
PRACTIONIST:
implementing PRACTIcal reasONIng sySTems

Vito Morreale∗, Susanna Bonura∗, Fabio Centineo∗,
Alessandro Rossi∗, Massimo Cossentino† and Salvatore Gaglio†‡

∗R&D Laboratory - ENGINEERING Ingegneria Informatica S.p.A.
†ICAR-Italian National Research Council

‡DINFO-University of Palermo

Abstract— One of the best known approaches to the devel-
opment of rational agents is the BDI (Belief-Desire-Intention)
architecture. In this paper we propose a new framework,
PRACTIONIST (PRACTIcal reasONIng sySTem), to support the
development of BDI agents in Java (using JADE) with a Prolog
belief base.

In PRACTIONIST we adopt a goal-oriented approach with
a clear separation between the deliberation and the means-ends
reasoning, and then between the states of affairs to pursue and
the way to do it. Besides, PRACTIONIST allows developers to
implement agents that are able to reason about their beliefs and
the other agents’ beliefs, expressed by modal logic formulas.

Our approach also includes a specific tool that provides
the developer with the possibility to effectively monitor the
components involved in the execution cycle of an agent.

I. I NTRODUCTION

The Belief-Desire-Intention (BDI) architecture [1] derives
from the philosophical tradition of practical reasoning first
developed by Bratman [2], which states that agents decide,
moment by moment, which actions to perform in order to
pursue their goals. Practical reasoning involves two processes:
(1) deliberation, to decide what states of affairs to achieve;
and (2)means-ends reasoning, to decide how to achieve these
states of affairs. Besides, in such a theory intentions are
important, as they influence the selection of the actions to
perform.

In the context of rational agents, the BDI model appears
very attractive, because the abstractions of belief, desire and
intention are quite intuitive. Moreover the model provides
a clear functional decomposition that indicates what sort of
subsystems might be required to build an agent. Nevertheless,
the development of this abstract architecture involves several
issues in efficiently implementing the deliberation process and
the means-ends reasoning [3].

Moreover, since the BDI agent model suggests a declarative
approach to represent the internal states, the debugging of
BDI agents, the effective observation of their mental attitudes
and execution flow are critical and difficult activities. Thus,
having some development and debugging tools is crucial when
implementing BDI agents, especially in real case scenariosor
complex application domains.

Actually, several concrete implementations of the most
known BDI agent architecture, the Procedural Reasoning Sys-
tem (PRS) developed by Georgeff and Lansky [4], have been

proposed in the literature. Among them, it is worth mentioning
dMARS [5] developed at the Australian AI Institute, the UM-
PRS implemented in C++ at the University of Michigan [6],
and JAM [7], a Java version of PRS.

In order to enable the testing of BDI agents, the 3APL
platform [8], an experimental multiagent platform, provides a
graphical interface by which designers can develop, execute,
and monitor the agents. JADEX, an add-on to the JADE
platform [9] that supports the development of BDI agents,
provides two tools as a support of the JADE introspector
agent: thedebugger, which allows the visualization and re-
configuration of the internal BDI concepts, and thelogger
agent, which allows developers to detect the agent’s sequence
of outputs [10]. Finally, the JACK software [11], a commercial
suite of tools with a programming language that extends the
Java language with BDI features, provides an agent debugging
environment, which allows inspection of messages and the
internal execution states.

In several PRS-related BDI implementations, mental states,
deliberation, and means-ends reasoning, when actually imple-
mented, somewhat differ from their original meaning. As an
example, often executing plans are considered as intentions.
But intentions should be related to ends, while plans should
be related to means to achieve such ends.

PRACTIONIST (PRACTIcal reasONIng sySTem) is a new
framework we have been developing, which adopts a goal-
oriented approach and stresses the separation between the
deliberation process and the means-ends reasoning. Indeed,
the abstraction of goal is used to formally define both desires
and intentions during the deliberation phase. Unlike some of
existing BDI implementations, in our approach we actually
adopt the plans as recipes to achieve the intentions. Besides,
PRACTIONIST allows developers to implement agents that
are able to reason about their beliefs and the other agents’ (in-
cluding humans’) beliefs, since beliefs are not simple grounded
literals or data structures but modal logic formulas [12].

