Chapter 1

ROADMAP OF AGENT-ORIENTED SOFTWARE
ENGINEERING

The European AgentLink Perspective

Zahia Guessoum

OASIS (Object and Agents for Simulation and Information Systems) Team
LIP6 (Laboratoire d’Informatique de Paris), Université de Paris 6
Zahia.Guessoum@lip6.fr

Massimo Cossentino
Istituto di Calcolo e Reti ad Alte Prestazioni
Italian National Research Council

cossentino@pa.icar.cnr.it

Juan Pavén
Dep. Sistemas Informdticos y Programacion
Universidad Complutense Madrid

jpavon@sip.ucm.es

Abstract To promote the success of the agent technology the software engineer-
ing viewpoint should be rapidly addressed. This chapter analyses the
existing approaches and discusses the future of agent technology from
the software engineering viewpoint. It first highlights the properties of
this new concept. It analyses then the existing methods and tools that
have been introduced to facilitate the development of multi-agent sys-
tems. Finally, some promising applications areas are presented and a
Roadmap for AOSE is introduced.

Keywords: Agent, Software Engineering, Design, Implementation, Deployment, Ver-
ifiaction, Validation.

2

Introduction

Success of agent technology can be discussed from different perspec-
tives. From the point of view of the software engineer, the agent paradigm
will be accepted if it solves development problems (this means, improve
the development process or allow the implementation of applications
that otherwise would be difficult to built). Users, on their side, are
only interested on services, and they do not care too much about the
underlying technology, so agent technology would be of concern only
if it allows the deployment of new services with some added-value (for
instance, personalization). Agent technology, however, can facilitate re-
quirements elicitation, which involves both users and developers, because
the communication between them can improve, as agent concepts are,
in principle, easier to understand by users than those common in the
computer jargon.

But the final decision to invest in agent technology corresponds to
managers. These can consider such investment if the new technology pro-
vides cost-efficient solutions and further business opportunities. Adop-
tion of agent technology, as any novelty, implies some risks, as it requires
changes in processes and tools. At this point we meet again software en-
gineers. They are the key for the change, so they should be able to
evaluate, experiment, promote, and argue to convince their managers to
invest. In this sense we are conscious that we have to provide substan-
tial advantages of the approach to the software engineers community,
and this will only happen if we show that it will clearly improve their
activities, productivity, and creativity.

With this goal in mind, this chapter discusses the future use of agent
technology from the software engineering viewpoint, addressing several
issues: the agent paradigm as modeling technique, its associated anal-
ysis and design methods, supporting tools for development, validation
and testing techniques, platforms for deployment of agent systems, and
areas of application that can gain substantially from adopting an agent-
based approach. It also describes the AgentLink roadmap (Luck et al.,
2003) for the adoption of agent technology, whilst co-existing with cur-
rent practices, services and infrastructures. As it has been described
in the rest of the book, there is already experience in developing agent-
based systems, and there is also some effort in defining methodologies for
building software using the agent paradigm. After around a decade of
these experiences, the question now is whether software developers can
adopt the agent approach for software development and how to integrate
this with current practices (e.g., object-oriented and component based
software). This has associated many concrete questions that we address

Roadmap of Agent-Oriented Software Engineering 3

in the following sections: Are there needs that current practices do not
fully satisfy? How can agent-based solutions improve the software de-
velopment process? Are there standards? Are there working systems of
agents in the net? What do they do? Where can be found those agents?
Can we buy software agents? How much do agent-based systems cost (in
terms of deployment, integration, tools, learning, etc.)? Some answers
are described in previous chapters of this book. Here we integrate some
of these results to present a vision of what the future of agent-based
computing and specifically of agent-oriented software engineering will
be.

This chapter organizes the discussion as follows. Firstly, in Section
1 we overview those features that make the agent concept interesting
for modeling complex systems, and in this perspective it is possible to
consider it as an evolution of object and component based approaches.
Given this, in Section 2 we consider how this is applied along the devel-
opment lifecycle, from a methodological perspective. In concrete, we are
considering the FIPA proposal for the future in MAS design. Section
3 follows with a description of significant tools for implementation, de-
ployment and execution of agents. Tools, in fact, determine the maturity
of the technology, so they can provide a good picture of the evolution
and degree of adoption of the agent paradigm. The opportunities for
using agent technology are the subject of Section 4, where some promis-
ing application areas are reviewed as candidates for making profit of
this technology. Section 5 takes as reference the AgentLink roadmap for
agent-based computing and describes a roadmap for agent-oriented soft-
ware engineering (AOSE). Finally, the conclusions point out the risks
and opportunities for agent technology success, which relies on the new
ideas for AOSE and the role of standards.

1. Agents as a new modeling paradigm

Agent related concepts provide new ways to model complex and dy-
namic systems. As it is discussed in (Zambonelli and Parunak, 2002),
today’s software systems are getting higher degrees of complexity in dif-
ferent respects, not only in size, as other factors are combining together,
for which the agent paradigm provides some solutions:

s The environment of the software systems is more and more dy-
namic, subject to continuous changes. Different (not necessarily
software) systems co-exist in the same environment, either col-
laborating or competing. Their actions have an impact on the
environment, and this happens concurrently. Therefore, it is not
possible to assure that an action will have the expected result. In

this sense, goal-driven approach for system design is quite conve-
nient, as the goal is more stable entity than others that may be
used to define the system state. Also, as there are several ways to
achieve one goal, the system can be conceived to adapt to changing
conditions by adopting new action courses.

m There are more and more computing devices everywhere, with dif-
ferent capabilities, and connected to (mostly wireless) networks.
This implies higher degrees of distribution, in the management of
the system entities, in the location of control, and in the inter-
actions. The agent approach assumes these considerations in its
foundation. Agents are conceived as autonomous entities which
can reside in a node of a network, and even migrate from one to
another in the course of their lives.

s Knowledge processing and management. There is an increasing
need to reason about something more than raw data, to provide
knowledge-based services. At this point, new mechanisms for in-
formation processing are required, and interaction among system
components requires higher level of abstraction, with more sup-
port for semantic processing. In this sense the use of ontologies
and agent communication languages suppose a step forward with
respect to traditional object-oriented computing.

s Usability of computer-based systems has increased as far as more
people use these. Higher degrees of personalization become an
important factor for service acceptance and differentiation. This
implies highly reconfigurable systems, where there is a need for
special processing for each user with specific data. This is often
addressed by considering one agent as personal assistant for each
user, with capabilities to learn and adapt to the changing user’s
profile.

