
Noname manuscript No.
(will be inserted by the editor)

Self-Configuring Cloud Application Mashup
with Goals and Capabilities

Luca Sabatucci · Salvatore Lopes · Massimo Cossentino

Received: date / Accepted: date

Abstract Cloud mashup is a technique for the seam-

less composition of SaaS applications from several sources

into a single integrated solution. This paper presents a

general approach for automatically composing applica-

tions and services deployed over the Cloud. The pro-

posed approach implies to encapsulate distributed pro-

cesses into smart and autonomic entities, namely cloud

capabilities. Despite the lack of a central mashup server,

these processes are able to autonomously organize in

order to establish different ways to address the desired

result. The approach uses a couple of languages for de-

scribing respectively the mashup logic in terms of goals

and the available functionalities in terms of capabilities.

The explicit decoupling between user’s goals and capa-

bilities provides the system the freedom to generate the

orchestration plan at run-time, according to the contex-
tual state. An industrial case study, conducted in for a

scientific project, has provided the conditions for eval-

uating the running example of a B2B business process

for a fashion enterprise.

1 Introduction

Cloud Computing, Internet of Things and Internet of

Everything will likely be the base for a new technolog-

ical revolution in science, business, trade, production

and social processes. Cloud Computing, in fact, rep-

resent a fundamental change in the way information

technology services are invented, developed, deployed,

scaled, and updated. Moreover, the payment formula

pay-by-use make Cloud Computing services attractive

L. Sabatucci, S. Lopes and M. Cossentino
ICAR-CNR
E-mail: {sabatucci,s.lopes,cossentino}@pa.icar.cnr.it

for all enterprises that do not have Information Tech-

nology activities as core business.

The current trend shows that, in the next future,

cloud applications will be ubiquitous, available over the

Internet [22] and could provide the most application

as a single or composition of multiple services. Then,

enterprises able to satisfy customer expectations in a

quickly changing environment can be the winner in busi-

ness competition [35]. These companies require indeed

ways to make their processes more flexible and, at the

same time, to open their business processes to the direct

access of users. In such a perspective, technology can

play a crucial role allowing organisations to adopt agile

methodologies. In particular, Cloud computing focuses

on maximising the effectiveness of shared resources and

information (provided to users on-demand) reducing

the overall cost by using less power, air conditioning,

rack space, and so forth. However, Cloud applications

are still currently developed as closed solutions linked

to proprietary architectures in which the provider fur-

nish all elements of the service [22]. This feature rep-

resents an obstacle for third-party developers. Thus, it

results difficult to mix and match cloud services from

different levels and to configure them dynamically to

address application needs [22].

Cloud Application Mashup has the aim to enable

easier customization and composition of SaaS applica-

tions from several providers. It will provide a cohesive

solution that offers improved functionality to clients.

The mashup task involves data and process integra-

tion complex protocols and at the same time preserves

global application consistency.

So far, web developers have used application mashup

as a tool for integrating content from more than one

source in a new single graphical interface. For example,

HousingMaps (http://www.housingmaps.com), combines

2 Sabatucci et. al.

rental listings from a popular advertisements website

with Google Maps for providing a visual representation

of local apartments for rent. Other examples are The

New York Times (http://www.nytimes.com), CNN.com

(www.cnn.com) and BBC (http://www.bbc. com). All

these magazines include buttons for social sharing. Web

services, running on Cloud SaaS, as Google Applica-

tions, Dropbox, Microsoft Office365 are today used by

millions of users. The mashup technology is still evolv-

ing for mixing processes together with data and user

interfaces to produce more sophisticated applications

in simpler and quicker ways.

We believe that the consuming users can create their

Mashups using the adequate support. This paper presents

an approach for generating Cloud Application Mashups

automatically. So that, users can profit from software

licensing and billing models based on the pay-for-use

formula. Cloud services should be available from the

public cloud marketplace in which providers store their

offerings. Clients can discover and buy the needed ser-

vices to use for their mashup. They will select, mix and

integrate the necessary services from a variety of cloud

providers. Therefore, a mashup self-composition engine

acting as a run-time mediator between users goals and

atomic cloud services would be a very useful tool for

realising the desired application.

We already developed GoalSPEC [27], a goal-oriented

[34] language for describing the expected behaviour of a

complex distributed system. We also presented [24] an

algorithm for automatically selecting and aggregating

services to address users goals. However, this algorithm

relies on a centralised logic and does not scale up well

with the goal and service number.

The main novelty of the current paper is the for-

mulation of a three-layer architecture for implement-

ing Cloud Capabilities and supporting cloud applica-

tion mashup. We define cloud capability a smart and

autonomous container of traditional web services. It is

an application running at Saas level inspired by the

principle of autonomic computing. It senses the envi-

ronment, makes proactive decisions, and interact with

other cloud capabilities for producing a coordinate be-

haviour. They must be provided together with relevant

aspects of their integration and usage through ad-hoc

description languages thus enabling the automatic com-

position of their services. To this aim, we developed

a capability description language that exploits predi-

cate logic for specifying when and how to use a ser-

vice. Decoupling the specification of what the system

has to do from how this what will be done allows the

self-configuration engine to compose the expected be-

haviour on the occurrence. We report the case of a cloud

mashup built for a fashion enterprise as running exam-

ple where we described the desired process through a

set of goals. Thus, the submission of the input goals

becomes a stimulus for the system to configure ad-hoc

solutions. Obviously, we also populated the marketplace

with a redundant set of services for addressing the re-

quested behaviour. Self-configuration protocols achieve

the expected B2B mashups using the relevant cloud ca-

pabilities. Self-configured Mashup is a facilitator for fast

and flexible B2B collaboration (short development cy-

cles, cheap development) whereas existing B2B collab-

oration solutions focus on long-term business relation-

ships [28]. Therefore, we think that our approach could

have a profound impact on IT by improving the return-

on-assets of existing systems. In fact, quick develop-

ment cycles make B2B solutions attractive for small

and medium enterprises.

The organisation of the paper is the following: Sec-

tion 2 presents the main concepts of the approach: state

of the world, world transition system, capability, goal

and configuration. Section 3 presents a real scenario

occurred during a research project and introduced the

elements for enabling the self-configuration. Section 4

illustrates details of the self-configuration module: the

three-layers architecture and the cloud capability. Sec-

tion 6 focuses on the self-configuration distributed pro-

cess, whereas Section 6 explains the dynamic workflow

generation related to a mashup. Related works are dis-

cussed in Section 7 whereas we report some conclusions

and acknowledgment in Section 8 and Section 9.

2 Background

In this section, we describe some of the main concepts

presented in the paper.

A State of the World is an abstraction made to let

the system reasoning at the knowledge level [21]. It

arises from the consideration that a software system has

(partial) knowledge about the environment in which it

runs. The classic way of expressing this property is (Bel

a ϕ) [32] that specifies that a software agent a believes

ϕ is true, where ϕ is a fact that describes a particular

state of affair. This concept is similar to the idea of the

fluent found in the situation calculus. The definition

of relevant and coherent states of the world requires a

preliminary analysis of the domain that ontology per-

fectly captures by means of the description of classes,

properties, and individuals of interest The proposed ap-

proach is independent on the instrument for modelling

the domain (e.g. OWL-S [19], POD [8]).

Definition 1 (State of the World) The state of the

world at a given time t is a set Wt ⊂ S where S is the

Goal-Oriented Mashup 3

set of all the non-negated facts s1, s2 . . . sn that char-

acterises a given domain.

Wt has the following characteristics:

Wt = {si ∈ S|(Bel a si)} (1)

where a is the subjective point of view (i.e. the ex-

ecution engine) that believes all facts in Wt are true at

time t.

Whereas a state of the world depicts assertions that

are true at a precise time instant (ex: P is true), the

World Transition System (WTS) is the structure used

for describing how the truth values of assertions may

change over time in an indeterminist environment [9].

Definition 2 (World Transition System) A World

Transition System (WTS) is a tuple 〈Σ,W0, C,E,L〉
where:

– Σ ⊆ 2S is the finite set of states of the world, where

S is the set of all the facts that are designated for

the domain of interest;

– W0 ∈ Σ is the initial state of the world;

– E is the transition relation defined in Σ × Σ; each

transition is labelled with the capability that origi-

nates the evolution;

– x is the relation defined in E ×E that designates a

not deterministic link between two transitions.

The semantic of this structure is to model the ex-

ecution of a system of concurrent processes: the com-

putation starts from the initial state of the world and

may follow anyone of some different paths in the graph

(sequences of states of the world).

A Capability describes a self-contained process, which

can modify the current state of the world. Each capa-

bility represents a semantic wrapper for describing ex-

isting cloud applications and services.