Finally, our framework provides the developer with the
PRACTIONIST Agent Introspection Tool, to entirely and eas-
ily monitor the components involved in the execution cycle of
an agent. Throughout this paper we show how PRACTIONIST
agents actually work by means of snapshots of our monitoring
tool and through the well-knownblocks worldexample. In this
simple case study, we developed ablocks world agent, which,

Fig. 1. An initial situation for the blocks world problem.

starting from an initial situation (see figure 1), is requested
(through an ACL message) to order some numbered blocks.

This paper is organized as follows: in section II we give
a brief overview of the PRACTIONIST framework and the
agent model; then in sections III to V we provide a brief
description of the main agent components; finally in section
VI we describe the execution flow of PRACTIONIST agents
referring to their previously described components.

II. T HE PRACTIONIST FRAMEWORK: AN OVERVIEW

The PRACTIONIST framework aims at supporting the
programmer in developing agents(i) endowed with a symbolic
representation about their internal states and environment, (ii)
able to plan their activities in order to pursue some objectives,
and(iii) provided with both proactive and reactive behaviours.

PRACTIONIST has been designed on top of JADE, a
widespread platform that implements the FIPA specifications
[13] and provides some core services, such as a communica-
tion support, interaction protocols, life-cycle management, and
so forth. Therefore, the PRACTIONIST agents are executed
within JADE containers and the main cycle is implemented
by means of a JADE cyclic behaviour.

In PRACTIONIST, an agent is a software component with
the following elements:(i) a set ofperceptorsable to listen
to some relevant perceptions;(ii) a set of beliefs, which
represents the information the agent has got about both its
internal state and the external world;(iii) a set of goals,
which are some objectives related to some states of affairs
to bring about or actions to perform;(iv) a set ofplans that
are the means to achieve its intentions;(v) a set ofactionsthe
agent can perform to act over its environment;(vi) and a set
of effectorsthat actually support the agent in performing its
actions. The main components of PRACTIONIST agents are
described in more details in the following sections.

The framework also provides developers with the PRAC-
TIONIST Agent Introspection Tool (PAIT), a visual integrated
monitoring and debugging tool, which supports the analysisof
the agent’s state during its execution. In particular, the PAIT
can be suitable to display, test and debug the agents’ relevant
entities and execution flow. Each of these components can
be observed at run-time through a set of specific tabs (see
figure 2); the content of each tab can be also displayed in an
independent window.

All the information showed at run-time could be saved
in a file, providing the programmer with the possibility to
perform an off-line analysis. Moreover, the PAIT provides a
dedicated area for log messages inserted in the agent source
code, according to the Log4j approach [14]. The usage of
this console and the advantages it provides are described in
more details in the following sections along with the agent’s
components.

III. B ELIEFS

In general, the BDI model refers to beliefs instead of
knowledge, as agents’ information about the world is usually
incomplete or incorrect, due to uncertainty and problems
with perceptions and communication in their dynamic and
possibly unpredictable environment [1]. Indeed,beliefsare not
necessarily true, whileknowledgeusually refers to something
that is definitely true [12]. According to this, an agent may
believe true something that is false from another agent’s and/or
the designer’s point of view, but in the BDI model the idea is
just to provide the agents with a subjective window onto the
world.

The PRACTIONIST framework adopts the common ap-
proach of modeling agents’ beliefs by thedoxastic modal
logic, which is based on the axioms K, D, 4, and 5 (see [12]
for more details). Thus, in our framework beliefs are expressed
through the modal operatorBel(α,ϕ), whose arguments are
the agentα (the believer) and what it believes (ϕ, the fact).
Each factϕ may be believed true or false by a PRACTIONIST
agentα, i.e.:

• Bel(α,ϕ): the agentα believes thatϕ is true;
• Bel(α,¬ϕ): the agentα believes thatϕ is false.
Moreover, in order to assert that the agentα does not have

any belief aboutϕ, we defined the following operator:

Ubif(α,ϕ) ⇔ ¬Bel(α,ϕ) ∧ ¬Bel(α,¬ϕ)

Each fact can either be a closed formula of the classical
modal logic or a belief of any agent. In other words, an agent
may believe something (e.g. ‘it is possible that it is raining
in Rome’), or havenested beliefs, that is it may believe that
some agent (even itself) believes something (e.g. ‘the agent
Jim believes that it is raining in Rome’).