In spite of these considerations, the agent concept should not be seen as
a radical new paradigm but as an integrating paradigm, or an evolution
of current distributed object systems (in fact, the border between agents
and distributed objects is quite fuzzy, as many papers in agent confer-
ences show). Traditional distributed object computing has put emphasis
on the features of middleware and associated services, and adopts cur-
rent object-oriented methods and tools. Agents appear to cope with the
issues above, when computing gets ubiquitous and intelligence appears
elsewhere in a diverse range of devices, from classical servers to ambience
computing.

Roadmap of Agent-Oriented Software Engineering)

Agent technologies are founded on distribution technologies and ob-
ject orientation, and integrate them with artificial intelligence tech-
niques. From distributed object computing takes the autonomy of agents,
which can be distributed (therefore supporting system scalability) and
interact through message passing. To make distribution feasible, sup-
port services are defined, such as white and yellow pages, in a similar
way as in current state of the art middleware.

From object-orientation modeling, analysis and design methods are
extended to include new ways of reasoning about system conception.
When thinking about MASs, responsibilities are clearly separated from
one agent to other, and these are characterized in terms of goals rather
than as a set of functions. This is important in the sense that goals are
considered as more invariant than input-output relationships (functional
approach) along system life-cycle evolution. And this is one of the points
where contributions from artificial intelligence field come into place, for
the modelling of agents and agent communities behavior. Given that the
agent is a goal-based entity, its behavior can be conceived as a reasoning
system, where decisions on which task to execute at a given moment
depend on current knowledge of the environment, the status of achieve-
ment of goals, and actual capabilities of the agent (and surrounding
agents).

With this respect, agents are said to work at the knowledge level, and
follow the rationality principle Newell, 1982. This has the advantage
of providing a high degree of flexibility at individual level (each agent).
Also at organizational level (MAS) as interactions among agents are
defined with intentions (an agent expects some action from other agent
when interacting throw a given primitive), and with semantic processing
(agents understand ontologies, which give semantic meaning to the words
used in their messages; however, how each agent process each message
it is up to the agent).

At the end, the agent concept, from an engineering viewpoint, can be
considered also as an extension of the object-oriented component model.
Agents can be deployed in a distributed system fairly easily. And can be
configured, not only in some parameters, but in behavior. To an extreme,
agents can learn new procedures, and even new interaction languages
and protocols. A MAS then reflects a set of highly configurable entities.
But also the MAS, as an organization, can be reused. New systems
can be conceived as the combination of agent organizations, each one
providing services and relying on services of other organizations. With
this respect, the agent paradigm provides for both horizontal and vertical
decomposition of complex system development. Because of the growing

6

possibilities of such approach, work on coordination of agent systems is
considered as fundamental.

2. Methods for building multi-agent systems

Building MASs is a complex activity that takes both advantage and
complication from the same nature of agents. In fact, we should note
that while many modern MAS are implemented with object-oriented
languages (and therefore need to be specified down to this level), they
want to reflect the social solution to a problem that has not been tackled
with an object-oriented approach but with very different abstractions
(communications instead of method invocations, freewill collaborations
instead of client-server servitude). The agent paradigm could serve as a
tool to decompose the problem complexity and easily manage very large
systems.

In such a context, several researchers have tried different approaches
to systems development. These works usually reflect the situation that
originated them; we have methodologies arising from specific needs (e.g.
robotics), a strong background in a discipline (usually artificial intelli-
gence or software engineering) or the exploration of a specific paradigm
(adaptive or holonic agents). We can consider the differences in these
origins as a richness, the overall scenery is huge, variegated and full of
interesting perspectives.

Another important factor in this context regards the boundary of the
system. By now the greatest part of the applications deals with closed
systems and these, also because of security concerns are, and probably
for some time, will be a must in commercial and industrial applications.
This situation cannot though be too lasting. Agents are part of societies
and an important step in all the societies growth towards a full maturity
consists in the openness. This will bring a greater attention for the
related problems in all phases of the development.

The AgentLink Roadmap (see section 5 of this chapter) divides the
past, present and (a possible) future in the development of MASs into
four different phases. Up to recently we approached these problems
looking for ad hoc solutions, now we are going to benefit of more general
development methodologies. To go beyond this phase we have to pro-
ceed towards the adoption of well established standards that include a
consistent support for patterns. This standardization will encourage the
production of a new generation of design support tools that will increase
the dimension of manageable systems and the designers/programmers
productivity. In this sense, we can expect the same process that hap-

Roadmap of Agent-Oriented Software Engineering 7

pened with object-oriented methods that integrated around the UML
standards.

The increasing dimension of MAS is also driving a change in what it
means to design, implement, deploy, test and maintain such systems (
Zambonelli and Parunak, 2002). Probably, in the next future, we will
not design complete applications but rather add new functionality by
adding one or more agents to enormous existing systems. This also
mean that implementation choices will be strongly conditioned by the
operating environments (existing systems) and even more by the respect
of well established standards. In fact, the idea of deploying a whole new
system is not valid anymore. Systems will exist (in the network) and
will just evolve by adding new agents, evolving the behavior of existing
agents, or firing old-fashion or unused agents. Once deployed the new
agents will face an open society where unsuspected threats could arise
and crucial elaboration nodes could fall; the system in its entirety should
be able to survive and achieve its goals also if some of the agents will
not. In this situation, testing system validation is different from the
actual one. We will be more concerned with the overall (and emerging)
behavior of the society rather than the performance of the single agent
that could even fail in doing its duty if some solution will come from
the remaining part of the MAS. Maintenance, at the end, will be more
concerned with updating existing systems on the fly (that means sub-
stituting some agents/adding new ones with new features) rather than
stop and replace them with entirely new solutions.