Definition 3 (Capability) A capability 〈E, pre, post〉
is an atomic and self-contained action the system may

intentionally use to address a given evolution of the

state of the world. E is a set of possible evolution sce-

narios, each denoted as evo : W →W is an endogenous

change of the state of the world that takes a state of

the world Wt and produces a new, different state of the

world Wt+1. The capability may be executed only when

a given pre-condition is true (pre(Wt) = true). More-

over, the post-condition is a run-time helper to check if

the capability has achieved the desired condition(post(Wt+1) =

true).

Wi Wi+1
evo

Fig. 1 Representation of an evolution scenario in a world
transition system.

An evolution scenario describes the effects of exe-

cuting the capability, i.e. the global state changes from

an initial state Wi towards the resulting Wi+1.

The presence of more evolution scenarios in a ca-

pability implies that the result is not deterministic at

run-time. The real output depends on the actual execu-

tion context, the input value or other external variables

(for instance a human decision).

Wi

Wi+1evo1

Wi+1evo2

XOR

Fig. 2 Representation of a set of not deterministic evolution
scenarios in a world transition system.

It is worth noting the use of capabilities has the

advantage of facilitating service composition in order

to address a complex result.

The concept of Goal is often used in the context of

business processes for representing strategic interests of

enterprises that motivate the execution of a particular

workflow [34]. It is “the desired change in the state of

the world an actor wants to achieve”.

Definition 4 (Goal) A goal is a pair: 〈tc, fs〉 where

tc and fs are conditions to be evaluated over a state of

the world. Respectively the tc describes when the goal

should be actively pursued and the fs describes the

desired state of the world. Moreover, given a Wt we say

that

the goal is addressed iff tc(Wt)∧fs(Wt+k) where k > 0

(2)

i.e. a goal is addressed if and only if, given the trigger

condition is true, then the final state must eventually

hold true some time later on the temporal line.

The user should specify his mashup application through

a goal set.

The Operationalization of a goal is an orchestra-

tion plan that is used to address the given result. We

adopted a notation for representing plans inspired by

the workflow pattern initiative work [31] that aims at

4 Sabatucci et. al.

providing a conceptual basis for business process tech-

nology. In particular, the definition of a plan is de-

scribed with a set of tasks, organised through three

main control flow patterns: sequence, exclusive-choice,

and structured-loop.

In a sequence, the completion of a task enables the

next one in the same process. The Sequence pattern

serves as the fundamental building block for processes.

It is used to construct a series of following tasks which

execute in turn one after the other (see Figure 3).

A B

Fig. 3 The Sequence workflow pattern.

In an exclusive-choice (also known as XOR-split), a

branch splits into two or more branches such that when

the incoming branch is enabled, the thread of control

is immediately passed to one of the outgoing branches

based on a design-time condition (see Figure 4).

B

A

C

X

Fig. 4 The Exclusive-Choice workflow pattern.

A structured-loop describes the ability to execute a

task repeatedly. The loop is characterized by a condi-

tion that is either evaluated at the beginning or the end

of the loop (see Figure 5). The looping structure has a

single entry and exit point.

A

B AB

X X X X

Fig. 5 Two alternative versions of the Structured-Loop
workflow pattern. On the left, the loop is characterized by
a post-test condition. On the right, the loop is characterized
by a pre-test condition.

We define a Configuration as a set of tuples of

type 〈g, h〉, where g is a goal to be addressed and h is

the operationalization for that goal. In a valid configu-

ration 1) each input goal is fully achieved by a plan for

the fulfilment; 2) there is not redundancy: each goal is

associated exactly to one operationalization.

Generally, given a set of goals, a set of capabil-

ity, and an initial state, it is possible to derive zero or

more configurations. The self-configuration phase con-

sists in 1) incrementally building a state transition sys-

tem [[23] that models the many possible worlds that are

reachable by using the available capabilities, and, sub-

sequently, 2) extracting alternative configurations. The

next section illustrates an example of cloud mashup.

3 An Example of Cloud Application Mashup

This section provides an overview of the self-configuration

process with the help of a running example extracted

from the activities conducted in the OCCP research

project.

3.1 The Open Cloud Computing Platform Project

The objective of the OCCP project1 was to deliver a

cloud architecture for the mashup of distributed appli-

cations. The mission was to provide a market-oriented

infrastructure for creating cloud applications by merg-

ing existing services available at the SaaS layer. The

project aimed at proposing a new dynamic approach to

business models in which independent, proactive and

self-adaptive processes solve composition/orchestration

problem.

Figure 6 depicts the primary objectives of the project.

It encompasses the business process modelling as a twofold

activity. The first side concerns with the analysis of

business processes. The counterpart deals with the anal-

ysis of heterogeneous data coming from various parties.

This first activity leads to a couple of sub-activities:
process mashup design and data mashup design. The

former provides a high-level description of the business

process to be generated regarding goals, i.e. what sys-

tems users expected. The former produces a high-level

description of services data, using their symbolic ex-

pression. Both the activities collaborate in generating

a common ontology for denoting the business seman-

tics. Whereas all these activities are manual tasks, the

goal-oriented self-configuration is automatic. It takes

all the previous outputs, plus a service repository and

a service description repository, and generates/executes

the resulting cloud application mashup.

We adopted this approach in an industrial case study

delivered in a real cloud environment. Each industrial

partner provided a set of services to be integrated: 1)

eCommerce services, 2) Invoice Manage- ment services,

1 Funding program PO FESR 2007-2013 Sicily, started in
201- ended in 201-. The project web page is available at http:
//aose.pa.icar.cnr.it/OCCP/

Goal-Oriented Mashup 5

Business Process Analysis

Process Mashup DesignData Mashup Design

heterogeneous
data

service
business logic

ontologysymbolic
data

mashup
goals

selected
workflow
patterns

Goal-Oriented
Self-Configuration

Service
MarketPlace

service
description
repository

service
repository

user
requirements

workflow
patterns

Fig. 6 The objectives of the OCCP project.

3) DataBase and File Storage services, and, 4) Voice-

mail and Notification services. The follow subsections

illustrate the whole case study.

3.2 A B2B Cloud Application for Fashion Firms

A world known fashion enterprise, here named Fash-

ionFirm for privacy reason, uses a legacy system (IBM

AS/400) for managing its information system. To the

aim of enlarging its commercial network, FashionFirm

designated a small software house, denoted as SWHouse,

for handling its B2B processes. SWHouse developed a

system on a set of services running on a cloud stack.

That is a set of scalable backend services able to in-
teract with the legacy system from one side and with

a SaaS eCommerce platform (OrderlPortal) from the

other side. SWHouse was also demanded to enrich the

FashionFirm business process by adding new services

for customer management. These new services were con-

ceived as a mashup of cloud application with the aim

to improve the costs-benefit ratio. In fact, this allowed

SWHouse to fast prototype the solution reusing already

existing cloud application provided by third parts (Cloud

Calendar, File Storage, Voicemail ...). The resulting

mashup application that we use as running example in

this paper is designed for supporting customers during

the order management process. In particular, Retail-

Store is a retailer of FashionFirm products. When Re-

tailSore requests for a product stock through the Order-

Portal, the system merges the legacy services with ex-

ternal applications provided by cloud computing providers.

Moreover, the resulting application employed a Cloud

Storage system for storing and delivering receipts to

RetailSore, Voicemail for conveying a recorded audio

 OrderPortal

Fig. 7 Screenshot of the website hosted and managed by the
OrderPortal Capability.

message to a recipient, finally, a Cloud Calendar ser-

vice for annotating the delivery status.

3.3 Elements for Self-Configuration

The domain expert had to choose the entities and the

related properties necessary to model the above sce-

nario. This conceptual model of a domain is rendered

as an ontology, and it is composed ofentities, entity’s

properties and is-a , has-a relationships. The entities

and related properties used in the running example are

reported in the following list:

entities:
role , document , url , failure_order
user [is-a role],
storehouse_manager [is -a role],
order [is-a document],
invoice [is-a document],
user_data [is -a document],
registration_form [is -a-document],
delivery_order [is-a order],
rxfile [is -a URL]

unary user ’s properties:
registered ,
unregistered ,
has_cloud_space

unary document ’s properties:
available , uploaded_on_cloud

unary order ’s properties:
accepted , refused , processed

unary user_data ’s properties:
complete , uncomplete

unary registration_form ’s properties:
complete , uncomplete

binary properties:
notified(document ,user),
mailed_perm_link(document ,user) [is-a notified]

For instance, the class user denotes FashionFirms

customers, whereas the class order denotes a complex

description of items and quantity that a customer is go-

ing to buy from FashionFirm. Properties and is-a pred-

6 Sabatucci et. al.

icates are translated into domain rules, i.e. ‘user [is-a

role]’ is translated into the rule ‘role(X) :- user(X)’.