Finally, in PRACTIONIST agents it is possible to link an
agent’s beliefs to others’ beliefs or other elements, obtaining
new entailed beliefs, through thebelief formulas(BFs). An
example of belief formula follows:

Bel(tom,Bel(john, raining)) ∧ Bel(tom, trust(who :
john)) ⇒ Bel(tom, raining)

Therefore BFs define relationships among two or more beliefs,
allowing to infer new beliefs not explicitly asserted.

In regards to the architectural aspects, each PRACTIONIST
agent is endowed with a Prolog belief base, where beliefs
are asserted, removed, or entailed through the inference on
the basis of KD45 rules and user-defined belief formulas.
Therefore, in any moment the agent’s belief set (BS) is
composed of the beliefs that have been both directly asserted

Fig. 2. The PRACTIONIST Agent Introspection Tool (PAIT).

Fig. 3. The belief base view of PAIT.

and inferred by means of the BFs and the other built-in
theorems.

Referring to the blocks world example, the initial set up
of the blocks shown in figure 1 is graphically represented
in PAIT in terms ofBels andUbif s (figure 3). As it can be
noticed, the structure of the belief base is represented as atree,
whose root refers to the current agent (i.e.self) and nodes refer
to the believed facts. This structure lets the developer easily
explore the belief base and select groups of beliefs ranging
from the whole belief set (by selecting the root) to a specific
belief (by selecting the corresponding leaf). Between themthe

developer can choose an intermediate node in order to select
the corresponding set of beliefs that share the same prefix.

Moreover, the icon of nodes represents the type of believed
facts, such aspredicateor modal logic formula(P), Bel (B),
Ubif (U), while the color represents their truth value, that is
true (green) andfalse (red).

As an example, selecting the node related to the agentpippo,
the beliefs with

Bel(self, not(bel(pippo,

as prefix will be detailed on the right frame, as shown in figure

3. On the other hand, if the developer selects the leaf related
to the agentpluto within the above-mentioned node, PAIT will
show only the belief

Bel(self, not(Bel(pippo,Bel(pluto, on(under :
table1, over : block3)))))

It should be also noticed that this feature of the console is
very useful when developing and testing agents, as it provides
the user with a real-time snapshot of the agent’s information
attitudes.

IV. PLANS

In the PRACTIONIST framework plans represent an im-
portant container by which developers define the actual be-
haviours of agents. Therefore, each agent may own a declared
set of plans (theplan library), which specify the activities the
agent should undertake in order to pursue its intentions, or
to handle incoming perceptions, or to react to changes of its
beliefs.

Though the structure of plans can be defined by Java classes,
the preferred approach relies on a declarativeplan description,
which specifies the complete set of information (theplan slots)
used when actually executing the plans, as described in section
VI. The complete list of such slots is reported in table I.

Thus, a plan represents a possible recipe to manage the
trigger event; it may be related to a goal, an external event,
or an event which notifies a change of the belief set. How
to actually handle a certain event is reported within the body,
which is anactivity, that is a set ofacts, such asdesiring to
bring about some states of affairs or to perform some action,
addingor removingbeliefs,sendingACL messages,doing an
action and so forth.

It should be noticed that acts and actions are different, as
one of the possible acts concerns with doing an action that
lets the agent influence the environment, while other acts may
produce internal effects only.

Regarding to the blocks world running example, one of the
developed plans is theTopLevelPlan, which provides the agent
with the capability of receiving and handling the request for
ordering the blocks. In section VI we illustrate how the plans
and their components are used during the execution flow and
how the execution of plans affects the overall behaviour of
PRACTIONIST agents.

