PRACTIONIST:
Implementing PRACTIcal reasONIng sySTems

Vito Morreal€’, Susanna Bonuta Fabio Centinetg
Alessandro Rossj Massimo Cossentincand Salvatore Gaglié
*R&D Laboratory - ENGINEERING Ingegneria Informatica S.p.A
fICAR-Italian National Research Council
IDINFO-University of Palermo

Abstract—One of the best known approaches to the devel- proposed in the literature. Among them, it is worth mentioni
opment of rational agents is the BDI (Belief-Desire-Intention) dMARS [5] developed at the Australian Al Institute, the UM-

architecture. In this paper we propose a new framework, PRS implemented in C++ at the University of Michigan [6]
PRACTIONIST (PRACTIcal reasONIng sySTem), to support the and JAM [7], a Java version of PRS.

development of BDI agents in Java (using JADE) with a Prolog X
belief base. In order to enable the testing of BDI agents, the 3APL

In PRACTIONIST we adopt a goal-oriented approach with platform [8], an experimental multiagent platform, proesda
a clear separation between the deliberation and the means-endsgraphical interface by which designers can develop, egecut
reasoning, and then between the states of affairs to pursue and 3,4 monitor the agents. JADEX, an add-on to the JADE

the way to do it. Besides, PRACTIONIST allows developers to
implement agents that are able to reason about their beliefs and platform [9] that supports the development of BDI agents,

the other agents’ beliefs, expressed by modal logic formulas. ~ Provides two tools as a support of the JADE introspector
Our approach also includes a specific tool that provides agent: thedebugger which allows the visualization and re-
the developer with the possibility to effectively monitor the configuration of the internal BDI concepts, and tlogger
components involved in the execution cycle of an agent. agent which allows developers to detect the agent’s sequence
of outputs [10]. Finally, the JACK software [11], a commailci
suite of tools with a programming language that extends the
The Belief-Desire-Intention (BDI) architecture [1] deg& Java language with BDI features, provides an agent debgggin
from the philosophical tradition of practical reasoningstfir environment, which allows inspection of messages and the
developed by Bratman [2], which states that agents decidigternal execution states.
moment by moment, which actions to perform in order to In several PRS-related BDI implementations, mental states
pursue their goals. Practical reasoning involves two 8es: deliberation, and means-ends reasoning, when actuallieimp
(1) deliberation to decide what states of affairs to achievemented, somewhat differ from their original meaning. As an
and (2)means-ends reasoning decide how to achieve theseexample, often executing plans are considered as intemtion
states of affairs. Besides, in such a theory intentions aB@t intentions should be related to ends, while plans should
important, as they influence the selection of the actions @ related to means to achieve such ends.
perform. PRACTIONIST (PRACTIcal reasONIng sySTem) is a new
In the context of rational agents, the BDI model appeafeamework we have been developing, which adopts a goal-
very attractive, because the abstractions of belief, desmid oriented approach and stresses the separation between the
intention are quite intuitive. Moreover the model providedeliberation process and the means-ends reasoning. Indeed
a clear functional decomposition that indicates what sért the abstraction of goal is used to formally define both desire
subsystems might be required to build an agent. Neverthelesnd intentions during the deliberation phase. Unlike soffne o
the development of this abstract architecture involve®rsdv existing BDI implementations, in our approach we actually
issues in efficiently implementing the deliberation precasd adopt the plans as recipes to achieve the intentions. Beside
the means-ends reasoning [3]. PRACTIONIST allows developers to implement agents that
Moreover, since the BDI agent model suggests a declaratme able to reason about their beliefs and the other agems’ (
approach to represent the internal states, the debuggingchfding humans’) beliefs, since beliefs are not simple goma
BDI agents, the effective observation of their mental adifs literals or data structures but modal logic formulas [12].
and execution flow are critical and difficult activities. Bhu Finally, our framework provides the developer with the
having some development and debugging tools is crucial WheRACTIONIST Agent Introspection Tool, to entirely and eas-
implementing BDI agents, especially in real case scenanosily monitor the components involved in the execution cyde o
complex application domains. an agent. Throughout this paper we show how PRACTIONIST
Actually, several concrete implementations of the mosigents actually work by means of snapshots of our monitoring
known BDI agent architecture, the Procedural Reasoning Sysol and through the well-knownlocks worldexample. In this
tem (PRS) developed by Georgeff and Lansky [4], have besimple case study, we developedlacks world agentwhich,

I. INTRODUCTION

2.Blocks world .. - BE¥ All the information showed at run-time could be saved
in a file, providing the programmer with the possibility to
perform an off-line analysis. Moreover, the PAIT provides a
dedicated area for log messages inserted in the agent source
code, according to the Log4j approach [14]. The usage of
this console and the advantages it provides are described in
more details in the following sections along with the agent’

B @420

[s] ees] cws]

| oces] e | emm

== =R =R components.
tahle1 | table2 ‘ tahle3 |

Fig. 1. An initial situation for the blocks world problem.