The developer uses the ontological description of the

scenario for defining the desired mashup using of a set

of goals to pursue. An automatic tool for deriving the

Goal decomposition from an ontological model is re-

ported in [8], whereas a language for describing GOAL

is reported in [27]. BPMN2GoalSPEC is an automatic

tool for generating the goals from BPMN2. We report

the corresponding GoalSPEC definition for the running

example in the following list

GOAL to_wait_order:
WHEN MESSAGE X RECEIVED FROM THE Client ROLE

AND order(X) AND user(Client)
THE SYSTEM SHALL ADDRESS
available(X) AND order(X)

GOAL to_notify_invoice:
WHEN accepted(X) AND order(X) AND registered(

Client) AND user(Client)
THE SYSTEM SHALL ADDRESS
MESSAGE Z SENT TO THE Client ROLE AND user(

Client) AND invoice(Z)

GOAL to_deliver_order:
WHEN MESSAGE X SENT TO THE Client ROLE AND

invoice(X) AND user(Client)
THE SYSTEM SHALL ADDRESS
MESSAGE Z SENT TO THE SM ROLE AND

delivery_order(Z) AND storehouse_manager(
SM)

GOAL to_notify_failure:
WHEN refused(X) AND order(X) AND registered(Y)

AND user(Y)
THE SYSTEM SHALL ADDRESS
MESSAGE failure_order SENT TO THE Client ROLE

AND user(Client)

In the above listing, all the words in upper case are

keywords of GOALSpec language whereas the words in

lower case are entities or properties anchored to the on-

tological description. The GOALSpec description spec-

ifies what should be done for ensuring the correct exe-

cution of the order management process.

It is obvious that there must be a cloud applica-

tion or a combination of cloud applications that ef-

fectively satisfies each single goal. Moreover, the self-

configuration requires additional information about avail-

able services for automatically selecting and binding

services to users goals.This information is provided by

the means of the capability language.

First, the order must be processed via the eCom-

merce website (order portal). The OrderPortalMoni-

tor Capability is responsible for hosting the website and

to wait for new orders from users.

CAPABILITY OrderPortal:
Pre -Condition: --
Post -Condition: available(X) & order(X)
Evolution: [add(available(an_order))]

2 BPMN2GoalSPEC is available as a web-service at http:

//aose.pa.icar.cnr.it:8080/BPMN2GOALSPEC/

A screenshot of the eCommerce website managed by

this capability is shown in Figure 7.

The availability of products in the FashionFirm store-

house must be checked by the CheckStoreHouse capa-

bility.

CAPABILITY CheckStorehouse:
Pre -Condition: available(X) & order(X) &

registered(X) & user(X)
Post -Condition: (accepted(X) | refused(X)) &

order(X)
EvolutionSet:
AcceptableOrder: [add(accepted(an_order)), remove

(available(an_order))],
UnacceptableOrder: [add(refused(an_order)),

remove(available(an_order))]

CheckStoreHouse is an example of non-deterministic

capability: it produces two possible final states where

the order has been either accepted or refused. If the

requested products are available, the corresponding in-

voice should be delivered through the UploadOnCloud-

Storage. Otherwise, the invoice is stored locally, and

a link will be communicated to the user via mail. Fig-

ures 8 and 9 show respectively the UploadOnCloudStor-

age working with the commercial Dropbox API3 and

the ShareFileLink that uses Google Drive services4 for

sending the notification.

CAPABILITY UploadOnCloudStorage:
Pre -Condition: available(X) & invoice(X) &

has_cloud_space(Y) & user(Y) & !
uploaded_on_cloud(X)

Post -Condition: upload_on_cloud(X) & invoice(X)
Evolution: [add(uploaded_on_cloud(the_invoice))]

CAPABILITY ShareFileLink:
Pre -Condition: uploaded_on_cloud(X) & invoice(X) &

NOT has_cloud_space(Y) & user(Y) & !
mailed_perm_link(X, Y)

Post -Condition: mailed_perm_link(X,Y) & invoice(X)
& user(Y)

Evolution: [add(mailed_perm_link(the_invoice ,
a_user))]

Upload On Cloud Storage

Fig. 8 Screenshot of the front-end of the UploadOnCloud-
Storage Capability implemented through the Dropbox ser-
vices.

We describe in more detail the link between capa-

bilities and web services. During the self-configuration

3 https://www.dropbox.com/developers-v1/core/docs
4 https://developers.google.com/drive/v2/reference/

Goal-Oriented Mashup 7

Share File Link

Fig. 9 Screenshot of the front-end of the ShareFileLink Ca-
pability realized through the Google Apps service.

phase, the system automatically checks all the avail-

able capabilities in the repository for their compati-

bility to the requested goal. The way the automatic

self-configuration happens is reported in Section 5. The

chosen capabilities are linked to the corresponding web

services during the orchestration phase (Section 6).

The self-configuration phase builds the world tran-

sition system by exploiting available capabilities.

A relevant part of the transition system for the B2B

scenario is reported in Figure 10. This graph’s nodes

represent possible (stable) states of the system. Each

node of this graph represents possible (stable) states of

the system. The transition from a state to another one

is either due to an external even (denoted with <=) or

due to the execution of a web service (internal event,

denoted with !). Non-deterministic transitions are high-

<= request(order)

!check_user(order,user,data)
!send_reg_form(user)

<= user_data(user)

timeout

!check_storehouse(order)

!generate_invoice(order,invoice) !notify_stock_failure(order)

!upload_on_cloud(invoice,email)

!share_link_file(rx_file,email)

!notify_storehouse_manager(order)

!upload_on_cloud(invoice,system_space)

!add_user(user)

XOR

XOR
XOR

accepted refused

registered_user

Fig. 10 World transition system for the B2B scenario. Tran-
sitions represent evolutions due to cloud capabilities. Indeter-
ministic transitions are represented with an ‘xor bridge’ i.e.
an arc connecting two or more evolutions. Prefixes ! and <=
indicate respectively an internal event (i.e. the execution of a
service) and an external event (i.e an incoming message).

lighted through a xor operator that links two or more

transitions. Initially, the system is in a state in which

it waits for user orders from the order portal service.

When an order incomes, if the user is already registered,

then the system retrieves user’s data from a database.

Otherwise, has two possibilities: 1) initializing a regis-

tration procedure (send reg form and register user

services) or 2) manually put the user’s data into the

database (this requires an employee that manually pro-

cesses the request form.

Subsequently, the order is checked over the store-

house database (check storehouse service) thus to be

processed until all the ordered products are ready to be

delivered (notify storehouse manager service).

An interesting part of Figure 10 is that in which the

invoice is ready to be sent (after the generate invoice

service) and the system must send it to the user. The

system can choose: 1) to directly upload the file on the

users cloud storage (upload on cloud service) 2) to lo-

cally store the file and to send a mail containing the

file’s URI (obtained by combing the upload on cloud

and the share link file services).

We highlight this situation because, in points like

this, the system must be able to generate different be-

haviours for addressing the same goals. Configurations

capture this kind of variability that is fundamental to

customise the final system.

Figure 11 shows three different configurations (among

the many possible), resulting from the self-configuration

phase of the running example.

4 The Proposed Architecture for Cloud

Mashup

This section illustrates an approach to domain-independent

self-configuration of cloud applications. Self-configuration

is intended as the ability to automatically aggregate

and configure a set of services thus to ensure the cor-

rect execution for achieving the defined users goals [30].

4.1 A Three-Layered Architecture for

Self-Configuration

The proposed approach is structured in three inter-

operating functional layers: the goal layer, the capa-

bility layer, and the service layer.