V. ACTIONS

In PRACTIONIST, actions are described by tuples of four
elements: (1)arguments, which are the objects each action
acts over; (2)results, which are some kind of direct re-
sponses received from the environment; (3)preconditions,
which should be satisfied before executing the action; and
(4) effects(for both successfully and failing action execution),
which are the state of affairs that will be true or false after
executing the action (as long as preconditions are satisfied). It
should be noticed that arguments and results are objects, while
preconditions and effects are modal logic closed formulas.

TABLE I

THE STRUCTURE OFPRACTIONISTPLANS.

Identifier Unambiguous (within each agent)
identifier of plans

Trigger event If this event matches the selected
event, this plan can be activated.
In this case the plan is defined
aspractical

Context A modal logic formula that, when
believed true by the agent,
makesapplicablea practical
plan, so that the agent can select
it to pursue its objectives

Success condition When the agent believes that this
condition holds, the plan ends
with success, regardless its
execution state

Cancel condition When the agent believes that this
condition holds, the plan ends
with failure, regardless its
execution state

Body Set of acts that are performed
during the execution of the plan.
The body defines the actual
behaviour of the plan

Invariant Condition that must remain true
during the execution of the plan.
As soon as it becomes false (at
least according to the agent’s point
of view), it will try to restore it

Belief updates Effects of this plan, in terms of
in case of success belief updates in case the plan

ends with success
Belief updates Effects of this plan, in terms of

in case of failure belief updates in case the plan
ends with failure

Actions are implemented in PRACTIONIST through Prolog
structures or Java classes that include the above-mentioned
elements. An example of action description from the blocks
world agent follows:

action(move(block: Block, to: To),
inputs: [Block, To],
outputs: [],
preconditions:
[on(over: Block, under: From),

clear(obj: To), clear(obj: Block)],
success:
[-clear(obj: To),

-on(over: Block, under: From),
+clear(obj: From),
+on(over: Block, under: To)],

failure: [])

It states that the actionmove takes two arguments as
inputs (respectively the block to move and the block where
it is moved over). Moreover, preconditionson(over :
Block, under : From), clear(obj : To), and clear(obj :
Block) must be satisfied before performing the action in order
to have a proper execution. Finally, once the action has been
executed, in case of success the agent will believe that both
clear(obj : To) and on(over : Block, under : From) are
false, while it will believe that bothclear(obj : From) and

Fig. 4. An example of plan description: theTopLevePlan.

on(over : Block, under : To) are true. Otherwise, in case of
failure in executing the action, no update of the agent’s beliefs
has to be done.

Planning attitudes and the decision making of PRACTION-
IST agents will rely on action description information, espe-
cially preconditions and effects.

VI. EXECUTION FLOW

In this section, we present the execution flow of PRAC-
TIONIST agents in terms of relationships among the abstrac-
tions described above. Referring to figure 5, an agent cyclically
performs the following steps:

1) it searches for stimuli from the environment through the
perceptors that transform perceptions intoevents(we call
them external events), which in turn are put into the
Event Queue(in figure 6 a snapshot of the events tab
of PAIT is shown), along withinternal events (those
generated by belief updates or goal commitments).
In the PRACTIONIST console, the user could examine
the current, the suspended and the handled events. Each
event is tagged by some information about its arrival
time and when it has been actually handled.
Referring to the blocks world example, the agent will
receive an ACL message, by which another agent re-
quests it for putting the blocks in a specified order (see
the selected message in figure 2). This component of
the PAIT deals with the interactions established with
other agents: all incoming and outgoing messages are
registered in a single table, even though a complete de-
scription of messages can be shown in a different dialog
box whose structure reflects the well-known FIPA ACL
message. Besides, the messages can also be ordered (e.g.
by their arrival time, direction, etc.) or filtered according
to the relative performative;

2) it selects and extracts an event from the queue (Event
Selection). In the blocks world example, let us suppose
that the event corresponding to the above-mentioned

received message is extracted from the queue and then
handled as follows;