IIl. BELIEFS

In general, the BDI model refers to beliefs instead of
knowledge, as agents’ information about the world is uguall
. s) . incomplete or incorrect, due to uncertainty and problems
starting from an initial situation (see figure 1), is reqeelst with perceptions and communication in their dynamic and
(through an ACL message) to order some numbered bIOCkBOSSiny unpredictable environment [1]. Indebd|iefsare not

This paper is organized as follows: in section Il we gV&ecesqarily true, whilknowledgeusually refers to something
a brief overv‘lew of _the PRACTIOMST framework and tr_]ethat is definitely true [12]. According to this, an agent may
agent rr_lodel, then In sections Il 'to V- we prowdg a brl_eEJeIieve true something that is false from another agentiaan
description of the main agent components; finally in sectiqfs gesigner's point of view, but in the BDI model the idea is
VI we describe the execution flow of PRACTIONIST agents,q; 1, provide the agents with a subjective window onto the
referring to their previously described components.
) The PRACTIONIST framework adopts the common ap-
IIl. THE PRACTIONIST FRAMEWORK: AN OVERVIEW proach of modeling agents’ beliefs by thioxastic modal

The PRACTIONIST framework aims at supporting thdogic, which is based on the axioms K, D, 4, and 5 (see [12]
programmer in developing ager(ts endowed with a symbolic for more details). Thus, in our framework beliefs are expeés
representation about their internal states and environrign through the modal operatdsel(a, ¢), whose arguments are
able to plan their activities in order to pursue some objesti the agentx (the believer) and what it believeg,(the fact).
and(iii) provided with both proactive and reactive behaviour&ach factp may be believed true or false by a PRACTIONIST

PRACTIONIST has been designed on top of JADE, agenta, i.e..
widespread platform that implements the FIPA specification « Bel(a, ¢): the agenty believes thatp is true;

[13] and provides some core services, such as a communicas Bel(«, —p): the agenty believes thatp is false.

tion support, interaction protocols, life-cycle managemend Moreover, in order to assert that the agentioes not have
so forth. Therefore, the PRACTIONIST agents are eXGCUt@ﬁy belief aboutp, we defined the following operator:
within JADE containers and the main cycle is implemented .

by means of a JADE cyclic behaviour. Ubif(a,) & =Bel(a, ¢) A ~Bel(a, =)

In PRACTIONIST, an agent is a software component with Each fact can either be a closed formula of the classical
the following elements(i) a set ofperceptorsable to listen modal logic or a belief of any agent. In other words, an agent
to some relevant perceptiongii) a set of beliefs which may believe something (e.g. ‘it is possible that it is ragnin
represents the information the agent has got about bothiiisRome’), or havenested beliefsthat is it may believe that
internal state and the external worldijii) a set ofgoals some agent (even itself) believes something (e.g. ‘the tagen
which are some objectives related to some states of affajism believes that it is raining in Rome).
to bring about or actions to perforn(iy) a set ofplans that Finally, in PRACTIONIST agents it is possible to link an
are the means to achieve its intentio\g;a set ofactionsthe agent’s beliefs to others’ beliefs or other elements, olitgi
agent can perform to act over its environmei) and a set new entailed beliefs, through theelief formulas(BFs). An
of effectorsthat actually support the agent in performing itexample of belief formula follows:
actions. The main components of PRACTIONIST agents are
described in more details in the following sections.

The framework also provides developers with the PRAC-
TIONIST Agent Introspection Tool (PAIT), a visual integedt Therefore BFs define relationships among two or more beliefs
monitoring and debugging tool, which supports the analgsis allowing to infer new beliefs not explicitly asserted.
the agent's state during its execution. In particular, tAETP In regards to the architectural aspects, each PRACTIONIST
can be suitable to display, test and debug the agents’ reglevagent is endowed with a Prolog belief base, where beliefs
entities and execution flow. Each of these components care asserted, removed, or entailed through the inference on
be observed at run-time through a set of specific tabs (dbe basis of KD45 rules and user-defined belief formulas.
figure 2); the content of each tab can be also displayed in @herefore, in any moment the agent’s belief set (BS) is
independent window. composed of the beliefs that have been both directly askerte