The uppermost layer of this architecture is the Goal
Layer in which the user may specify the expected be-

haviour of the system regarding high-level goals. Goals

are not hard-coded in a static goal-model defined at

design time. The goal injection phase allows the intro-

duction of user-goals defined at run-time. Goals are in-

8 Sabatucci et. al.

timeout

XOR

XOR
XOR

timeout

XOR

XOR
XOR

timeout

XOR

XOR
XOR

configuration 1 configuration 2 configuration 3

to_wait_order <-- sequence {
 !wait_order,
 !retrieve_user_data
 }

 to_notify_invoice <-- sequence {
 !check_storehouse,
 exclusive-choice {
 sequence {
 !generate_invoice,
 !upload_on_cloud
 },
 !notify_stock_failure
 }
 }

 to_deliver_order <-- !notify_storehouse_manager

 to_notify_failure <-- !notify_stock_failure

to_wait_order <-- sequence {
 !wait_order,
 !retrieve_user_data,
 structured-loop {
 !send_reg_form,
 !wait_user_data
 }
 !add_user
 }

 to_notify_invoice <-- sequence {
 !check_storehouse,
 exclusive-choice {
 sequence {
 !generate_invoice,
 !upload_on_cloud
 },
 !notify_stock_failure
 }
 }

 to_deliver_order <-- !notify_storehouse_manager

 to_notify_failure <-- !notify_stock_failure

to_wait_order <-- sequence {
 !wait_order,
 !retrieve_user_data
 }

 to_notify_invoice <-- sequence {
 !check_storehouse,
 exclusive-choice {
 sequence {
 !generate_invoice,
 !upload_on_cloud,
 !share_file_link
 },
 !notify_stock_failure
 }
 }

wait_order

retrieve_user_data

add_user
check_storehouse

generate_invoice notify_stock_failure

upload_on_cloud

notify_storehouse_manager

wait_order

retrieve_user_data

add_user
check_storehouse

generate_invoice notify_stock_failure

upload_on_cloud

notify_storehouse_manager

wait_user_data

send_reg_form

wait_order

retrieve_user_data

add_user
check_storehouse

generate_invoice notify_stock_failure

upload_on_cloud

notify_storehouse_manager

share_file_link

Fig. 11 The first three configurations that have been identified for for the B2B scenario. In the top side it is reported
the subgraph of the WTS that originates the configuration (the remaing part of the graph is shaded in gray). Below, the
configuration is reported by highlighting the three workflow patterns (sequence, exclusive-choice and structured loop).

terpreted and analysed and therefore trigger the need

for the system to generate a new configuration.

The second layer is the Capability Layer , based

on solving at run-time the problem of Proactive Means-

End Reasoning [24].

It aims at selecting the capabilities (and configur-

ing them) as a response to requests defined at the top

layer. This task corresponds to a strategic deliberation

phase in which decisions are made according to the

(often incomplete) system knowledge about the envi-

ronment. The output is the selection of a set of capa-

bilities that will form a correct and effective business

process. This is obtained by instantiating system capa-

bilities into business tasks and by associating capability

parameters with data objects. In this phase, the proce-

dure also specifies dependencies among tasks and how

data items are connected to task input/output ports.

The third layer is the Service Layer , it manages

and interconnects autonomous blocks of computation

thus generating a seamless integration for addressing

the desired result specified at the first layer. Section 6

describes the run-time orchestrator that executes the

business process generated at the second layer by inter-

acting with the corresponding cloud applications and

web-services.

4.2 Implementing the Cloud Capabilities

The aforementioned high-level architecture is deployed

through a distributed system of software entities namely

Cloud Capabilities.

Whereas traditionally services and cloud applica-

tions are passive entities that act when receiving the

control [19,20], cloud capabilities are lively cloud ap-

plications (running at SaaS) inspired to the principles

of autonomic computing. Each cloud capability keeps

its own control, and it is able of sensing the surround-

ing environment, making proactive decisions, and inter-

acting with other capabilities for organising a common

behaviour [24,26].

From the developer’s point of view, a cloud capabil-

ity is a facilitator for quickly implementing cloud ap-

Goal-Oriented Mashup 9

plications with high-level features such as autonomy,

proactiveness, self-organization and logic reasoning. In

a mashup, a capability acts as a stateful wrapper for a

specific web service or a cloud application.

We implement a cloud capability through two com-

ponents as shown in Figure 12: a general-purpose, reusable

core and a service customised part. The core provides

a generic set of APIs to support the three-layered ar-

chitecture shown in the previous section:

– Goal Management: some facilitators to handle the

interpretation of single goals in GoalSPEC and to

manage the whole goal-set;

– a Self-Configuration module that exploits a logic-

based reasoner (to handle the matching between

goals and capabilities) and some self-organization

protocols (to collaboratively generate configurations);

– an Adaptive Orchestrator responsible of translating

a configuration into an operative plan and to enact

the corresponding workflow in a dynamic environ-

ment.

Cloud Capability Customization

Cloud Capability Facilities
Self-Configuration

Adaptive
Orchestration

User’s Goal
Management

Service
Semantic

Description

Service
Interface

Description
Protocols

to Use

Logic Reasoner
Self-Organization

Fig. 12 Internal Architecture of a Cloud Capability.

The customizable part of a capability allows to set

up the generic ‘core’ for working with a specific service

(either web-service or cloud application). The Service

Interface Description allows specifying how to manage

the service wrapping (service input/output ports), in-

cluding how to maintain a state for the correct function-

ing of stateful services. The Protocol to Use (HTTP/

HTTPS/ SOAP . . .) may be selected among pre-defined

ones, even if new ones may be programmed from scratch

to occurrence. Finally, the Service Semantic Descrip-

tion allows to specify information related to the self-

configuration phase such as pre/post conditions and

evolution (as described in Section 2).

For instance, UploadOnCloudStorage is a wrapper

for a generic REST file storage service on the cloud

(upload on cloud(file,user account)) that requires

defined parameters and produces a remote clone of a

local file by returning a unique id that identifies that

remote object. The following first-order predicate rep-

resent the cloud capability customization part for the

capability as mentioned earlier.

capability(upload_on_cloud_storage ,

% semantic description
precondition(available(document)),
postcondition(uploaded_on_cloud(document)),
evolution(add(uploaded_on_cloud(document))),

% service interface
method(https ,put),
address(https :// content.dropboxapi.com/1/

files_put/auto/),
input([

param(local_file ,file),
param(remote_file_path ,rxfile)]),

output ([param(metadata ,json_file_descriptor)]),

% protocols
service_protocol(rest),
require_auth(oauth20)

).

The first compartment (semantic description) con-

tains exactly information already discussed in Section 3.3:

pre/post conditions and evolution. The second com-

partment (service interface) specifies which method to

use for the service invocation, the address for reach-

ing the service and any input/output ports to provide

for a correct invocation. Finally, the last compartment

(protocols) indicates that the service call must follow

the REST protocol and the consequent request should

be signed (it requires a preliminary OAuth authentica-

tion).

5 Self-Configuring a Mashup

This section focuses on the middle layer of the presented

architecture, and in particular on the strategy adopted

for automatically establishing run-time links between

user’s goals and the available capabilities. Please, refer

to [27] and [26] for more details about GoalSPEC (goal

layer) and self-adaptation (service layer), respectively.

Here the problem is, for each goal gi, to discover

which combination of capabilities (according to the work-

flow patterns) may be employed for satisfying Equa-

tion 2.

In other words, invoking a single service produces

changes in the state of the world that are specified by

the corresponding capability’s property evolution. This

property describes the expected changes with add and

delete operators that respectively add new statements

to the state of the world, or delete existing statements,

for producing the resulting state.

Consequently, executing a workflow composed of ca-

pabilities produces a multi-step evolution of the state of

the world, i.e., e = {W1,W2, . . . ,Wn}. The evolution e

satisfies a goal when the goals’ trigger condition is sat-

isfied in Wk1 ∈ e, and the final state eventually holds

later in some subsequent state: Wk2 ∈ e : k2 > k1.

10 Sabatucci et. al.

5.1 The Decentralized Strategy for Self-Configuration

The possible evolution paths of a system are modelled

as a state transition system (WTS, hereafter) where

nodes are states of the world and transitions are due to

the execution of capabilities (see Figure 10). Our system

builds the WTS with the contribution of the available

cloud capabilities.

The WTS is implemented as a blackboard cloud ser-

vice, i.e. accessible by all the capabilities, so that every

cloud capability may add new nodes and transitions in

a collaborative fashion. However, to avoid the concur-

rent modification of the same WTS, cloud capabilities

enforce a blind auction protocol [16] for deciding the

priority of write access, as described herein.

The blackboard service allows users to register a

new goal set. When this happens, it creates a new shared

WTS that only contains the initial state of the world

node. Subsequently, it starts a cycle of auctions, play-

ing the role of auctioneer, and it periodically sends a

call-for-bids to any potentially interested capability.

At the same time, each cloud capability starts an

expand-and-evaluate cycle, working on the portion of

WTS already available. They concurrently produce new

states and transitions and store them in their privately

memory space. These new states are evaluated accord-

ing to a global scoring function. This evaluation is used

for predicting how much the new state is promising in

respect to the whole goal-set.

Periodically, when new call-for-bid incomes, each

cloud capability selects the best state, it has generated

during past expand-and-evaluate iterations. The state

score is used for setting a bid for participating in the

auction. The auction winner gains the permission to

update the WTS.