3) it selectspractical plans from thePlan Library, which
are those plans whose trigger event matches the selected
event (Optionsin figure 5); if the selected event is related
to a goal and no plan has been triggered, an automatic
planning is performed on the basis of available action de-
scriptions in order to build a new dynamically-generated
plan, which is able to pursue that goal (Planning in
figure 5). If the planner is not able to figure out any
plan, the calling plan will fail, then the selected event
will have not been successfully managed. As stated, in
the blocks world example we have defined a plan (i.e.
TopLevelP lan) that will be activated by the above-
mentioned message, as it has the following trigger event:

msg(request
(action
(agent-identifier :name bwa@foo.com)
(order(blocks: BlockList))))

Once the plan is triggered, the following substitution is
made:

BlockList = [table3, block1, block2,
block3, ..., block8,
block9, block10]

4) among practical plans, the agent detects theapplicable
ones, which are those plans whose context is believed
true by the agent. Then the agent builds the intended
means (Build Intended Means), which represents the
means the agent has just chosen and committed to in
order to satisfy a goal, or to react to a perception or a
change in its beliefs. Therefore, the intended means will
contain the main plan and the other alternative practical
plans (see figure 7).
If the event selected at the step (2) concerns with a
goal, this means that some executing intended means
has generated it after the deliberation phase (see below).
Thus, the selected plan is put on top of such an intended
means (figure 7a). On the other hand, in case of external
events or belief update events, a new intented means
stack is created (figure 7b).
The set of intended means stacks is monitored by means
of a corresponding tab in PAIT (figure 8), which shows
nested intended means through a tree data structure, used
as an explorer to select the ones to trace. In particular,
once an intended means is selected, its log messages
(managed inside the plan’s source code by the developer)
will be shown in the frame on the right, along with
the logs of nested intended means. The PRACTIONIST
console makes the process of building intended means
stacks easy to follow, providing the users with the
opportunity to examine the entire means-ends reasoning;

5) all intended means stacks are concurrently executed in
separate threads. In other words, the main plan at the
top of each stack is extracted and then executed (see
Execute intended meansin figure 5). In section VI-A
we provide more details on the execution of plans in
PRACTIONIST agents, in terms of the several kind of

Fig. 5. PRACTIONIST agent architecture.

Fig. 6. The event queue view of PAIT.

Fig. 7. Building of intended means stacks: a) the new intendedmeans is put on top of executing stack; b) the new intended meansis put in a new stack.

Fig. 8. Intended Means View.

acts the framework provides.
During the execution of the main plan, if the agent
believes that its success condition (see table I) holds, that
plan ends with success regardless its execution point and
state. On the other hand, if the agent believes that the
cancel condition is true, the plan ends with failure. Thus,
referring to theblocks world agentand theTopLevelPlan
described in figure 4, if during the execution of such
a plan the required final order of blocks is achieved
(for example due to some external reasons, e.g. other
agents do the work of ordering the blocks), the agent will
stop executing the plan, being successful in achieving its
goal. Likewise, if the agent suddenly believes that the
predicateordering is false, it will stop executing the
plan, but in this case failing in pursuing its objectives.
Moreover, while executing the plan the agent checks the
condition to be maintained (e.g.ableToOrder(who :
self) in figure 4): if it is believed false, the agent will
try to bring it about, by desiring and possibly intending
to achieve it. If the agent succeeds in doing that, the
plan will continue executing, otherwise it will fail. When
the plan has completed its execution, the agent will
update some beliefs, according to whether the plan has
succeeded or not.

It should be noted that, when the executing plan fails, since
a PRACTIONIST agent has a strong commitment to handling
the selected event, it selects another plan from the above-
mentioned alternative practical plans and checks whether it is
applicable or not. Then, if some other applicable plan exists,
the agent replaces the failed plan with it (which becomes the
new main plan) in the executing intended means; otherwise,
the whole intended means fails and in turn the plan below fails
too.