Bel(tom, Bel(john, raining)) A Bel(tom, trust(who :
john)) = Bel(tom, raining)

g bwa@foo.com

File View Plans Events Goals Intended means Beliefs Beliefs updating Messages Help
® lﬂ |7 I @ |E:2 %
pEnularer | [Plan Likrary | 5 Events | 15) Gosls | €3 Beliets | £ Beliets updating | 5 Intended means | B Messages |
=] @) bweai@fan com =
Qg Plan Likrary Open EA Select al B Delete selected B Delete =l (&Y Fitter 2 Color
QI Events
Qg Goals Dirsction | Time [Sender | Protocel | Performaive | Selection |
g Beliefs = 3ott20051723 |ews@ion com@ceriegoziols: 1099UADE [fina-contract-net o [3
3 Beliefs updating =3 3-oft-200517.24.36 jams@Acertegoziold:1 099.ADE finaccartract-ret failure]
rﬂ Intended means
g Messages e e e e -
* 3-ott-200517 .24 .52 sender SAgent@Aceriegoziold 1099/JA0E [fipa-request request D
‘ 3-oft-2005 17 24 .55 sender Auert@@Aceriegoziold 10990A0DE [fipa-regquest query-ref
ﬁ 3-ott-2005 17 .29.01 brvva@too com@Aceriegoziold: 10990ADE [fipa-reguest infortm D =2
@ 3-ott-200517.29.01 brvvsi@foo com@AcerNegoziold: 1099/4ADE [fipa-request inform D
ﬁ 3-oft-2005 17 .29.01 bevvaiEpton comigdAcerienoziold: 1099/ ADE fina-contract-net cff R
Content
N -~
((action =
{agent-icentifier
name bwa@@ioo comgAceriegoziodd: 1 098/ADE)
(order
:hlocks
(settable3 block! block2 block3 blockd blockS blocké block? blocks block3 block107)))
M
user click on a message
-Log
26 DEBUG: [examples.blockworld ClearBlockPlan] body: 33 &
27 DEBUG: -- ClearBlockPlan body started
28 DEBUG: [examples.blockworld ClearBlockPlan].body. 36
29 DEBUG -- Achieving clear{oh): block10)
30 DEBUG: [examples blockworld ClearBlockPlan].body: 40 - ACHIEVED: true
31 DEBUG! [examples.blockworld ClearBlockPlan].body 45
32 DEBUG: -- Querying (what_block tokove block10 moveTo (Wariable :Name Yhere)) bt
Fig. 2. The PRACTIONIST Agent Introspection Tool (PAIT).
m Plan Library | “§* Events 0 Goals | 5 Beliefs | 73 Beliets updating | "8 Intended means | B Messages
rBelief Base : rBelief
= (&) Belgselr, # || ||Beliselt, (not Belipippo,Bel(pluto (on
=) piopo iunder tabled
{on :under blockd over blocks) tover blockl)))))
= &) hiopo
=l Bgﬂ Bel(self, (not Bel(pippo,or((clear :ohj blocklO),
(on under table3 :over block1) {clear :obj
robj blockli))))
= [AN
- 8 (T;.undar hlocks :over block3d) Bel{self, (not Bel{pippe, (and|{on
pluto .
13 (on under blacka aver black1D Funder blocks
= Cor rover blocksd),
(clear 0k kiook10) ubif (pluteon
(clesr :0bi block1) sunder blockd
3 (on sunder blocks jover blocka) rower blockl0)))1])]
3 (o cunder blocks :over blockS) £
3 (o tuncer tabled over blocks)
|5 (clear (obj blockd)
3 (on under block1 over block3)
3 (on tunder block2 :over block1)
3 (O tuncer table2 jover block2) A
< IE
Eel{zelf,(not Bel{pippo,{andi{on:under hlocka:over hlocks), ubifiplutofon:under block3:over block 000

Fig. 3. The belief base view of PAIT.

and inferred by means of the BFs and the other built-theveloper can choose an intermediate node in order to select
theorems. the corresponding set of beliefs that share the same prefix.

Referring to the blocks world example, the initial set up Moreover, the icon of nodes represents the type of believed
of the blocks shown in figure 1 is graphically representd@cts, such apredicateor modal logic formula(P), Bel (B),
in PAIT in terms ofBels andUbifs (figure 3). As it can be Ubif (U), while the color represents their truth value, that is
noticed, the structure of the belief base is representedraga true (green) andalse (red).
whose root refers to the current agent (self) and nodes refer ~ As an example, selecting the node related to the ggppb,
to the believed facts. This structure lets the developeiyeaghe beliefs with
explore the belief base and select groups of beliefs ranging
from the whole belief set (by selecting the root) to a specific
belief (by selecting the corresponding leaf). Between tlieen as prefix will be detailed on the right frame, as shown in figure