The risk involved in the quick and interesting growth that we can
observe in the agent community, is that the great speed of advancement
could bring all the involved researchers and practitioners to forget that
we should not re-invent the wheel. The problem of designing a system
has been discussed since a long time (first 'modern’ methods, like De-
Marco’s Structured Analysis, belong to the 1970s) and this important
heritage, it is sometimes forgotten by agent people.

In this phase of the MAS development it seems that some of the
aspects of the whole process are less deepened than others. This is the
case of the organization that is behind the software production and the
maintenance concerns.

Most attentions in this period are directed to technologies, procedures
and artefacts, and mainly to the so called design methods (”a structured
approach to software development whose aim is to facilitate the produc-
tion of high-quality software in a cost-effective way” Sommerville, 2001).

Several methodologies for designing MAS exist in literature, in this
book we reported Gaia, TROPOS, INGENIAS, MaSe as examples of
generic methods and ADELFE, MESSAGE, Prometheus as specific-

8

purposes approaches. Many other diffused methodologies exist (ADEPT,
Jennings et al., 2000, MASSIVE, Lind, 2001, PASSI, Cossentino and
Potts, 2002) for specific problems (like ADEPT devoted to business pro-
cess management) or not.

This abundance reflects the different needs and approaches of different
designers and it is reasonable to say that an unique specific methodology
cannot be general enough to be useful to everyone without the possibility
of some level of personalization.

2.1 A FIPA proposal for the future in MAS
design

In its roadmap, the AgentLink community indicates the identification
of some standard in design methodologies as one of the milestones of the
path towards the success of agent-based systems.

The FIPA answer to stimuli like this consists in the constitution of two
specific technical committees (T'C); the first deals with the identification
of a new unifying approach to the design of MAS and the creation of
the consequent standard proposal (Methodology TC); the second one
(Modeling TC) aims at defining a modeling language (Agent UML) that
starts from the experience of the Unified Modeling Language and extends
it in order to model MASs.

A fundamental step towards the maturity in design processes for MAS
has already been done with existing methodologies and with the intent
to take profit by this, the Methodology TC will adopt the method en-
gineering paradigm (Saeki, 1994). According to this approach, the de-
velopment methodology is composed by a method engineer assembling
pieces of the process (method fragments) from a repository of methods
built up taking pieces from existing methodologies (Adelfe, AOR, Gaia,
INGENIAS, MESSAGE, PASSI, Tropos, ...). Obviously if necessary
fragments are not available he/she could create the ones he/she needs.
The result will be the best process for the designers (that will actually
perform the design) specific needs.

Method fragments are composed of essentially three elements: the
process to be followed to achieve the fragment objective, the artefacts
to be produced, and the roles played by the involved people. The OMG
SPEM (SPE, 2002) standard could be largely applied to the description
of the process aspects of the method fragment and in fact, it is currently
under evaluation with very encouraging partial results. The artifacts to
be produced depend on different aspects: what is to be designed (and
this relies on the MAS meta-model) and how the designer will describe
his/hers choices (artifact notation). This last topic is the specific work

Roadmap of Agent-Oriented Software Engineering 9

Method
— Fragments
Existing] Extraction
Methodologies
— » | CAME tool |
Method
Fragments Method

Base \

j Deployment Model -¢+——— Problem

MAS Running on
FIPA Platforms

Figure 1.1. The method engineering process for MAS design currently proposed by
FIPA

of another FIPA Technical Committee (the Modeling TC) and a stan-
dard FIPA modeling language will be standardized for these purposes.
Globally we can see that a complete standardization strategy has been
drawn that should give in the next few years a good support to the MAS
development.

Looking now at the complete method engineering process we can see
that during a real design process (Figure 1.1), the designer (or better
the method engineer), before building his/hers own methodology, has
to select the elements that compose the meta-model of the MAS he/she
will build.

This operation will be supported by a CAME tool (Computer Aided
Method Engineering tool) that offers a specific support for the compo-
sition of a methodology from existing fragments or with new ones.

Once the methodology is composed, the designer or the design team
could perform the established process (supported by a specifically gen-
erated CASE tool) obtaining a model of the system that solves the faced
problem. Finally the agents could be deployed on the required platforms
obtaining the running MAS.

In the last years, the method engineering approach proved success-
ful in developing object-oriented information systems (Tolvanen, 1998).
We should evaluate the importance that this approach had in the object-

10

oriented (OO) context considering not only its direct influence (not so
much companies and individuals work in this specific way) but an indi-
rect consequence of it: the most recent and diffused development pro-
cesses (for example RUP, the Rational Unified Process) are not rigid
but they are a kind of framework within which the single designer can
choose his/hers own path.

The introduction of the method engineering paradigm in the AOSE
has a peculiar problem. While in the OO context the construction
of method fragments (pieces of methodology), the assembling of the
methodology with them and the execution of the design rely on a com-
mon denominator (the universally accepted concept of object and related
model of the object oriented system), it is not so for MASs. It is a mat-
ter of fact that, there is not an universally accepted definition of agent
nor it exists any very accepted model of the MAS.

We could describe the system (object or agent-oriented) design process
as the instantiation of the system meta-model that the designer has in
his/hers mind in order to fulfill some specific problem requirements. This
meta-model is the critical element in applying the method engineering
paradigm to the agents world. It is a structural representation of the
elements (agent, role, behavior, ontology,...) that compose the actual
system with their composing relationships; this includes generic elements
(e.g. the agent) but also specific ones (e.g. the cooperative agent referred
in the ADELFE methodology) and its absence could be observed in the
different uses that different authors make of these concepts, for example
the behavior, that are often presented with slightly different meanings,
granularity or abstraction levels. The availability of a standard definition
of the MAS structure becomes therefore a strategic issue for the success
of a MAS development process that wants to be largely applied and
diffused.

