-
trategy can then be realised by say a set of cooperating BDI-
agents. It can be even changed at runtime without hindering

400,00

350,00

300,00

250,00

200,00

Distance

Immune strategy team
150,00

i —=—Simple startegy team
100,00 7 l -
=
50,00 - —
0,00

1 167 333 499 665 831 997 1163 1329 1495 1661 1827 1993 2159

Time

Fig. 9. Minimum distance between robots and ball

the system functionalities.

Moreover, in our case the realisation of the capacity is the
result of roles interaction within an instance of the Immune
System organisation. It means that the realisation of the ca-
pacity is done by a group of holons. The capacity is thus
a mean to control the emergence of behaviour. The Immune
System organisation can be considered as an organisational
design pattern which solves the problem of choosing a specific
element of a set with reinforcement learning mechanism
associated to this choice.

IV. RELATED WORKS

Several approaches related to agent capabilities have been
already proposed in various domains of MAS.

In the domain of Semantic Web and Web Agents, [27], [28]
propose an Agent Capability Description Language (LARKS)
and discuss the Service Matchmaking process using it. Thus
a first description of Agent Capability using LARKS is given.
However this description is only used in the Service Match-
making process and not used during the analysis nor the
modelling phases. These aspects are tackled in our approach
with the notion of capacity as a basic description of an agent
know-how.

In [29] the concept of capability and the concept of opportu-
nity, respectively representing the necessary and the sufficient
conditions to achieve a goal. These concepts are similar to the
concepts of capacity and capacity realisation but they do not
take into account organisational nor holonic aspects.

To distinguish the agent from its competencies, [30]
and [31] have introduced the notion of skill to describe basic
agent abilities and allowing the definition of an atomic agent,
that can dynamically evolve by learning/acquiring new skills.
Then [32], [33] have extended this approach to integrate this
notion of skill as a basic building block for role specifi-
cation. [34], [35] also consider agent capability as a basic
building block for role specification in their meta-model for
MAS modelling. These capabilities are however inherent to

particular agents, and thus to specific architectures. In these
models the role is considered as a link between agents and
a collection of behaviours embodied by the skills. In other
words, in these approaches, the skill is directly related to the
way to obtain a service, and thus represents a basic software
component. However, the description of the general class of
related services and the fact that a given agent ability can be
obtained by various implementations is not developed. This
really differs from our view of the notion of role. For us a
role is a first class entity, the abstraction of a behaviour or/and
a status in an organisation (extension of [8]), that should be
specified without making any assumptions on its susceptible
players. It is assumed that these aspects are captured in our
model with the notion of capacity implementation.

In a more general way, our approach is situated in the
confluence of these various models, linking the description of
an agent capability and its various possible implementations.
Agents are thus provided with means to reason about their
needs/goals and to identify the way to satisfy/achieve them.
It benefits us the advantages of both approaches, increasing
reusability and modularity by separating the agent from its
capacities, and the capacity from its various implementations.

Considering an organisation as a possible capacity imple-
mentation constitutes one of our main contributions; group of
interacting agent can provide a capacity to an upper level.
This takes all its interest in the case of holonic MAS, where
the super-holon can exploit additional behaviours emerging
from members interactions to obtain a new capacity. In the
same way, a modelling tool to deal with intrinsic emergent
properties of a system and to catch them directly from the
analysis phase is provided.

V. CONCLUSION

In this paper a case study illustrating the use of the capacity
concept and how this concept enables to control the emergence
of behaviour is presented. The chosen case study consists in
a simulator for robot soccer games and it is considered under
a holonic perspective. The capacity concept is part of the
metamodel underlying the ASPECS development process. The
entire set of activities of this process is out of the scope of
this paper so only relevant activities applied to the case study
are presented. This paper emphasises the intrinsic ability of
ASPECS to catch the various levels of abstraction of a complex
system; this occurs during the analysis phase by using an
organisational hierarchy and in the design phase by using an
holarchy.

REFERENCES

[11 G. D. M. Serugendo, N. Foukia, S. Hassas, A. Karageorgos, S. K.
Mostefaoui, O. F. Rana, M, P. Valckenaers, and C. V. Aart, “Self-
organisation: Paradigms and applications,” in Proceedings of ESOA’03,
2003.

[2] G. D. M. Serugendo, M.-P. Gleizes, and A. Karageorgos, “Self-
organisation and emergence in mas: An overview,” Informatica, vol. 30,
no. 1, pp. 45-54, 2006.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]
[12]

(13]

(14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

[28]

S. Rodriguez, N. Gaud, V. Hilaire, S. Galland, and A. Koukam, “An
analysis and design concept for self-organization in holonic multi-
agent systems,” in Engineering Self-Organising Systems (S. Bruckner,
S. Hassas, M. Jelasity, and D. Yamins, eds.), vol. 4335 of LNAIL pp. 15—
27, Springer-Verlag, 2007.

A. Koestler, The Ghost in the Machine. Hutchinson, 1967.

F. Maturana, MetaMorph: an adaptive multi-agent architecture for
advanced manufacturing systems. PhD thesis, The University of Calgary,
1997.

M. Ulieru and A. Geras, “Emergent holarchies for e-health applications:
a case in glaucoma diagnosis,” in IEEE IECON 02, vol. 4, pp. 2957-
2961, 2002.

J. Wyns, Reference architecture for Holonic Manufacturing Systems -
the key to support evolution and reconfiguration. PhD thesis, Katholiecke
Universiteit Leuven, 1999.