Bel(sel f,not(bel (pippo,

TABLE |

3. On the other hand, if the developer selects the leaf tlate THE STRUGTURE OFPRACTIONISTPLANS.

to the agenpluto within the above-mentioned node, PAIT will

show only the belief Identifier [Unambiguous (within each agent)
) identifier of plans
Bel(sel f,not(Bel(pippo, Bel(pluto, on(under : Trigger event| If this event matches the selected
tablel, over : block3))))) event, this plan can be activated.
.)) In this case the plan is defined
It should be also noticed that this feature of the console is aspractical
very useful when developing and testing agents, as it pesvid Context | A modal logic formula that, when
the user with a real-time snapshot of the agent’s informatio believed true by the agent,
attitudes. makesapplicablea practical

plan, so that the agent can select
it to pursue its objectives
Success condition When the agent believes that this

In the PRACTIONIST framework plans represent an im- condition holds, the plan ends
with success, regardless its

portant container by which developers define the actual be- execution state
haviours of agents. Therefore, each agent may own a declared—cancel condition| When the agent believes that this

IV. PLANS

set of plans (thglan library), which specify the activities the condition holds, the plan ends
agent should undertake in order to pursue its intentions, or with failure, regardless its
to handle incoming perceptions, or to react to changes of its execution state

Body | Set of acts that are performed

beliefs. : ;
. during the execution of the plan.
Though the structure of plans can be defmed by quz; classes, The body defines the actual
the preferred approach relies on a declargpias description behaviour of the plan
which specifies the complete set of information (fien slot3 Invariant | Condition that must remain true
used when actually executing the plans, as described ipeect iurmg the e?;egUt'O” of }hf p"(’”}-
. : . S SO0ON as It becomes ralse (a
VI. The complete list of such slots is report.ed in table I. least according to the agent's poifit
_Thus, a plap represents a possible recipe to manage the of view), it will try to restore it
trigger event; it may be related to a goal, an external event, Belief updates| Effects of this plan, in terms of
or an event which notifies a change of the belief set. How | in case of success belief updates in case the plan
to actually handle a certain event is reported within theybod i ends with success
which is anactivity, that is a set oficts such asdesiringto _ Belief updates| Effects of this plan, in terms of
. . . in case of failure| belief updates in case the plan
bring about some states of affairs or to perform some action, ends with failure

adding or removingbeliefs, sendingACL messagesjoing an
action and so forth.

It should be noticed that acts and actions are different, asactions are implemented in PRACTIONIST through Prolog
one of the possible acts concerns with doing an action thafctures or Java classes that include the above-medtione

lets the agent influence the environment, while other actt M@ements. An example of action description from the blocks
produce internal effects only. world agent follows:

Regarding to the blocks world running example, one of the bl ock: Bl ock -
developed plans is thEopLevelPlanwhich provides the agent act 'nng rsY?V[e(BI ook, To] oet to: To),
with the capability of receiving and handling the request fo out puts: [],
ordering the blocks. In section VI we illustrate how the glan precondi tions:
and their components are used during the execution flow and | Ogl(g‘;fngf! 0%5 ug:ﬂg;:r(g[);)m Bl ock)]
how the execution of plans affects the overall behaviour of success: ' ’ ' '

PRACTIONIST agents. [-clear(obj: To),
-on(over: Block, under: Fronj,

V. ACTIONS Yon(over - Bl ook, under: To) 1,

In PRACTIONIST, actions are described by tuples of four failure: 1)
elements: (1)arguments which are the objects each action It states that the actiomnove takes two arguments as
acts over; (2)results which are some kind of direct re-inputs (respectively the block to move and the block where
sponses received from the environment; (8fconditions it is moved over). Moreover, preconditionsn(over
which should be satisfied before executing the action; aflock,under : From), clear(obj : To), and clear(obj :
(4) effects(for both successfully and failing action execution)Block) must be satisfied before performing the action in order
which are the state of affairs that will be true or false aftédo have a proper execution. Finally, once the action has been
executing the action (as long as preconditions are safjsfted executed, in case of success the agent will believe that both
should be noticed that arguments and results are objecii® whiear(obj : To) and on(over : Block,under : From) are
preconditions and effects are modal logic closed formulas. false, while it will believe that botllear(obj : From) and

Plan description

<

<

<

<

<

Trigger event:

NogEDIEvent[Message: (REQUEST: ontology

Context:

(ready :who self)

Cancel:

(not :what (ordering :item blocks))

Inv
(ableTodrder :uho self)

Success:

(ordered :hlocks (ser #0 tahle3 #1 blockl

Success belief adds:

(happy :who se

1£) |
>

3)

Success helief deletes:

gl |

Failure belief adds:

Failure belief deletes:
ariant:

iordering :item blocks) |

>

Fig. 4. An example of plan description: ti@pLevePlan

on(over : Block,under : To) are true. Otherwise, in case of

failure in executing the action, no update of the agent'sefel
has to be done.