This strategy rewards those capabilities that promise

to improve the WTS by increasing the global goal sat-

isfaction.

5.2 The Expand-and-Evaluate Cycle

When a user specifies a goal set to address, cloud ca-

pabilities enters in an expand-and-evaluate cycle (Fig-

ure 13). During this phase, the capability reads the

global WTS and generates local expansions for the graph.

Clearly, expansions are not synchronised among the

several capabilities. The cycle is described in the fol-

lowing.

1. Each capability selects those nodes of the WTS that

satisfy its pre-conditions;

2. The capability picks the most promising node, among

the selected ones (Figure 13.a);

d

Wi

d

a) selection of
the

highest
scored node

e

f

g

b) generating
new nodes

e

f

g

score = 2,5

score = 2,2

Visited

score = 3,1

score = 1

c). evaluating

G1’TC
is sat

EXPAND AND EVALUATE STRATEGY

Fig. 13 Steps of the Expand and Evaluate Strategy.

3. The capability simulates the effects of its wrapped

service by generating new states through the evolu-

tion property (Figure 13.b).

4. The capability generates a score for each new node

and stores them in a private data structure. The

more the state of the world is close to addressing

some goals, the higher is the score assigned to it

(Figure 13.c). A node is also marked as TC holdsi
or FS holdsi if the node satisfies respectively the

triggering condition TCi or the final state FSi of the

goal gi. More details about the score computation

may be found in the following subsections.

5.3 The Global Scoring Function

The aim of the scoring function is to predict how much

a state of the world is close to the final state where a

goal is satisfied. A state of the world is described by

a finite set of statements. We defined a function that

evaluates the potential effect of each of these statements

for addressing a goal. We defined a function to the aim

of producing a quantitative measurement. In fact, that

function rewards statements that provide a positive im-

pact to a goal, and it penalises statements that are less

effective. The function is defined as follows:

score(W) =
∑
gi

1 + num rel stats(W, gi)

num stats(W)
(3)

where, given a state W , num rel stats(W, gi) is de-

fined as the number of statements contained in W ∩
(TCg ∪ FSgi), whereas num stats(W) is the cardinal-

ity of W , i.e. the number of statements contained in W .

For instance, if W = {s1, s2, s3, s4, s5} and g = 〈s2 ∧
s8, s4 ∨ s5〉 then num stats = 5 and num rel stats = 3

because {s2, s4, s5} are relevant for g.

Figure 14 illustrates Function 3 plotted as a stacked

line chart for highlighting the score trends. Setting to

constant the num stats in the formula, the score is

higher the more the statements are relevant for the

Goal-Oriented Mashup 11

2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

The SCORE function

num statements

sc
or
e

num relevant
statements

0
1
2
3
4

Fig. 14 Line chart of the score function highlights
trends of the value when making either num stats(W) or
num rel stats(W, g) constant.

goal satisfaction. Conversely, making the num rel stats

constant, the score increases when the total number of

statements in W decreases.

This may be interpreted as follows: a state is inter-

esting if it promises to converge quickly to the desired

final state. Clearly, there is not warranty the predic-

tion based on this heuristic is either optimal or perfect,

but it empirically proved to be sufficient for the specific

purpose of speeding up the exploration of the graph.

5.4 The Auction Cycle

The auctioneer launches a new blind auction every con-

stant time intervals. The four steps of the auction phase

are shown in Figure 15.

The auction starts and a call-for-bid is sent to all the

capabilities. They have a fixed deadline to reply with

their bid (see Figure 15.a).

Each participant selects the node –from its private

expand list– with the highest utility, calculated as it

follows: the node’s score plus the number of TC holds

and FS holds for that state. The highest utility is the

bid to be sent back to the auctioneer (see Figure 15.b).

There is not counter-offer, the auction closes when

all capabilities replied or at a predefined deadline. The

highest bid wins the auction (see Figure 15.c).

Consequently, the winner pulls the selected node

from its private data structure to the global WTS, also

reporting eventual transitions with pre-existent nodes.

For instance, Figure 15.c shows that the new node f

is connected with its predecessor d from which it origi-

nated.

The procedure cycles again with a new auction until

a MAX number of configurations is discovered or if the

auctioneer receives only empty offers for a fixed number

of times (expanding the WTS is no more possible).

6 From the Transition System to the Mashup

This section describes how a configuration, extracted

from the WTS, is transformed in an efficient orchestra-

tion schema to be operationalized as a cloud application

mashup.

6.1 Identification of the Workflow Patterns

The first step is the identification of nodes and transi-

tions of the WTS that compose one of the three work-

flow patterns discussed in Section 2. The procedure vis-

its the graph and identifies when the structure presents

a simple sequence of transitions, an exclusive-choice or a

structured-loop. The procedure works by matching the

graph with the patterns shown in Table 6.1. The prece-

dence is the following: i) structured-loop, ii) exclusive-

choice and finally iii) sequence.

Table 1 The identification of the resulting configuration is
based on matching the three workflow patterns into the re-
sulting WTS structure.

Workflow Pattern WTS
structured-loop

XOR

exclusive-choice

XOR

sequence

An example of identification is shown in Figure 16.

Transitions are annotated with the corresponding ca-

pability used as a label for the arc.

The importance of establishing precedence is due to

the reciprocal inclusion of the three patterns. Whereas

the sequence is the most simple pattern to identify (see

the left side of Figure 16), an exclusive-choice often con-

tains also sequences (see the middle side of Figure 16).

Furthermore, the structured-loop must include a choice

(see the right side of Figure 16).

12 Sabatucci et. al.

AUCTION PHASE

f

Wi

score = 4,1
d

a) broadcast
call for bid

b) get highest scored expansion
and place a bid

c) terminate auction and
select winner

d) add expansion to
the shared artifact

WTS blackboard

utility
4,1

WTS blackboard

CC1
CC2

CC3

CC4

CCn

utility
2

utility
2.2

utility
1.5utility

3.8

WTS blackboard

CC2

Fig. 15 Steps of the Auction Cycle.

XOR

check_storehouse

generate_invoice
notify_stock_failure

upload_on_cloud

notify_storehouse_manager

XOR

retrieve_user_data

check_storehouse

generate_invoice
notify_stock_failure

XOR

XOR

wait_order

retrieve_user_data

add_user
check_storehouse

wait_user_data

send_reg_form

SEQUENCE EXCLUSIVE-CHOICE STRUCTURED-LOOP

upload_on_cloud

Fig. 16 Example of workflow patterns identified in the WTS: sequence, exclusive-choice and structured-loop.

6.2 Extracting Goal Operationalization

The second step is the identification of valid sub-graphs

of the WTS, in which all the goals are satisfied.

The identification of nodes where goal satisfaction

holds is executed during the WTS construction. In-

deed, special states of the world, where a goal’s TC

or FS holds, are marked with labels (TC holdsi and

FS holdsi respectively for the goal gi). Figure 17 re-

ports a portion of WTS generated for the fashion firm

example. Transitions are annotated with the correspond-

ing capability and nodes report the logic expressions

that are true in the corresponding state of world (from

W3 to W12). TCi and FSi respectively denote the trig-

gering condition and final state of the goal gi. So, for

instance, the final state of g1 and the trigger condi-

tion of g4 are satisfied in W8. This Figure highlights

the portion of the WTS where the satisfaction of g2
(to notify invoice) holds.

The goal operationalization procedure works as fol-

lows: given the goal gi, it browses the WTS for identi-

fying all the nodes in which respectively TCi and FSi

are verified. Subsequently it exploits patterns identified

XOR
CheckStorehouse

GenerateInvoice

UploadOnCloudStorage

NotifyFailure

W3

W6 W7

W8

W9

W12

Figure 8 reports an example of WTS generated for the
fashion firm running example.

The final phase is the extraction of configurations from the
final WTS. A configuration associates each goal of the goal-set
to a simple or composed capability.

The procedure we report searches for paths between states
where TCi holds and states where FSi holds, for each goal
gi. Since graph transitions are associated to capabilities, a path
represents a simple or composed capability for addressing gi.
Therefore, the resulting capability is obtained by aggregat-
ing the capabilities corresponding to the transitions of the
discovered path. In the example, a path is detected for the
goal [to notify invoice]. In Figure 8 this path –from TC2 to
FS2– is highlighted with a thicker line and the correspond-
ing capabilities are annotated. Consequently the composition
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age represents a solution for the goal [to notify invoice].

The whole set of configurations is obtained as a combination
of the capabilities discovered for each goal. The configurations
for the FashionFirm running example are shown in Figure 9.