2.2 Validating and Testing multi-agent systems

Today no one can claim that requirements for a software system are
well- known and stable. This situation is even more appropriate with
MAS, given the kinds of problems they address. Evolution in require-
ments brings the necessity of changing the software in a continuous se-
ries of iterations that add new parts and change existing ones, increasing
the risk of introducing defects, deteriorate performance and stress the
adopted technological solutions sometimes beyond their limits. The re-
sulting quality is not so high as it was expected and the customer could
be a little disappointed with the current release. A common solution is
to propose an evolutive patch and, obviously, the described process will

Roadmap of Agent-Oriented Software Engineering 11

happen again. In the last nightmare scenario, we intentionally neglected
the fundamental role of a great part of the software engineering research
whose activity spreads over the well known phases of debugging, testing
and verification. These are the keys of a successful software but the
advances in these fields are undoubtedly not sufficient. In the following
we will examine the main factors that will characterize the progress in
this field.

Debugging. It often happens during the coding activity and consists
in analyzing the given program and extending/changing its behavior in
order to get a correct behavior and meet the specifications. Considering
that often agent-based software is implemented with object oriented lan-
guages, in combination with other techniques (for instance, rule-based
systems), and in a distributed environment, debugging a MAS is not
a simple task at all. Basically developers rely on traditional object-
oriented debug tools and, with the exception of some professional en-
vironments, support for other paradigms is scarce. Also, some FIPA-
compliant platforms provide monitoring for messages among agents, and
this is basically all the support we can get. In summary, there is clearly
a need for tools that integrate the different programming paradigms and
able to monitor the execution and communication of agents. In develop-
ing a MAS this is even more useful considering the additional complex-
ity introduced by the agent nature of the system; interaction of all the
tools involved in the design/coding/testing chain gives the opportunity
of tightly combine the agent-level specification with its translation in the
coding language and finally modify it.

Verification and Validation. Verification (answering to the ques-
tion ”are we building the product right?” [17]) and validation (answering
to the question ”"are we building the right product?” [17]) of MASs have
been discussed in several works [13][14][15] with the use of different kinds
of formal specifications. The real limit of this approach is that it is com-
plex and time-consuming; this is often in contrast with the market rules
and its applications are confined in only some specific applications. In
the future we will, hopefully, have an automatic support for this activity
where more intelligent tools will be able to verify the respect of some
specifications even if they are not provided in a exclusive formal way.
We have to admit that this still remains a very open research field.

Testing. Not so much research efforts have been spent in testing
MASs. Topics to be explored regard the identification of test cases (pos-
sibly with the support of specific tools) and the creation and tuning of
new techniques for testing agents. While test cases identification and
planning can be seen as more related to requirements than the imple-
mentation and therefore not so much influenced by the MAS nature,

12

totally different considerations can be done for testing techniques. Of-
ten we talk about unit testing and integration testing addressing the
difference scope of the two activities related to the single unit (agent
in MAS testing) rather than its integration with the remaining part of
the system. Working with agents, these definitions have a slight differ-
ent meaning. Agents are highly encapsulated entities and adding new
features in a system, often involves introducing new agents rather than
changing the existing ones. Testing the agent behavior (unit testing)
is much more complicated than testing an OO sub-system since often
agents are not deterministic. Classical techniques like equivalence test-
ing (based on the assumption that the unit behavior is the same in a
range of input values) are almost useless with purposeful agents whose
behavior is not triggered only by external stimuli but also by a spe-
cific (and changing) will. Integration testing is again different in agents
from objects because of the different nature of entities relationships.
Objects essentially relate by strict method invocations while agents in-
teract with communications that have several freedom degrees (the same
agent can participate in conversations using different languages, ontolo-
gies and rules without loosing the meaning of the act). Integration is not
only concerned with entities interfacing but it also looks at the result-
ing collective behavior. Researchers and practitioners are still exploring
different ways of coordinate agents in order to obtain a specific behavior
and the results although very interesting [16] are sometimes not defini-
tive and this, partially, justifies the limits that we have in the subsequent
testing of these systems.

3. Tools for the implementation, deployment
and execution

The distributed nature of MASs, and the integration of different
paradigms for building this kind of systems, demand the adaptation of

current state-of-the-art methods and tools to the specific characteristics
of MASs:

m Openness. New agents can be dynamically added and existing ones
can disappear.

m Heterogeneity. It is an important property of complex systems
which can be often modelled by MASs. Heterogeneity requires a
high level of interoperability between heterogeneous agents. Sev-
eral kinds of heterogeneity are considered such as multiples imple-
mentation languages, multiple execution platforms and multiple
knowledge representation.

Roadmap of Agent-Oriented Software Engineering 13

m Distribution. MASs are inherently distributed. They have there-
fore the advantages of distributed systems, but also the design, de-
ployment and execution difficulties. The agent paradigm is devoted
to the development of complex systems. The latter are often very
dynamic, adaptive and large scale and requires reliability, secu-
rity, interoperability and scalability. However, existing distributed
systems solutions are often applied statically by the programmer
before the application starts and do not deal with scalability.

This section discusses agent tools and platforms which have been pro-
posed to implement, deploy and execute M ASs.

3.1 Tools for designing agents

Some decades ago architects were used to design buildings by hands or
just using very simple calculation tools. Nowadays, it is sure that no one
modern architect will accept to design even a two floor building without
the support of a computer and some software (architectural design and
structural dimensioning programs). All of us are aware that software is
not less complex than a building though only in the very last years the
use of tools for supporting the design phase has become widely spread.

The application fields of these tools vary from requirements elicitation
to design, testing, validation, version control, configuration management
and reverse engineering. The different phases of the software life-cycle
can be covered using separate tools (sometimes with some level of inter-
operability) or an unique environment (an integrated collection of tools)
that is often process-oriented.

The main requirements that a tool should offer, in order to support
the future needs of the agent designer, are:

m Usability. MAS-related concepts are more difficult to study and
manage than the classical object-oriented ones (mainly because
a MAS involves more concepts than an OO system) , moreover
designers get often skilled with objects before than agents and
therefore they receive some kind of imprinting from their initial
field of knowledge. This should guide agent-tools developers to
produce applications that in guiding the newbie into this new world
do not neglect the proper attention for his/hers background.

m Multi-view support. Designing an agent-oriented system involves
preparing several different representations of it, each one address-
ing a different level of abstraction or point of view on the software.
An important role can play in this direction the AUML proposal
[14] that aims at defining a complete language for agents mod-

14

eling that starts from the widely accepted UML and introduces
MAS-specific notational elements.