Planning attitudes and the decision making of PRACTION-

IST agents will rely on action description information, esp

cially preconditions and effects.

4)

V1. EXECUTION FLOwW

In this section, we present the execution flow of PRAC-
TIONIST agents in terms of relationships among the abstrac-
tions described above. Referring to figure 5, an agent @jtlic
performs the following steps:

1)

2)

it searches for stimuli from the environment through the
perceptors that transform perceptions iet@ntgwe call
them external evenjs which in turn are put into the
Event Queudin figure 6 a snapshot of the events tab
of PAIT is shown), along withinternal events (those
generated by belief updates or goal commitments).

In the PRACTIONIST console, the user could examine
the current, the suspended and the handled events. Each
event is tagged by some information about its arrival
time and when it has been actually handled.

Referring to the blocks world example, the agent will
receive an ACL message, by which another agent re-
quests it for putting the blocks in a specified order (see
the selected message in figure 2). This component of
the PAIT deals with the interactions established with
other agents: all incoming and outgoing messages are
registered in a single table, even though a complete de-
scription of messages can be shown in a different dialog
box whose structure reflects the well-known FIPA ACL

message. Besides, the messages can also be ordered (e5).

by their arrival time, direction, etc.) or filtered accorgin

to the relative performative;

it selects and extracts an event from the quetne(t
Selectiol. In the blocks world example, let us suppose
that the event corresponding to the above-mentioned

received message is extracted from the queue and then
handled as follows;
it selectspractical plans from thePlan Library, which
are those plans whose trigger event matches the selected
event Optionsin figure 5); if the selected event is related
to a goal and no plan has been triggered, an automatic
planning is performed on the basis of available action de-
scriptions in order to build a new dynamically-generated
plan, which is able to pursue that godl&nning in
figure 5). If the planner is not able to figure out any
plan, the calling plan will fail, then the selected event
will have not been successfully managed. As stated, in
the blocks world example we have defined a plan (i.e.
TopLevel Plan) that will be activated by the above-
mentioned message, as it has the following trigger event:
msg(request
(action
(agent-identifier :nane bwa@ oo.com
(order (bl ocks: BlockList))))
Once the plan is triggered, the following substitution is
made:

Bl ockLi st = [table3, blockl, block2,

bl ock3, ..., blocks,

bl ock9, bl ock10]
among practical plans, the agent detectsapplicable
ones, which are those plans whose context is believed
true by the agent. Then the agent builds the intended
means Build Intended Mear)s which represents the
means the agent has just chosen and committed to in
order to satisfy a goal, or to react to a perception or a
change in its beliefs. Therefore, the intended means will
contain the main plan and the other alternative practical
plans (see figure 7).
If the event selected at the step (2) concerns with a
goal, this means that some executing intended means
has generated it after the deliberation phase (see below).
Thus, the selected plan is put on top of such an intended
means (figure 7a). On the other hand, in case of external
events or belief update events, a new intented means
stack is created (figure 7b).
The set of intended means stacks is monitored by means
of a corresponding tab in PAIT (figure 8), which shows
nested intended means through a tree data structure, used
as an explorer to select the ones to trace. In particular,
once an intended means is selected, its log messages
(managed inside the plan’s source code by the developer)
will be shown in the frame on the right, along with
the logs of nested intended means. The PRACTIONIST
console makes the process of building intended means
stacks easy to follow, providing the users with the
opportunity to examine the entire means-ends reasoning;
all intended means stacks are concurrently executed in
separate threads. In other words, the main plan at the
top of each stack is extracted and then executed (see
Execute intended mearns figure 5). In section VI-A
we provide more details on the execution of plans in
PRACTIONIST agents, in terms of the several kind of

PRACTIONIST Agent

Perceptors ll'

external
event !

Belief Base

Erception

o |

belief updates

Actions

Planning

Event selection

ientailed

: Event Queue ! :
; selected, | plans :
: event : |
; ¥ a
i Build . Plan i
: ---------{ Options ;
' intended means | practical plans | Library ;
' plars '
P, imended :
i intended means; . means e, ;
! (newstack) * \, (Edsting |ntention R PO
H H +, zfack) i . il

; ; N i commitment

| Execute intended means

Intended means
stacks

T

: Reasoning :

goal event about goals " desire 1o
pursue a goal

Fig. 5. PRACTIONIST agent architecture.