VI. FROM CONFIGURATION TO MASHUP

This section describes how a configuration, extracted from
the WTS, is transformed in an effective workflow in order to
operationalize the cloud application mashup.

The transformation follows two principles:
• Principle 1: Dynamic Association between Capability

and Goals. Each capability – selected for addressing
a goal – will be executed according to the lifecycle
represented in Figure 10.

• Principle 2: Distributed Control. All the capabilities act
autonomously (in parallel) and interact to the aim of
coordinating their behavior. Interactions are driven by the
current state of the world and by the need of exchanging
some data objects.

The Principle 1 arises from the fact that each capability
contributes to address one of the goals. A triggering-condition
(TC) is associated to each goal and specifies when the goal
becomes ready. This is the first condition that must hold for
executing the related service. However, the capability also
requires a pre-condition must hold. At the same way, the post-
condition reveals the success or failure of the service. Finally,
the goal’s final state (FS) asserts when the goal has been
successfully addressed. Figure 10 summarizes a schema of
the typical flow of activities associated to a generic capability.

When several capabilities are requested for addressing the
goal-set then all the capability functional schemes must be
merged.

Principle 2 states schemes must be combined though a
parallel gateway (see Figure 11) thus generating a worklfow in
which each branch represents a different service (Figure 10).
Different branches interact by two different synchronization
approaches. Implicit mode: a branch waits until a condition of
the state of the world is true. This state is generally generated
as final state of a prior service of the workflow. This model is

TC1

FS1

FS1 and TC2

FS1 and TC2

FS1 and TC2

FS1 and FS2 and TC3

FS1 and FS4

FS1 and TC4

FS1 and FS2
and FS3

FS1 and TC4

FS1 and TC4

CheckStorehouse

OrderPortalMonitor

GenerateInvoice

UploadOnCloudStorage

ShareFileLink

RegisterNewUser

RetrieveUserData

SendAlert

NotifyTask

CheckUserInfo

RequestUserData

UploadOnCloudStorage

These conditions hold:
TC1(W1) = true
FS1(W2) = true
FS1(W3) ^ TC2(W3) = true
FS1(W4) ^ TC2(W4) = true
FS1(W5) ^ TC2(W4) = true
FS1(W6) ^ TC4(W6) = true
FS1(W7) ^ FS4(W7) = true
FS1(W8) ^ TC4(W8) = true
FS1(W9) ^ FS2(W9) ^ TC3(W9) = true
FS1(W10) ^ TC4(W10) = true
FS1(W11) ^ FS2(W11) ^ FS3(W11) = true

Fig. 8. Example of navigation of the WTS for identifying goal-satisfaction.
States are annotated with logic expressions of TCi/FSi, indicating which
conditions holds for the goal gi (TCi and FSi stay respectively for triggering
condition and final state of the goal gi). Transitions are annotates with
the corresponding capability responsible of adding the arc. A thicker line
highlights a path for goal g2 that corresponds to [to notify invoice] in the
FashionFirm running example.

implemented by means of a shared blackboard that stores the
current state of the world. Explicit mode: a branch requires
to process some data object that is produced as output by
another branch. In this case a Query Interaction protocol [3]
is employed to enable the direct exchange of data.

Figure 11 reports an exemplar slice of the workflow
(using the BPMN 2.0 notation) obtained by applying the
two transformation principles to the configuration 1 (shown
in Figure 9). We highlight the branches corresponding
the [to notify invoice] goal that involves three capabilities:
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age. The first condition available(order) ^ available(user)
is the same for the three branches because it is the goal’s
triggering condition. For sake of clarity the workflow has been
simplified to avoid duplicate activities, as shown in Figure 11.

Therefore, when an order has been received from a reg-
istered user, the workflow waits for three possible events:

Figure 8 reports an example of WTS generated for the
fashion firm running example.

The final phase is the extraction of configurations from the
final WTS. A configuration associates each goal of the goal-set
to a simple or composed capability.

The procedure we report searches for paths between states
where TCi holds and states where FSi holds, for each goal
gi. Since graph transitions are associated to capabilities, a path
represents a simple or composed capability for addressing gi.
Therefore, the resulting capability is obtained by aggregat-
ing the capabilities corresponding to the transitions of the
discovered path. In the example, a path is detected for the
goal [to notify invoice]. In Figure 8 this path –from TC2 to
FS2– is highlighted with a thicker line and the correspond-
ing capabilities are annotated. Consequently the composition
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age represents a solution for the goal [to notify invoice].

The whole set of configurations is obtained as a combination
of the capabilities discovered for each goal. The configurations
for the FashionFirm running example are shown in Figure 9.

VI. FROM CONFIGURATION TO MASHUP

This section describes how a configuration, extracted from
the WTS, is transformed in an effective workflow in order to
operationalize the cloud application mashup.

The transformation follows two principles:
• Principle 1: Dynamic Association between Capability

and Goals. Each capability – selected for addressing
a goal – will be executed according to the lifecycle
represented in Figure 10.

• Principle 2: Distributed Control. All the capabilities act
autonomously (in parallel) and interact to the aim of
coordinating their behavior. Interactions are driven by the
current state of the world and by the need of exchanging
some data objects.

The Principle 1 arises from the fact that each capability
contributes to address one of the goals. A triggering-condition
(TC) is associated to each goal and specifies when the goal
becomes ready. This is the first condition that must hold for
executing the related service. However, the capability also
requires a pre-condition must hold. At the same way, the post-
condition reveals the success or failure of the service. Finally,
the goal’s final state (FS) asserts when the goal has been
successfully addressed. Figure 10 summarizes a schema of
the typical flow of activities associated to a generic capability.

When several capabilities are requested for addressing the
goal-set then all the capability functional schemes must be
merged.

Principle 2 states schemes must be combined though a
parallel gateway (see Figure 11) thus generating a worklfow in
which each branch represents a different service (Figure 10).
Different branches interact by two different synchronization
approaches. Implicit mode: a branch waits until a condition of
the state of the world is true. This state is generally generated
as final state of a prior service of the workflow. This model is

TC1

FS1

FS1 and TC2

FS1 and TC2

FS1 and TC2

FS1 and FS2 and TC3

FS1 and FS4

FS1 and TC4

FS1 and FS2
and FS3

FS1 and TC4

FS1 and TC4

CheckStorehouse

OrderPortalMonitor

GenerateInvoice

UploadOnCloudStorage

ShareFileLink

RegisterNewUser

RetrieveUserData

SendAlert

NotifyTask

CheckUserInfo

RequestUserData

UploadOnCloudStorage

These conditions hold:
TC1(W1) = true
FS1(W2) = true
FS1(W3) ^ TC2(W3) = true
FS1(W4) ^ TC2(W4) = true
FS1(W5) ^ TC2(W4) = true
FS1(W6) ^ TC4(W6) = true
FS1(W7) ^ FS4(W7) = true
FS1(W8) ^ TC4(W8) = true
FS1(W9) ^ FS2(W9) ^ TC3(W9) = true
FS1(W10) ^ TC4(W10) = true
FS1(W11) ^ FS2(W11) ^ FS3(W11) = true

Fig. 8. Example of navigation of the WTS for identifying goal-satisfaction.
States are annotated with logic expressions of TCi/FSi, indicating which
conditions holds for the goal gi (TCi and FSi stay respectively for triggering
condition and final state of the goal gi). Transitions are annotates with
the corresponding capability responsible of adding the arc. A thicker line
highlights a path for goal g2 that corresponds to [to notify invoice] in the
FashionFirm running example.

implemented by means of a shared blackboard that stores the
current state of the world. Explicit mode: a branch requires
to process some data object that is produced as output by
another branch. In this case a Query Interaction protocol [3]
is employed to enable the direct exchange of data.

Figure 11 reports an exemplar slice of the workflow
(using the BPMN 2.0 notation) obtained by applying the
two transformation principles to the configuration 1 (shown
in Figure 9). We highlight the branches corresponding
the [to notify invoice] goal that involves three capabilities:
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age. The first condition available(order) ^ available(user)
is the same for the three branches because it is the goal’s
triggering condition. For sake of clarity the workflow has been
simplified to avoid duplicate activities, as shown in Figure 11.

Therefore, when an order has been received from a reg-
istered user, the workflow waits for three possible events:

Figure 8 reports an example of WTS generated for the
fashion firm running example.

The final phase is the extraction of configurations from the
final WTS. A configuration associates each goal of the goal-set
to a simple or composed capability.