A. Executing Plans

While executing its plans, the agent will have different
behaviours according to the type of acts. The plans in turn will
fail as soon as one of such acts fails. Some of the possible
acts a PRACTIONIST agent can manage are:

• do an action: if its preconditions are satisfied (at least
according to the agent’s beliefs), the agent executes the
action with the proper inputs and gets both the outputs
and the general overcome of the action (that can betrueor
false). If the preconditions are not satisfied or the outcome
is false, the action fails. Finally, the effects of such an
action are applied to the belief base after the execution.
It should be noted that actions are actually executed by
some effectors. Thus, the agent will search for a proper
effector that is able to execute an action and then delegate
the actual execution to it;

• add or removebeliefs: as soon as it is executed, the
correspondingbelief updated eventis generated. This
event will be then handled in the following cycles;

• queryover the belief base according to several criterion;
• send an ACL messageto other agents;
• desire to bring about some state of affairs or perform

an action, both expressed as goals. The agent processes
such a desire in order to figure out whether it can be
promoted to an intention or not, according to the process-
ing described in section VI-B. If it can, a corresponding
internal event is created, put in the event queue, and then
considered at the step (2) in one of the following cycles.
Then, the corresponding intended means is built and
nested inside the one that contains the above-mentioned
desire invocation.
After executing the nested intended means, if the agent
does not believe that the goal has succeeded, the desire

act will fail; otherwise, the goal will be satisfied and the
act will succeed.

• wait for external messages, by specifying an abstract
structure (a template) of them. Thus, as soon as a message
is received by the agent, if the message matches the
template, this intended means can continue its execution;

• wait for successful goals, which lets the agent syn-
chronize its activities with other intended means, but at
the goal level. In other words, there is not an explicit
synchronization among plans or intended means. Instead,
some intended means and their executing plans can be
directly synchronized with some ends (the intentions).

Several other acts are provided in PRACTIONIST in order
to support the developers in actually implementing effective
plans.

B. The Deliberation Process

In the PRACTIONIST framework, a goal is an objective
to pursue and we refer to it as an abstraction to make the
distinction between the state of affairs to be achieved and
the way to achieve it. Besides, we use goals as a mean
to transform desires into intentions through the satisfaction
of some properties during the deliberation phase. Thus, in
PRACTIONIST two families of goals were defined, as follows:

• state goals, which refer to some states of affairs the
agent desires/intends to bring about, or cease, or preserve,
or avoid. We provided PRACTIONIST agents with the
capability of managing and reasoning about the following
state goals:achieve, which represents what kind of world
state to bring about;cease(as opposed to achieve), which
represents a world state an agent wants to stop;maintain,
which has the purpose to observe some world state and
continuously re-establish this state when it does not hold;
avoid (as opposed to maintain), which has the purpose to
observe some world state and continuously prevent it;

• perform goals, which are not related to some world states
but to some actions the agent desires/intends to perform.

In our framework states of affairs are represented by closed
formulas of the FOL. Moreover, for each type of state goals,
PRACTIONIST defines a success condition formula which is,
in turn, defined by a modal logic closed formula that depends
on its state of affairs.

We also defined the properties ofinconsistencyand en-
tailment for goals. More precisely, we define a goalG1 as
inconsistentwith a goalG2 if and only if whenG1 succeeds,
thenG2 fails. On the other hand, a goalG1 entailsa goalG2

(or equivalentlyG2 is entailed byG1) if and only if whenG1

succeeds, then alsoG2 succeeds.
These properties of goals are used by PRACTIONIST

agents when reasoning about goals during the deliberation
phase.

Thus, as described in section VI-A, an agentα may have
the desire to pursue a goalG. Before committing to it, the
agent will check if the goalG is inconsistent with some of
currentactive goals, which are those goals the agent is already
committed to. Then, ifG is inconsistent with at least one of

Fig. 9. The intended final situation in the blocks world problem.

those goals,G will remain just a desire and the agent will not
”intend” it. On the other hand, if the goalG is not inconsistent
with active goals, then it can be promoted to anintention.

But before moving to means-ends reasoning, the agentα

will check if it believes that the goalG has already succeeded
or if the goalG is entailed by some of current active goals.
If so, there is no reason to really pursue the goal, that is the
agent does not need to make any means-ends reasoning to
figure out how to achieve such a goal, else the agent will try
to figure out a set of plans to achieve this intention, and build
the intended means, as explained in section VI.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper we presented PRACTIONIST, a framework
we have been developing for the implementation of agents
according to the BDI model of agency.