[ﬂ' Flan Library - Everts 0 Gosls | € Beliefs | €2 Beliefs updating | ¥ Intended means | 521 Messages

E Discharge E Discharge automatically E Color
Type Ohject Arrive time Handle time Handled
GoalEvent Achigve((fic under table3 jover bloc...[3-0ft-2005 17.24.52 3-ott-2005 17.24.53 < -~
MaoBdiEyent Mz (QUERY-REF 'zender (agent-i. [3-0tt-2005 17 24 52 (3-0tt-2005 17 24 55 <
EeliefBaseUpdatedEvent |(fixing :obj block1) 3-ott-200517.24.54 (3-ott-200517.25.08 <
chieve[(clear jobj takle3)] <

AchievedGoslEvent Achieve[(clear jobi block10)) - . -t .
AchigvedGoalEvent Achigve((clear ok blockd)] |3-cm-2EIEIS 17.25.02 |3-cm-2EIEIS 17.2513 | v

Fig. 6. The event queue view of PAIT.

Intended Means 3

Executingplan 3

Alternative
plans
|

Intended Means 2

Executingplan 2

Alternative
plans

Intended Means 1 Intended Means 1

Executingplan 1 Executing plan 1

Alternative
plans
Alternative
plans

a) b)

Fig. 7. Building of intended means stacks: a) the new intendedns is put on top of executing stack; b) the new intended megng in a new stack.

** Intended means

[clear

st |
severty: [pesUG |

B color

means

= B rterded Means
= B 1-TopLevelPlan
= A 1.1-FixBlockOnAnatherFlan

Severity

Lewvel

lessage I

DEELUG

TopLevelPlan Fi<BlockOnAnotherPlan

16 FixBlockOnanotherPlan body started ..

DEBLUG

TopLevelPlan FixBlockOnAnatherPlan

16 Fixing (fixing :okj blockB) Result: true

DEEBLUIG

TopLevelPlan Fi<BlockOnAnotherPlan

1.6 Achieved

[N oo PR
=R Select all descendant FQ TopLevelPlan FixBlockOn¬herPlan ClearBl... (161 ClearBlockPlan body started ...
Deselect all descendant EBLIC TaopLevelPlan FixBlockOnAnotherPlan ClearBl.. [1 51 Achieving clear(oki: black?)
¥ SelectjDeselect only this one — WFo TopLevelPian FixBlockCnanatherPlan CleatEl... 1611 ClearBlockPlan body started ..
@ % : Expand Al Descendant node EBLIC TaopLevelPlan FixBlockOnAnotherPlan ClearBl.. 1611 Achieving clear(okj: blocks)
m 1:3-F Cc_ul_h_m_:us_e A_II I:_:n_a_s_ceql?l_a_r_ut_l_lu_de SFD TopL rither) ACHIEVED: true
= @ 1 .4-F Propetties DEBLIG TopLevelPlan FiBlockOntnotherPlan ClearBL.. (1611 Guerying (what_block itobdove blockS moveT ...
= B 1 47-ClearBlockPlan INFO TopLevelPlan FixBlockOnsnotherPlan.ClearBl... (16.1.1 ClearBlockPian completed a
2 r
= El1.4.1 1-CoarBiockPlen WARNING TopLevelPlan FixBlockOnanatherPlan ClearBl... 1 514 This is an example
= 1.41.11-ClearBlockPla
= ®1.44111-Clearbi PO TopLevelPian FixBlockOnanatherPlan ClearBl... [1.5.1 ACHEVELD: true
= ®1411119-C DERLI Tl analDlan EiBlnelm fnetherDlan ClaseBl |1 54 b bl b Bl sty |
L IERREE] rLog g
. @ 1.5-FixBlockOnanotherPlan ==, Severity INFO ~
=] @ 1 B-FixBlockOnAnotherPlan
= Bl 1 6 1-ClearBlockFlan _
701,64 1-CleatBlockPlan Level: TopLevelPlan FixBlockOnAnotherPlan ClearBlockPlan.ClearBlockRlan
@ 1.7-FixBlockOnAnotherPlan s
4 | > Message: 1.6.1.1 ACHIEVED: true v
new level : TopLevelPlan.FixBlockOnAnotherPlan
Fig. 8. Intended Means View.

acts the framework provides.
During the execution of the main plan, if the agent

A. Executing Plans

believes that its success condition (see table 1) holds, thaWhile executing its plans, the agent will have different
plan ends with success regardless its execution point dgfaviours according to the type of acts. The plans in tufin wi
state. On the other hand, if the agent believes that tfadl as soon as one of such acts fails. Some of the possible
cancel condition is true, the plan ends with failure. Thugcts a PRACTIONIST agent can manage are:

referring to theblocks world agenand theTopLevelPlan
described in figure 4, if during the execution of such
a plan the required final order of blocks is achieved
(for example due to some external reasons, e.g. other
agents do the work of ordering the blocks), the agent will
stop executing the plan, being successful in achieving its
goal. Likewise, if the agent suddenly believes that the
predicateordering is false, it will stop executing the
plan, but in this case failing in pursuing its objectives.
Moreover, while executing the plan the agent checks the
condition to be maintained (e.@bleToOrder(who :
self) in figure 4): if it is believed false, the agent will
try to bring it about, by desiring and possibly intending
to achieve it. If the agent succeeds in doing that, the
plan will continue executing, otherwise it will fail. When
the plan has completed its execution, the agent will ,
update some beliefs, according to whether the plan has,
succeeded or not.