Traceability. Different views of the system should represent the
same unique software and the designer needs some help in order to
coordinate the different artifacts he/she produces. Going through
the different stages of the development process, it is easy to inter-
rupt the correct, logical flow of the design refinement for example
forgetting the specification of an element or introducing inconsis-
tencies. The problem is particularly important in MAS since they
introduce new concepts, abstractions and logical steps that com-
plicate the design process. Tools can be very helpful in achieving
traceability. They can provide automatic checks of many different
aspects and they are not so influenced by the system complexity if
its (expected) underlining structure (the meta-model) is clear and
the design process is completely defined.

Specific support for the software process. Beside the conventional
needs presented by several projects (e.g. information and legacy
level systems), there is now a consistent part of software that is
strongly effected by time-to-market constraints. In many fields
(e.g. e-commerce), once a customer need is detected the gap before
the introduction of the piece of software tackling with it, is usually
a strategic period for the involved company. A competitor could be
ahead of time and occupy the new market slot. Quality of the first
release is, in this case, not the primary goal of the development
team. A limited but working program is always better, in this
scenario, than no software at all. Agile design methodologies (that
are becoming quite diffused in other contexts) are still not present
in the MAS development scenery but it is likely that their need will
be sharply perceived in the very next future. We already discussed
the future of MAS development process in the previous sections
and again we would like to underline the concept that the agent
society has to overcome the actual experimental phase in which
many systems are developed with a low attention for rigorous (or
sometimes ad-hoc conceived) design methods and go towards a full
maturity stage where industrial quality programs are released after
performing problem (or context) specific life-cycles.

Generality. Let us suppose that a large software house decides
to move into the agent world and to produce only agent-based
software. At the first step some developing tools and language
will be identified and workers will be trained to work with them.

Roadmap of Agent-Oriented Software Engineering 15

3.2

This is a costly phase and the company management will be very
careful about the outcome of this effort. In this scenario it is
not presumable that the chosen environments could be specific for
only some contexts. Applications produced by such a company
will probably vary with time and address very different concerns;
supposing that specific tools will be adopted (and studied) for each
different project it is not realistic. We need therefore to look at an
highest level of generality for tools we will produce in the future.
While there (still) will be some space for domain-specific solutions
(for example robotics or telecommunications), more often, general
purpose yet configurable environments will satisfy the real needs
in many cases.

Tools integration. We can easily forecast a scenario in which the
designer can choose his/hers tools from a consistent range of pos-
sible alternatives. Different programs will be used to support the
requirements elicitation, actual design and final implementation
coding activities. There is an undoubted technological problem in
making all of these tools to cooperate in a plain way. The solution
in the object oriented world comes from choosing an easy, standard
but enough structured inter-operation language such as XML (or
its derivative like XMI and some others). This will be probably
the initial choice in the future agent design environments but we
think this forgets an important aspect of MASs: they are strongly
ontology-based. While XML can be considered a good vehicle for
information it does not provide (by itself) the proper structural
support for each specific exchange operation. It is more likely
that knowing the ontology of the domain where the agent system
will be deployed also the tools involved in its design can adapt
to it and interact using ontology-based communications that deal
with specific problem abstractions rather then with pre-configured
structures.

Agent Implementation Tools

To make concrete the various research in MASs and facilitate the
implementation of applications, several agent implementation tools have
been proposed. In the present state of research and development, we
find contributions on agent architectures and on agent implementation
languages.

3.2.1

Agent implementation languages. Several languages

have been introduced to facilitate the implementation of agent societies.

16

The most common approach is based on the provision of libraries for
common-use programming languages, such as Java, which are enriched
with utilities for agent communication and services (e.g., FIPA based)
and the use of other programming approaches (declarative, rule-based,
etc.). For instance, Several MASs have been implemented with actors
(or active objects) languages which are extensions of object oriented
languages (Gasser and Briot, 1992).

Another approach consists on the definition of a brand new language,
as in the Agent Oriented Programming (AOP) work of Shoham (see
Shoham, 1991). AOP is a new programming paradigm that supports
a societal view of computation. In AOP, agents (an agent is defined
by Shoham as ”an entity whose state is viewed as consisting of mental
components such as beliefs, capabilities, choices, and commitments”)
interact to achieve individual goals. The agent behavior is described by
a rule base that reacts to received messages and changes of agent state.
The agent dynamic is therefore implemented by a first-order forward
chaining inference engine.

A substantial amount of work has been done in pursuit of a complete
formalism to develop the AOP idea (see for example PLACA (Thomas,
1993), METATEM (Fisher, 1994)). Few attempts, however, have been
made towards developing an actual, useful agent-oriented language. The
result is that the few actual languages in existence are far from achieving
the promise of AOP and are of little practical use. The development
of a useful agent-oriented language should rely on existing agent and
multi-agent architectures. The latter functionality provides the basic
primitives to facilitate agent implementation and their interactions (see
the languages Claim (Fallah-Seghrouchni and Suna, 2003) and 3APL (
Dastani et al., 2003)).

3.2.2 Agent architectures. Several agent architectures have
been proposed, Two main approaches can be distinguished: cognitive
and reactive (a survey is given in Wooldridge and Jennings, 1995 and
examples are given in Avouris and Gasser, 1992). In the cognitive ap-
proach, each agent contains a symbolic model of the outside world, about
which it develops plans and makes decisions in the traditional (symbolic)
Artificial Intelligence way. On the other hand, in the reactive approach,
simple-minded agents react rapidly to asynchronous events without us-
ing complex reasoning. Neither a completely reactive nor a completely
cognitive approach is suitable for building complete solutions for real-
life applications. Hybrid models (Mller and Pischel, 1994, Ferguson,
1992) have been proposed to combine the advantages of both reactive
and cognitive models. In these models, agents are decomposed in a set

Roadmap of Agent-Oriented Software Engineering 17

of modules which can in turn be of a reactive or cognitive nature. How-
ever, the problem with such models is that of implementing various types
(reactive, cognitive) of agents. Indeed, real-life applications require of-
ten various types of agents and variable granularity. For instance, these
hybrid models cannot be used to implement small agents such as ants.