The procedure we report searches for paths between states
where TCi holds and states where FSi holds, for each goal
gi. Since graph transitions are associated to capabilities, a path
represents a simple or composed capability for addressing gi.
Therefore, the resulting capability is obtained by aggregat-
ing the capabilities corresponding to the transitions of the
discovered path. In the example, a path is detected for the
goal [to notify invoice]. In Figure 8 this path –from TC2 to
FS2– is highlighted with a thicker line and the correspond-
ing capabilities are annotated. Consequently the composition
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age represents a solution for the goal [to notify invoice].

The whole set of configurations is obtained as a combination
of the capabilities discovered for each goal. The configurations
for the FashionFirm running example are shown in Figure 9.

VI. FROM CONFIGURATION TO MASHUP

This section describes how a configuration, extracted from
the WTS, is transformed in an effective workflow in order to
operationalize the cloud application mashup.

The transformation follows two principles:
• Principle 1: Dynamic Association between Capability

and Goals. Each capability – selected for addressing
a goal – will be executed according to the lifecycle
represented in Figure 10.

• Principle 2: Distributed Control. All the capabilities act
autonomously (in parallel) and interact to the aim of
coordinating their behavior. Interactions are driven by the
current state of the world and by the need of exchanging
some data objects.

The Principle 1 arises from the fact that each capability
contributes to address one of the goals. A triggering-condition
(TC) is associated to each goal and specifies when the goal
becomes ready. This is the first condition that must hold for
executing the related service. However, the capability also
requires a pre-condition must hold. At the same way, the post-
condition reveals the success or failure of the service. Finally,
the goal’s final state (FS) asserts when the goal has been
successfully addressed. Figure 10 summarizes a schema of
the typical flow of activities associated to a generic capability.

When several capabilities are requested for addressing the
goal-set then all the capability functional schemes must be
merged.

Principle 2 states schemes must be combined though a
parallel gateway (see Figure 11) thus generating a worklfow in
which each branch represents a different service (Figure 10).
Different branches interact by two different synchronization
approaches. Implicit mode: a branch waits until a condition of
the state of the world is true. This state is generally generated
as final state of a prior service of the workflow. This model is

TC1

FS1

FS1 and TC2

FS1 and TC2

FS1 and TC2

FS1 and FS2 and TC3

FS1 and FS4

FS1 and TC4

FS1 and FS2
and FS3

FS1 and TC4

FS1 and TC4

CheckStorehouse

OrderPortalMonitor

GenerateInvoice

UploadOnCloudStorage

ShareFileLink

RegisterNewUser

RetrieveUserData

SendAlert

NotifyTask

CheckUserInfo

RequestUserData

UploadOnCloudStorage

These conditions hold:
TC1(W1) = true
FS1(W2) = true
FS1(W3) ^ TC2(W3) = true
FS1(W4) ^ TC2(W4) = true
FS1(W5) ^ TC2(W4) = true
FS1(W6) ^ TC4(W6) = true
FS1(W7) ^ FS4(W7) = true
FS1(W8) ^ TC4(W8) = true
FS1(W9) ^ FS2(W9) ^ TC3(W9) = true
FS1(W10) ^ TC4(W10) = true
FS1(W11) ^ FS2(W11) ^ FS3(W11) = true

Fig. 8. Example of navigation of the WTS for identifying goal-satisfaction.
States are annotated with logic expressions of TCi/FSi, indicating which
conditions holds for the goal gi (TCi and FSi stay respectively for triggering
condition and final state of the goal gi). Transitions are annotates with
the corresponding capability responsible of adding the arc. A thicker line
highlights a path for goal g2 that corresponds to [to notify invoice] in the
FashionFirm running example.

implemented by means of a shared blackboard that stores the
current state of the world. Explicit mode: a branch requires
to process some data object that is produced as output by
another branch. In this case a Query Interaction protocol [3]
is employed to enable the direct exchange of data.

Figure 11 reports an exemplar slice of the workflow
(using the BPMN 2.0 notation) obtained by applying the
two transformation principles to the configuration 1 (shown
in Figure 9). We highlight the branches corresponding
the [to notify invoice] goal that involves three capabilities:
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age. The first condition available(order) ^ available(user)
is the same for the three branches because it is the goal’s
triggering condition. For sake of clarity the workflow has been
simplified to avoid duplicate activities, as shown in Figure 11.

Therefore, when an order has been received from a reg-
istered user, the workflow waits for three possible events:

Figure 8 reports an example of WTS generated for the
fashion firm running example.

The final phase is the extraction of configurations from the
final WTS. A configuration associates each goal of the goal-set
to a simple or composed capability.

The procedure we report searches for paths between states
where TCi holds and states where FSi holds, for each goal
gi. Since graph transitions are associated to capabilities, a path
represents a simple or composed capability for addressing gi.
Therefore, the resulting capability is obtained by aggregat-
ing the capabilities corresponding to the transitions of the
discovered path. In the example, a path is detected for the
goal [to notify invoice]. In Figure 8 this path –from TC2 to
FS2– is highlighted with a thicker line and the correspond-
ing capabilities are annotated. Consequently the composition
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age represents a solution for the goal [to notify invoice].

The whole set of configurations is obtained as a combination
of the capabilities discovered for each goal. The configurations
for the FashionFirm running example are shown in Figure 9.

VI. FROM CONFIGURATION TO MASHUP

This section describes how a configuration, extracted from
the WTS, is transformed in an effective workflow in order to
operationalize the cloud application mashup.

The transformation follows two principles:
• Principle 1: Dynamic Association between Capability

and Goals. Each capability – selected for addressing
a goal – will be executed according to the lifecycle
represented in Figure 10.

• Principle 2: Distributed Control. All the capabilities act
autonomously (in parallel) and interact to the aim of
coordinating their behavior. Interactions are driven by the
current state of the world and by the need of exchanging
some data objects.

The Principle 1 arises from the fact that each capability
contributes to address one of the goals. A triggering-condition
(TC) is associated to each goal and specifies when the goal
becomes ready. This is the first condition that must hold for
executing the related service. However, the capability also
requires a pre-condition must hold. At the same way, the post-
condition reveals the success or failure of the service. Finally,
the goal’s final state (FS) asserts when the goal has been
successfully addressed. Figure 10 summarizes a schema of
the typical flow of activities associated to a generic capability.

When several capabilities are requested for addressing the
goal-set then all the capability functional schemes must be
merged.

Principle 2 states schemes must be combined though a
parallel gateway (see Figure 11) thus generating a worklfow in
which each branch represents a different service (Figure 10).
Different branches interact by two different synchronization
approaches. Implicit mode: a branch waits until a condition of
the state of the world is true. This state is generally generated
as final state of a prior service of the workflow. This model is

CheckStorehouse

OrderPortalMonitor

GenerateInvoice

UploadOnCloudStorage

ShareFileLink

RegisterNewUser

RetrieveUserData

SendAlert

NotifyTask

CheckUserInfo

RequestUserData

UploadOnCloudStorage

W1

W3

W2

W6

W4

W5

W7

W8

W9

W10

W11

Figure 8 reports an example of WTS generated for the
fashion firm running example.

The final phase is the extraction of configurations from the
final WTS. A configuration associates each goal of the goal-set
to a simple or composed capability.

The procedure we report searches for paths between states
where TCi holds and states where FSi holds, for each goal
gi. Since graph transitions are associated to capabilities, a path
represents a simple or composed capability for addressing gi.
Therefore, the resulting capability is obtained by aggregat-
ing the capabilities corresponding to the transitions of the
discovered path. In the example, a path is detected for the
goal [to notify invoice]. In Figure 8 this path –from TC2 to
FS2– is highlighted with a thicker line and the correspond-
ing capabilities are annotated. Consequently the composition
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age represents a solution for the goal [to notify invoice].

The whole set of configurations is obtained as a combination
of the capabilities discovered for each goal. The configurations
for the FashionFirm running example are shown in Figure 9.

VI. FROM CONFIGURATION TO MASHUP

This section describes how a configuration, extracted from
the WTS, is transformed in an effective workflow in order to
operationalize the cloud application mashup.

The transformation follows two principles:
• Principle 1: Dynamic Association between Capability

and Goals. Each capability – selected for addressing
a goal – will be executed according to the lifecycle
represented in Figure 10.

• Principle 2: Distributed Control. All the capabilities act
autonomously (in parallel) and interact to the aim of
coordinating their behavior. Interactions are driven by the
current state of the world and by the need of exchanging
some data objects.

The Principle 1 arises from the fact that each capability
contributes to address one of the goals. A triggering-condition
(TC) is associated to each goal and specifies when the goal
becomes ready. This is the first condition that must hold for
executing the related service. However, the capability also
requires a pre-condition must hold. At the same way, the post-
condition reveals the success or failure of the service. Finally,
the goal’s final state (FS) asserts when the goal has been
successfully addressed. Figure 10 summarizes a schema of
the typical flow of activities associated to a generic capability.