It should be noted that, when the executing plan fails, since
a PRACTIONIST agent has a strong commitment to handling
the selected event, it selects another plan from the above-
mentioned alternative practical plans and checks whethser i
applicable or not. Then, if some other applicable plan sxist
the agent replaces the failed plan with it (which becomes the
new main plan) in the executing intended means; otherwise,
the whole intended means fails and in turn the plan below fail

too.

do an action if its preconditions are satisfied (at least
according to the agent’s beliefs), the agent executes the
action with the proper inputs and gets both the outputs
and the general overcome of the action (that catmuiszor
false. If the preconditions are not satisfied or the outcome
is false the action fails. Finally, the effects of such an
action are applied to the belief base after the execution.
It should be noted that actions are actually executed by
some effectors. Thus, the agent will search for a proper
effector that is able to execute an action and then delegate
the actual execution to it;

o add or removebeliefs: as soon as it is executed, the

correspondingbelief updated evenis generated. This
event will be then handled in the following cycles;

« queryover the belief base according to several criterion;

send an ACL messade other agents;

desireto bring about some state of affairs or perform
an action, both expressed as goals. The agent processes
such a desire in order to figure out whether it can be
promoted to an intention or not, according to the process-
ing described in section VI-B. If it can, a corresponding
internal event is created, put in the event queue, and then
considered at the step (2) in one of the following cycles.
Then, the corresponding intended means is built and
nested inside the one that contains the above-mentioned
desire invocation.

After executing the nested intended means, if the agent
does not believe that the goal has succeeded, the desire

act will fail; otherwise, the goal will be satisfied and the EEEENTES
act will succeed.

o wait for external messagedy specifying an abstract
structure (a template) of them. Thus, as soon as a messag
is received by the agent, if the message matches the
template, this intended means can continue its execution;

o wait for successful goalswhich lets the agent syn-
chronize its activities with other intended means, but at
the goal level. In other words, there is not an explicit
synchronization among plans or intended means. Instead
some intended means and their executing plans can be
directly synchronized with some ends (the intentions).

Several other acts are provided in PRACTIONIST in order — s ”T\
to support the developers in actually implementing efecti
plans.

Fig. 9. The intended final situation in the blocks world peshl
B. The Deliberation Process

In the PRACTIONIST framework, a goal is an objective . o . .
Hg)se goalsz will remain just a desire and the agent will not

to pursue and we refer to it as an abstraction to make ft} tend” it. On the other hand. if th i . istent
distinction between the state of affairs to be achieved anfco 't N the other hand, ITthe goat IS not inconsisten

the way to achieve it. Besides, we use goals as a me\%(pih active goals, fchen it can be promoted to_iatention
to transform desires into intentions through the satigact Ut Pefore moving to means-ends reasoning, the agent

of some properties during the deliberation phase. Thus,"m” check if it believes that the goalf has already succeeded

PRACTIONIST two families of goals were defined, as follows?" If the goalG is entailed by some of current active goals.

. state goals which refer to some states of affairs theIf so, there is no reason to really pursue the goal, that is the

agent desires/intends to bring about, or cease, or preserax‘/(t]—:*ent does not need to make any means-ends reasoning to

or avoid. We provided PRACTIONIST agents with th flgu_re out how to achieve such a_goal, gls_e the_agent wil try
. . . . to figure out a set of plans to achieve this intention, anddbuil
capability of managing and reasoning about the followml%e intended means, as explained in section VI