A good architecture may be seen as an open model. This solution is
provided by modular architectures which are based on software compo-
nents. A modular agent architecture makes the agent an open system.
Modularity introduces flexibility and allows to change easily components
with the aim of improvement or tests. Modularity provides thus several
advantages: 1) Possibility to have variable granularity of agents, 2) Pos-
sibility to have agents with adaptive structure, each agent can dynam-
ically change its components and the relations between these various
components, 3) Possibility to integrate different agent models, and 4)
Possibility to include a library of reusable components. A good agent
implementation tool should be based on a modular agent architecture
and provide libraries of components. On this way, each agent has one or
more components (communication, interaction protocols, ...). This ap-
proach facilitates the resue and integration of existing paradigms (pro-
duction rules, state machines, ...). An example of modular architecture
is given by (Guessoum and Briot, 1999).

Agent architectures provide several facilities to build MASs. To de-
velop a MAS, one has to know all the components or classes of the library
(agent classes, simulation classes). These development difficulties raise
from the diversity and complexity of agent and multi-agent concepts
(coordination, interaction, organization, ...). This complexity makes the
use of most existing agent tools very difficult to non-owners (develop-
ers) of the tools. To deal with this complexity, PTK (see Section 4 for
more detail) proposed to provide tools to facilitate the specification of
MASSs and to elaborate a process development. Another way to facilitate
this choice is to make abstraction of some technical details and define
meta-models by using the MDA (Model Driven Architecture) approach
introduced by the OMG (ormsc/2001 07-01, 2001).

3.3 Agent Deployment Tools

The first MASs (see Avouris and Gasser, 1992) were composed of a set
of homogeneous agents which run on one computer or a local network of
computers. So, the deployment problem was kept off. However, Recent
real-life applications (see Section 4) are often open and distributed at
large scale and must run continuously without any interruption. More-
over, the agents are often heterogeneous. The deployment of these new

18

M

e
 —

dgent

i Agent —
| Plagform e e =

Agent
Communication

x
System / f}anml

Internal Platform Message Transport

Figure 1.2. Overview of the FIPA architecture

complex MASs requires new multi-agent architectures and new solutions
for the related problems of these systems such heterogeneity, openness
and reliability.

To promote the success of the emerging agent-based applications,
FIPA (Foundation for physical and Intelligent Agents) provides an ab-
stract environment for the agent deployment and agent communication (
FIPA, 1997). This environment implements a set of agents which provide
the basic services for the deployment of MASs (see Figure 1.2).

The FIPA architecture offers several facilities to deploy MASs and to
add dynamically new agents. However, several problems (fault, observa-
tion, ...) have not been solved. Another way to deploy MASs, to achieve
fault-tolerance and to solve other problems related to this deployment is
to reuse solutions provided for distributed systems. For instance, repli-
cation of data and/or computation is an effective way to achieve fault
tolerance in distributed systems. A replicated software component is
defined as a software component that possesses a representation on two
or more hosts (Guerraoui and Schiper, 1997). But in most cases, repli-
cation is decided by the programmer and applied statically, before the
application starts. This works fine because the criticality of components
(e.g., main servers) may be well identified and remain stable during the
application session. Opposite to that, in the case of multi-agent ap-
plications, the criticality of agents may evolve dynamically during the
course of computation. Moreover, the available resources are often lim-
ited. Thus, simultaneous replication of all the agents of a large-scale
system is not feasible. An idea is thus to automatically and dynamically
apply replication mechanisms where (to which agents) and when it is
most needed (see Guessoum et al., 2002 for more detail).

The provided solutions for MAS deployment are promising. The emer-
gent applications (see Section 4) allow to validate these solutions, answer

Roadmap of Agent-Oriented Software Engineering 19

the open questions and complete the existing methodologies to deal with
the deployment.

4. Application opportunities

MASs rely on several sub-fields of computer science such as object-
oriented programming, artificial intelligence, artificial life, distributed
and concurrent systems. The first applications of MASs have been used
to improve existing systems in these sub-fields and to deal with their
limitations. For example, MASs appear as interesting new tools to con-
trol complex process where information flow is abundant and alarms are
common. These systems were often based on artificial intelligence tech-
niques. A large wide of applications have therefore been developed in
this area: air-traffic management to increase the efficiency or air travel,
intensive care monitoring to assist the clinical staff in decision making.
Moreover, the key concepts of MASs (Emergence, self-organization , ...)
are very useful to understand/explain complex systems. A wide range
of applications in multi-agent simulation have thus been developed in-
cluding bioinformatics, ecosystems and economic models.

Several recent emergent application domains are based on a set of
distributed and cooperative entities which manage a large set of hetero-
geneous resources and provide services to the users. The management
of this open set of resources is a hard problem, new resources can be dy-
namically added and existing ones can be changed and removed. More-
over, the interaction of various users to facilitate the use of this set of
heterogeneous entities is not easy. For instance Grid Computing, Am-
bient Intelligence and Web Services are the well known and promising
emergent applications:

» Grid Computing aims to build an infrastructure for large-scale
distributed scientific applications.

» Ambient Intelligence embraces the advent of new computing sys-
tems, consisting of smart computing systems devices, which are
likely to be more and more surrounded with in our working place,
at home and during our leisure (Servat and Drogoul, 2002).

s Web services is a new way that adapts businesses to Internet tech-
nologies. The development of industry standards, products, and
tools for supporting Web service system development is a very ac-
tive area.