V. Hilaire, A. Koukam, P. Gruer, and J.-P. Miiller, “Formal specifica-
tion and prototyping of multi-agent systems,” in ESAW (A. Omicini,
R. Tolksdorf, and F. Zambonelli, eds.), no. 1972 in LNAI, Springer
Verlag, 2000.

P. Gruer, V. Hilaire, A. Koukam, and P. Rovarini, “Heterogeneous
formal specification based on object-z and statecharts: semantics and
verification.,” Journal of Systems and Software, vol. 70, no. 1-2, pp. 95—
105, 2004.

C. Gerber, J. Siekmann, and G. Vierke, “Holonic multi-agent systems,”
Tech. Rep. DFKI-RR-99-03, DFKI - GmbH, 1999.

E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269-271, December 1959.

R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics,
vol. 16, no. 1, pp. 87-90, 1958.

N. Attiratanasunthron and J. Fakcharoenphol, “A running time analysis
of an ant colony optimization algorithm for shortest paths in directed
acyclic graphs,” Inf. Process. Lett., vol. 105, no. 3, pp. 88-92, 2008.

J. Ferber, Multi-Agent Systems. An Introduction to Distributed Artificial
Intelligence. London: Addison Wesley, 1999.

G. Chauvet, La vie dans la matire. Flammarion, 1998.

H. A. Simon, The Science of Artificial. Cambridge, Massachusetts: MIT
Press, 3rd ed., 1996.

M. Cossentino, “From Requirements to Code with the PASSI Method-
ology,” in Agent-Oriented Methodologies (B. Henderson-Sellers and
P. Giorgini, eds.), ch. IV, pp. 79-106, Hershey, PA, USA: Idea Group
Publishing, 2005.

B. Henderson-Sellers, “Method engineering for OO systems develop-
ment,” Commun. ACM, vol. 46, no. 10, pp. 73-78, 2003.

C. Rolland and N. Prakash, “A proposal for context-specific method
engineering,” in Proc. of the IFIP TCS, Working conference on method
engineering on Method engineering : principles of method construction
and tool support, pp. 191-208, Chapman & Hall, Ltd., 1996.

M. Cossentino, S. Gaglio, A. Garro, and V. Seidita, “Method fragments
for agent design methodologies: from standardization to research,”
International Journal on Agent Oriented Software Engineering, vol. 1,
pp. 91-121, April 2007.

SPEM, Software Process Engineering Metamodel Specification, v2.0,
Final Adopted Specification, ptc/07-03-03. Object Management Group,
March 2007.

Y. H. Kim, Micro-robot world cup soccer tournament. KAIST, 1996.
J. D. Farmer, N. H. Packard, and A. S. Perelson, “The immune system,
adaption and machine learning,” Physica D, vol. 22, pp. 187-204, 1986.
N. K. Jerne, “Towards a network theory of the immune system,” Ann
Immunol (Inst Pasteur), vol. 125C, pp. 373-389, 1974.

Y. Watanabe, A. Ishiguro, and Y. Uchkawa, “Decentralized behavior
arbitration mechanism for autonomous mobile robot using immune sys-
tem,” Books Artificial Immune Systems and Their Applications, Springer-
Verlag, p. 186-208, ISBN 3-540-64390-7, 1999.

V. Hilaire, A. Koukam, and S. Rodriguez, “An adaptative agent architec-
ture for holonic multi-agent systems,” ACM Transactions on Autonomous
and Adaptive Systems, vol. 3, no. 1, pp. 1-24, 2008.

K. Sycara, M. Klusch, S. Widoff, and J. Lu, “Dynamic service match-
making among agents in open information environments,” SIGMOD
Record (ACM Special Interests Group on Management of Data), vol. 28,
pp. 47-53, March 1999.

K. Sycara, J. Lu, M. Klusch, and S. Widoff, “Matchmaking among
heterogeneous agents on the internet,” in Proceedings of the 1999 AAAI
Spring Symposium on Intelligent Agents in Cyberspace, March 1999.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

L. Penserini, A. Perini, A. Susi, and J. Mylopoulos, “From capability
specifications to code for multi-agent software,” in ASE, pp. 253-256,
IEEE Computer Society, 2006.

J. Routier, P. Mathieu, and Y. Secq, “Dynamic skill learning: A support
to agent evolution,” in AISB’01, pp. 25-32, 2001.

M. Savall, M. Itmi, and J.-P. Pecuchet, “Yamam : a new organization
model for multi-agent systems and its platform named phoenix,” in
Conference SCSC 2000, (Orlando, USA), 2001.

E. Adam and R. Mandiau, “A hierarchical and by role multi-agent
organization: Application to the information retrieval.,” in ISSADS,
pp- 291-300, 2005.

E. Adam and R. Mandiau, “Roles and hierarchy in multi-agent organi-
zations,” in CEEMAS 2005 (M. Pechoucek, P. Petta, and L. Varga, eds.),
no. 3690 in LNAI, (Budapest, Hungary), pp. 539-542, Springer-Verlag,
September 2005.

E. Matson and S. A. DeLoach, “Autonomous organization-based adap-
tive information systems,” in KIMAS '05, (Waltham, MA), April 2005.
E. Matson and S. A. DeLoach, “Formal transition in agent organi-
zations,” in [EEE International Conference on Knowledge Intensive
Multiagent Systems (KIMAS ’05), (Waltham, MA), April 2005.