state goalsachieve which represents what kind of world
state to bring aboutease(as opposed to achieve), which
represents a world state an agent wants to stapntain
which has the purpose to observe some world state andn this paper we presented PRACTIONIST, a framework
continuously re-establish this state when it does not holde have been developing for the implementation of agents
avoid (as opposed to maintain), which has the purpose &cording to the BDI model of agency.
observe some world state and continuously prevent it; PRACTIONIST implements the practical reasoning pro-
« perform goalswhich are not related to some world stateposed by Bratmam, trying to provide developers with usable
but to some actions the agent desires/intends to perforatstractions and processing capabilities. In this diective
In our framework states of affairs are represented by closeglieve that with respect to some of existing BDI agent im-
formulas of the FOL. Moreover, for each type of state goalglementations, our approach provides a more clear separati
PRACTIONIST defines a success condition formula which i§etween the ends the agent wishes/wants to bring about and
in turn, defined by a modal logic closed formula that depen#f3e means to do it. As a matter of fact, referring to the blocks
on its state of affairs. world example, the agent is mainly programmed in terms of
We also defined the properties ofconsistencyand en- states to achieve instead of actions to perform, according t
tailment for goals. More precisely, we define a godl as the philosophy of our framework. The figure 9 shows the final
inconsistenwith a goalG. if and only if whenG, succeeds, situation of blocks (the endshtendedand pursued by the
then G, fails. On the other hand, a go&!; entailsa goalG, agent through its plans (the means).
(or equivalentlyG, is entailed byG,) if and only if whenG; Moreover, our framework provide a very expressive way
succeeds, then alsG, succeeds. to represent and reasoning about beliefs through modat logi
These properties of goals are used by PRACTIONISormulas.
agents when reasoning about goals during the deliberationVe also presented the PRACTIONIST Agent Introspection
phase. Tool (PAIT), which supports the developer in the debugging
Thus, as described in section VI-A, an agentnay have of agents according to our model. We argue that such a tool
the desireto pursue a goals. Before committing to it, the is important especially when defining BDI agents in real case
agent will check if the goalz is inconsistent with some of scenarios and in complex environments, due to the intrinsic
currentactive goalswhich are those goals the agent is alreadyeclarative nature of mental attitudes when compared to the
committed to. Then, ifG is inconsistent with at least one ofadopted imperative programming languages.

VIl. CONCLUSIONS ANDFUTURE WORK

However, some further work should be done with respect
to the several issues that a BDI model involves. Among them,
our intention is to improve the execution flow by adding some
functionalities like timing, new acts, and so on, that could
help in the successful application of our framework in real
problems.

ACKNOWLEDGMENT

This work is partially supported by the Italian Ministry
of Education, University and Research (MIUR) through the
project PASAF.

REFERENCES

[1] A. S. Rao and M. P. Georgeff, “Modeling rational agentsthivi a
BDI-architecture,” inProceedings of the 2nd International Conference
on Principles of Knowledge Representation and Reasonind\llen,
R. Fikes, and E. Sandewall, Eds. Morgan Kaufmann publishers
Inc.: San Mateo, CA, USA, 1991, pp. 473-484. [Online]. Azhie:
http://citeseer.nj.nec.com/rao91modeling.html

[2] M. E. Bratman,Intention, Plans, and Practical Reason Cambridge,
MA: Harvard University Press, 1987.

[8] G. Weiss, Ed., Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence MIT Press, 1999. [Online].
Available: http://jmvidal.cse.sc.edullibrary/WeissBbo

[4] M. P. Georgeff and A. L. Lansky, “Reactive reasoning aranping,”
in Proc. of AAAI-87 Seattle, WA, 1987, pp. 677-682.

[5] M. d'Inverno, D. Kinny, M. Luck, and M. Wooldridge, “A fanal
specification of dMARS,” ser. LNAI, M. P. Singh, A. Rao, and NL
Wooldridge, Eds., vol. 1365. Springer, 1997, pp. 155-176.

[6] J. Lee, M. J. Huber, P. G. Kenny, and E. H. Durfee, “UM-PRSt
Implementation of the Procedural Reasoning System for Mditit
Applications,” in Conference on Intelligent Robotics in Field, Factory,
Service, and Space (CIRFFS$Jouston, Texas, 1994, pp. 842-849.
[Online]. Available: citeseer.ist.psu.edu/lee94umprslh

[7] M. J. Huber, “Jam: A bdi-theoretic mobile agent architeettiin Agents
1999, pp. 236-243.

[8] M. Dastani, F. de Boer, F. Dignum, W. van der Hoek, M. Krqesed

J.-J. Meyer, “Implementing cognitive agents in 3APL,” pp. 5356.

F. Bellifemine, A. Poggi, and G. Rimassa, “JADE - a FIPA-

compliant agent framework,” inProceedings of the Practical

Applications of Intelligent Agents 1999. [Online]. Available:

http://jmvidal.cse.sc.edu/library/jade.pdf
[10] L. Braubach, A. Pokahr, and W. Lamersdorf, “Jadex: A sboerview,”
in Main Conference Net.ObjectDays 202004, pp. 195-207.

[11] P. Busetta, R. Rnnquist, A. Hodgson, and A. Lucas, “Jat&lligent
agents - components for intelligent agents in java,” 1999.

[12] B. F. ChellasModal Logic: An Introduction Cambridge: Cambridge
University Press, 1980.

[13] “FIPA Abstract Architecture Specification,”
http://www.fipa.org/specs/fipa00001/, August 2001.

[14] “Jakarta Log4J Homepage,” http://jakarta.apachd@ygj/. [Online].
Available: http://jakarta.apache.org/log4j/

[9