The approach to building Grid Computing platforms, Ambient Intelli-
gence and Web services systems has several similarities with the engi-
neering process of a collection of agents (see WSABE 2003). For these

20

applications, agents will be used to facilitate the design of applications.
For examples, agents are used to 1) interact with users (personal assis-
tant), 2) find and select components/services that match a given require-
ment, and 3) configure or compose the selected components/services.
Moreover, agents are used to control the execution of the so built sys-
tems and allow the self-configuration of the components/services to deal
with dynamic changes.

5. A Roadmap for Agent-Oriented Software
Engineering

Based on the examination of current status of agent technology, AgentLink
published a roadmap of agent research and development over the first
decade of the 21st century Luck et al., 2003, consisting of four major
phases. Currently we are in the first phase, where agent systems are
usually built from scratch, with ad-hoc designs and little of reuse. Usu-
ally, the agent system is developed by just one team, for a particular
application, in a concrete domain where the ontology and the commu-
nication protocols among agents are well-defined in advance. Agents
are implemented with an object-oriented language (e.g., Java), some-
times with additions (such as a rule engine, a prolog interpreter or some
other declarative language). There is not too much use of agent-oriented
methodologies, and only in lucky situations object-oriented methods and
tools are used. The resulting systems have some features of agency, such
as a goal-driven architecture, the introduction of learning mechanisms
(either individual or collective), some emergent behavior, or the defini-
tion of higher-level interactions (i.e., based on some agent communica-
tion language, such as FIPA ACL). The benefits of this first generation
of agent systems is that some of them can show the potential of agent
technology. But in order to transfer this to the industry there is a clear
need of adopting well-established languages (for modeling and imple-
menting agents), and a set of methods and tools to work with. The
experience in the development of these agent-based systems should pro-
vide the foundations for well-established methodologies.

As it has been presented before, there are already several attempts
to define these methodologies (Wooldridge et al., 2002 Giorgini et al.,
2003, Giunchiglia et al., 2003). Although most of them started from
theoretical work (e.g., Gaia, TROPOS), some are based on practical
experience from real developments (e.g., MaSE, INGENIAS, PASSI).
They are both evolving, the former by being finally used in practice, the
latter by being formalized as experience provides more insight. There
is also a trend to unify agent modeling languages, as it is the case of

Roadmap of Agent-Oriented Software Engineering 21

AUML, and for integrating different methods, for instance, by using
meta-models (e.g., MetaMeth Cossentino et al., 2003).

AgentLink expects that these methodologies will establish in the pe-
riod 2003-05. This will have an impact in the adoption of agent tech-
nology, as agent systems, because of a more formal use of engineering
practices, will gain in quality, scalability, robustness, reuse, and inte-
gration with legacy systems. The establishment of AOSE practices will
facilitate coordination of agent developments by different teams, and will
go together with the availability of agent platforms with more support
for agent management, system scalability and robustness. Rather than
creating new agent implementation languages, agent platforms will pro-
vide configurable frameworks for defining new types of agents, which will
be instantiated by describing the main elements of their behavior with
agent-related concepts, such as goal, task, rule, policy, etc. At this mo-
ment, it will be easier to quickly create and deploy new types of agents
that will be able to interoperate, following a service-oriented architec-
ture, with other agents in the system. This phase will therefore allow
the development of agent systems, but some issues will be still pending
to exploit full agent capabilities.

The third phase, during 2006-08 will promote a deeper integration and
standardization of agent modeling language and development method-
ologies, as a result of the experience with the methodologies and their
supporting tools. This will go together with advances in specific ques-
tions that the agent community is currently addressing, concerning the
openness of agent systems, more specifically to deal with the semantic
heterogeneity. At this time, the agent-oriented approach will be ready
to have a higher relevance at industrial level. There will be a market
of agent components, generic or domain-specific, which will be based on
the use of open protocols and agent communication languages. These
will be used as building blocks that the agents will be able to acquire dy-
namically depending on the situation. This will facilitate inter-domain
interactions and higher degrees of service composition.

In the final phase, agents will further develop their learning capa-
bilities, therefore it will be possible to develop complex coordination
schemas and role assignment strategies. Organizations will be able to
change dynamically and will be an important building block for the de-
velopment of new MASs. There will be not only agents for sale, but
complete, highly configurable, organizations of agents. In this phase,
systems will be conceived as a set of interacting organizations.

22

6. Conclusions

Agent Oriented Software Engineering has got the attention of many
practicioners and researchers in the last five years. As experience in the
development of agent-based software becomes more usual, more system-
atic approaches for building this kind of systems start to appear. They
start usually from well-proved object-oriented methodologies, which are
extended to cope with new concepts from agent technology, thus in-
tegrating techniques from other disciplines, specially from the field of
artificial intelligence. Some lessons can be learned from those areas. For
instance, the need for unification of terms and modelling language as
a basis for the integration of methods and supporting tools. There are
efforts in this direction, as it has been described in this chapter.

Agent technologies should not be considered as a totally revolutionary
approach, but rather as an integration and extension of current state of
the art. For instance, agents go further than component technology, in-
creasing the levels of reusability to more complex entities, such as agents
and organizations. They also provide new ways of distribution and flex-
ibility of information processing, together with an inherent adaptation
to changing environment. As such, the agent paradigm fits well with
the needs for the coming wireless multi-modal information services. The
current evolution of proposals in the area has shown the feasibility of
the technology. Now it is time for industrial deployment and support,
and in this sense the role of standards plays is relevant. A positive sign
is that FIPA has already started activities in this line.

References

[SPE, 2002] (2002). Software process engineer-
ing metamodel. version 1.0. OMG Document.
http://www.omg.org/technology/documents/formal/spem.htm.

[Avouris and Gasser, 1992] Avouris, N. A. and Gasser, L., editors
(1992). Distributed Artificial Intelligence: Theory and Prazis. Kluwer
Academic Publisher.

[Cossentino et al., 2003] Cossentino, M., Hopmans, G., and Odell, J.
(2003). Fipa standardization activities in the software engineering
area. Cagliari (Italy). Workshop on Objects and Agents (WOAO03).