PRACTIONIST implements the practical reasoning pro-
posed by Bratmam, trying to provide developers with usable
abstractions and processing capabilities. In this direction, we
believe that with respect to some of existing BDI agent im-
plementations, our approach provides a more clear separation
between the ends the agent wishes/wants to bring about and
the means to do it. As a matter of fact, referring to the blocks
world example, the agent is mainly programmed in terms of
states to achieve instead of actions to perform, according to
the philosophy of our framework. The figure 9 shows the final
situation of blocks (the ends)intendedand pursued by the
agent through its plans (the means).

Moreover, our framework provide a very expressive way
to represent and reasoning about beliefs through modal logic
formulas.

We also presented the PRACTIONIST Agent Introspection
Tool (PAIT), which supports the developer in the debugging
of agents according to our model. We argue that such a tool
is important especially when defining BDI agents in real case
scenarios and in complex environments, due to the intrinsic
declarative nature of mental attitudes when compared to the
adopted imperative programming languages.

However, some further work should be done with respect
to the several issues that a BDI model involves. Among them,
our intention is to improve the execution flow by adding some
functionalities like timing, new acts, and so on, that could
help in the successful application of our framework in real
problems.

ACKNOWLEDGMENT

This work is partially supported by the Italian Ministry
of Education, University and Research (MIUR) through the
project PASAF.

REFERENCES

[1] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a
BDI-architecture,” inProceedings of the 2nd International Conference
on Principles of Knowledge Representation and Reasoning, J. Allen,
R. Fikes, and E. Sandewall, Eds. Morgan Kaufmann publishers
Inc.: San Mateo, CA, USA, 1991, pp. 473–484. [Online]. Available:
http://citeseer.nj.nec.com/rao91modeling.html

[2] M. E. Bratman,Intention, Plans, and Practical Reason. Cambridge,
MA: Harvard University Press, 1987.

[3] G. Weiss, Ed., Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence. MIT Press, 1999. [Online].
Available: http://jmvidal.cse.sc.edu/library/WeissBook/

[4] M. P. Georgeff and A. L. Lansky, “Reactive reasoning and planning,”
in Proc. of AAAI-87, Seattle, WA, 1987, pp. 677–682.

[5] M. d’Inverno, D. Kinny, M. Luck, and M. Wooldridge, “A formal
specification of dMARS,” ser. LNAI, M. P. Singh, A. Rao, and M.J.
Wooldridge, Eds., vol. 1365. Springer, 1997, pp. 155–176.

[6] J. Lee, M. J. Huber, P. G. Kenny, and E. H. Durfee, “UM-PRS:An
Implementation of the Procedural Reasoning System for Multirobot
Applications,” in Conference on Intelligent Robotics in Field, Factory,
Service, and Space (CIRFFSS), Houston, Texas, 1994, pp. 842–849.
[Online]. Available: citeseer.ist.psu.edu/lee94umprs.html

[7] M. J. Huber, “Jam: A bdi-theoretic mobile agent architecture.” in Agents,
1999, pp. 236–243.

[8] M. Dastani, F. de Boer, F. Dignum, W. van der Hoek, M. Kroese, and
J.-J. Meyer, “Implementing cognitive agents in 3APL,” pp. 515–516.

[9] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE - a FIPA-
compliant agent framework,” inProceedings of the Practical
Applications of Intelligent Agents, 1999. [Online]. Available:
http://jmvidal.cse.sc.edu/library/jade.pdf

[10] L. Braubach, A. Pokahr, and W. Lamersdorf, “Jadex: A short overview,”
in Main Conference Net.ObjectDays 2004, 9 2004, pp. 195–207.

[11] P. Busetta, R. Rnnquist, A. Hodgson, and A. Lucas, “Jackintelligent
agents - components for intelligent agents in java,” 1999.

[12] B. F. Chellas,Modal Logic: An Introduction. Cambridge: Cambridge
University Press, 1980.

[13] “FIPA Abstract Architecture Specification,”
http://www.fipa.org/specs/fipa00001/, August 2001.

[14] “Jakarta Log4J Homepage,” http://jakarta.apache.org/log4j/. [Online].
Available: http://jakarta.apache.org/log4j/