[Cossentino and Potts, 2002] Cossentino, M. and Potts, C. (2002). A
case tool supported methodology for the design of multi-agent sys-
tems. Las Vegas (NV), USA. The 2002 International Conference on
Software Engineering Research and Practice, SERP’02.

[Dastani et al., 2003] Dastani, M., van Riemsdijk, B., Dignum, F., and
Meyer, J. (July 2003). A programming language for cognitive agents:
Goal directed 3apl. In ACM, editor, First Workshop on Program-

ming Multiagent Systems: Languages, frameworks, techniques, and
tools (ProMAS03), AAMAS’03.

[Fallah-Seghrouchni and Suna, 2003] Fallah-Seghrouchni, A. E. and
Suna, A. (2003). A programming language for autonomous and mobile
agents. In IEEE, editor, IAT 2003.

[Ferguson, 1992] Ferguson, I. A. (1992). TouringMachines: An Archi-
tecture for Dynamic, Rational, Mobile Agents. PhD thesis, University
of Cambridge, Clare Hall.

[FIPA, 1997] FIPA (1997). Specification. part 2, agent communication
language, foundation for intelligent physical agents, geneva, switzer-
land. http://www.cselt.stet.it/ufv/leonardo/fipa/index.htm.

23

24

[Fisher, 1994] Fisher, M. (1994). Temporal Logic, chapter A Survey
of Concurrent MetaTEM- The Language and its Applications, pages
480-505. Springer Verlag: Heidelberg.

[Gasser and Briot, 1992] Gasser, L. and Briot, J.-P. (1992). Dis-
tributed Artificial Intelligence: Theory and Prazis, chapter Object-
Oriented Concurrent Programming and Distributed Artificial Intelli-
gence, pages 81-108. Kluwer Academic Publisher.

[Giorgini et al., 2003] Giorgini, P., Mueller, J. P., and Odell, J., editors
(2003). Agent-Oriented Software Engineering III, Third International
Workshop, Lecture Notes in Computer Science, Melbourne, Australia.
Springer.

[Giunchiglia et al., 2003] Giunchiglia, F., Odell, J., and Wei, G., edi-
tors (2003). Agent-Oriented Software Engineering IV, Fourth Interna-
tional Workshop, volume 2585 of Lecture Notes in Computer Science,
Bologna, Italy. Springer.

[Guerraoui and Schiper, 1997] Guerraoui, R. and Schiper, A. (1997).
Software-based replication for fault tolerance. IEEE Computer,
30(4):68-74.

[Guessoum and Briot, 1999] Guessoum, Z. and Briot, J.-P. (1999). From
active objects to autonomous agents. IEEE Concurrency, 7(3):68-76.

[Guessoum et al., 2002] Guessoum, Z., Briot, J.-P., and Charpentier, S.
(2002). Dynamic and adaptative replication for large-scale reliable
multi-agent systems. In Proceedings of the ICSE’02 First Interna-
tional Workshop on Software Engineering for Large-Scale Multi- Agent
Systems (SELMAS’02), Orlando FL, U.S.A. ACM.

[Jennings et al., 2000] Jennings, N. R., Faratin, P., Norman, T. J.,
O’Brien, P., and Odgers, B. (2000). Autonomous agents for business
process management. Int. Journal of Applied Artificial Intelligence,
14(2).

[Lind, 2001] Lind, J. (2001). Iterative software engineering for Multi-
Agent Systems, The MASSIVE Method. Springer Verlag.

[Luck et al., 2003] Luck, M., McBurney, P., and Preist, C. (2003). Agent
Technology: Enabling next generation computing: a roadmap for agent
based computing. Agentlink.

[Mller and Pischel, 1994] Mller, J. and Pischel, M. (1994). Modelling
reactive behaviour in vertically layered agent architectures. In Cohen,

REFERENCES 25

A. G., editor, Eleventh Furopean Conference on Artificial Intelligence
(ECATI’9}), pages 709-713, Amsterdam, (NL).

[Newell, 1982] Newell, A. (1982). The knowledge level. Artificial Intel-
ligence, (18):87-127.

[ormsc/2001 07-01, 2001] ormsc/2001 07-01, O. T. D. (2001). Model
driven architecture (mda). Technical report, OMG.

[Saeki, 1994] Saeki, M. (1994). Software specification & design methods
and method engineering. International Journal of Software Engineer-
ing and Knowledge Engineering.

[Servat and Drogoul, 2002] Servat, D. and Drogoul, A. (2002). Com-
bining amorphous computing and reactive agent-based systems: a
paradigm for pervasive intelligence? In ACM, editor, AAMAS’02.

[Shoham, 1991] Shoham, Y. (1991). Agent0: An agent-oriented pro-
gramming language and its interpreter. In AAAI-91, pages 704-709.

[Sommerville, 2001] Sommerville, 1. (2001). Software Engineering. Ad-
dison Wesley, 6th edition edition.

omas omas, S. R. . an agent Oriented Pro-

[Th , 1993] Th ,S. R. (1993). PLACA, gent Oriented P
gramming Language. PhD thesis, Computer Science Department,
Stanford University, Stanford, CA 94305.

[Tolvanen, 1998] Tolvanen, J.-P. (1998). Incremental Method Engineer-
ing with Modeling Tools: Theoretical Principles and Empirical FEuvi-
dence. PhD thesis, Jyvskyl Studies in Computer Science, Economics
and Statistics, Jyvskyl: University of Jyvskyl.

[Wooldridge et al., 2002] Wooldridge, M., Wei}, G., and Ciancarini, P.,
editors (2002). Agent-Oriented Software Engineering II, Second Inter-
national Workshop, volume 2222 of Lecture Notes in Computer Sci-
ence, Montreal, Canada. Springer.

[Wooldridge and Jennings, 1995] Wooldridge, M. J. and Jennings, N. R.
(1995). Agent theories, architectures, and languages: A survey. Knowl-
edge Engineering Review, 10(2).

[Zambonelli and Parunak, 2002] Zambonelli, F. and Parunak, H. V. D.
(2002). Sign of a revolution in computer science and software engi-
neering. In 3rd International Workshop on Engineering Societies in

the Agents’” World. LNAL