When several capabilities are requested for addressing the
goal-set then all the capability functional schemes must be
merged.

Principle 2 states schemes must be combined though a
parallel gateway (see Figure 11) thus generating a worklfow in
which each branch represents a different service (Figure 10).
Different branches interact by two different synchronization
approaches. Implicit mode: a branch waits until a condition of
the state of the world is true. This state is generally generated
as final state of a prior service of the workflow. This model is

TC1

FS1

FS1 and TC2

FS1 and TC2

FS1 and TC2

FS1 and FS2 and TC3

FS1 and FS4

FS1 and TC4

FS1 and FS2
and FS3

FS1 and TC4

FS1 and TC4

CheckStorehouse

OrderPortalMonitor

GenerateInvoice

UploadOnCloudStorage

ShareFileLink

RegisterNewUser

RetrieveUserData

SendAlert

NotifyTask

CheckUserInfo

RequestUserData

UploadOnCloudStorage

These conditions hold:
TC1(W1) = true
FS1(W2) = true
FS1(W3) ^ TC2(W3) = true
FS1(W4) ^ TC2(W4) = true
FS1(W5) ^ TC2(W4) = true
FS1(W6) ^ TC4(W6) = true
FS1(W7) ^ FS4(W7) = true
FS1(W8) ^ TC4(W8) = true
FS1(W9) ^ FS2(W9) ^ TC3(W9) = true
FS1(W10) ^ TC4(W10) = true
FS1(W11) ^ FS2(W11) ^ FS3(W11) = true

Fig. 8. Example of navigation of the WTS for identifying goal-satisfaction.
States are annotated with logic expressions of TCi/FSi, indicating which
conditions holds for the goal gi (TCi and FSi stay respectively for triggering
condition and final state of the goal gi). Transitions are annotates with
the corresponding capability responsible of adding the arc. A thicker line
highlights a path for goal g2 that corresponds to [to notify invoice] in the
FashionFirm running example.

implemented by means of a shared blackboard that stores the
current state of the world. Explicit mode: a branch requires
to process some data object that is produced as output by
another branch. In this case a Query Interaction protocol [3]
is employed to enable the direct exchange of data.

Figure 11 reports an exemplar slice of the workflow
(using the BPMN 2.0 notation) obtained by applying the
two transformation principles to the configuration 1 (shown
in Figure 9). We highlight the branches corresponding
the [to notify invoice] goal that involves three capabilities:
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age. The first condition available(order) ^ available(user)
is the same for the three branches because it is the goal’s
triggering condition. For sake of clarity the workflow has been
simplified to avoid duplicate activities, as shown in Figure 11.

Therefore, when an order has been received from a reg-
istered user, the workflow waits for three possible events:

Figure 8 reports an example of WTS generated for the
fashion firm running example.

The final phase is the extraction of configurations from the
final WTS. A configuration associates each goal of the goal-set
to a simple or composed capability.

The procedure we report searches for paths between states
where TCi holds and states where FSi holds, for each goal
gi. Since graph transitions are associated to capabilities, a path
represents a simple or composed capability for addressing gi.
Therefore, the resulting capability is obtained by aggregat-
ing the capabilities corresponding to the transitions of the
discovered path. In the example, a path is detected for the
goal [to notify invoice]. In Figure 8 this path –from TC2 to
FS2– is highlighted with a thicker line and the correspond-
ing capabilities are annotated. Consequently the composition
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age represents a solution for the goal [to notify invoice].

The whole set of configurations is obtained as a combination
of the capabilities discovered for each goal. The configurations
for the FashionFirm running example are shown in Figure 9.

VI. FROM CONFIGURATION TO MASHUP

This section describes how a configuration, extracted from
the WTS, is transformed in an effective workflow in order to
operationalize the cloud application mashup.

The transformation follows two principles:
• Principle 1: Dynamic Association between Capability

and Goals. Each capability – selected for addressing
a goal – will be executed according to the lifecycle
represented in Figure 10.

• Principle 2: Distributed Control. All the capabilities act
autonomously (in parallel) and interact to the aim of
coordinating their behavior. Interactions are driven by the
current state of the world and by the need of exchanging
some data objects.

The Principle 1 arises from the fact that each capability
contributes to address one of the goals. A triggering-condition
(TC) is associated to each goal and specifies when the goal
becomes ready. This is the first condition that must hold for
executing the related service. However, the capability also
requires a pre-condition must hold. At the same way, the post-
condition reveals the success or failure of the service. Finally,
the goal’s final state (FS) asserts when the goal has been
successfully addressed. Figure 10 summarizes a schema of
the typical flow of activities associated to a generic capability.

When several capabilities are requested for addressing the
goal-set then all the capability functional schemes must be
merged.

Principle 2 states schemes must be combined though a
parallel gateway (see Figure 11) thus generating a worklfow in
which each branch represents a different service (Figure 10).
Different branches interact by two different synchronization
approaches. Implicit mode: a branch waits until a condition of
the state of the world is true. This state is generally generated
as final state of a prior service of the workflow. This model is

TC1

FS1

FS1 and TC2

FS1 and TC2

FS1 and TC2

FS1 and FS2 and TC3

FS1 and FS4

FS1 and TC4

FS1 and FS2
and FS3

FS1 and TC4

FS1 and TC4

CheckStorehouse

OrderPortalMonitor

GenerateInvoice

UploadOnCloudStorage

ShareFileLink

RegisterNewUser

RetrieveUserData

SendAlert

NotifyTask

CheckUserInfo

RequestUserData

UploadOnCloudStorage

These conditions hold:
TC1(W1) = true
FS1(W2) = true
FS1(W3) ^ TC2(W3) = true
FS1(W4) ^ TC2(W4) = true
FS1(W5) ^ TC2(W4) = true
FS1(W6) ^ TC4(W6) = true
FS1(W7) ^ FS4(W7) = true
FS1(W8) ^ TC4(W8) = true
FS1(W9) ^ FS2(W9) ^ TC3(W9) = true
FS1(W10) ^ TC4(W10) = true
FS1(W11) ^ FS2(W11) ^ FS3(W11) = true

Fig. 8. Example of navigation of the WTS for identifying goal-satisfaction.
States are annotated with logic expressions of TCi/FSi, indicating which
conditions holds for the goal gi (TCi and FSi stay respectively for triggering
condition and final state of the goal gi). Transitions are annotates with
the corresponding capability responsible of adding the arc. A thicker line
highlights a path for goal g2 that corresponds to [to notify invoice] in the
FashionFirm running example.

implemented by means of a shared blackboard that stores the
current state of the world. Explicit mode: a branch requires
to process some data object that is produced as output by
another branch. In this case a Query Interaction protocol [3]
is employed to enable the direct exchange of data.

Figure 11 reports an exemplar slice of the workflow
(using the BPMN 2.0 notation) obtained by applying the
two transformation principles to the configuration 1 (shown
in Figure 9). We highlight the branches corresponding
the [to notify invoice] goal that involves three capabilities:
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age. The first condition available(order) ^ available(user)
is the same for the three branches because it is the goal’s
triggering condition. For sake of clarity the workflow has been
simplified to avoid duplicate activities, as shown in Figure 11.

Therefore, when an order has been received from a reg-
istered user, the workflow waits for three possible events:

Figure 8 reports an example of WTS generated for the
fashion firm running example.

The final phase is the extraction of configurations from the
final WTS. A configuration associates each goal of the goal-set
to a simple or composed capability.

The procedure we report searches for paths between states
where TCi holds and states where FSi holds, for each goal
gi. Since graph transitions are associated to capabilities, a path
represents a simple or composed capability for addressing gi.
Therefore, the resulting capability is obtained by aggregat-
ing the capabilities corresponding to the transitions of the
discovered path. In the example, a path is detected for the
goal [to notify invoice]. In Figure 8 this path –from TC2 to
FS2– is highlighted with a thicker line and the correspond-
ing capabilities are annotated. Consequently the composition
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age represents a solution for the goal [to notify invoice].

The whole set of configurations is obtained as a combination
of the capabilities discovered for each goal. The configurations
for the FashionFirm running example are shown in Figure 9.

VI. FROM CONFIGURATION TO MASHUP

This section describes how a configuration, extracted from
the WTS, is transformed in an effective workflow in order to
operationalize the cloud application mashup.

The transformation follows two principles:
• Principle 1: Dynamic Association between Capability

and Goals. Each capability – selected for addressing
a goal – will be executed according to the lifecycle
represented in Figure 10.

• Principle 2: Distributed Control. All the capabilities act
autonomously (in parallel) and interact to the aim of
coordinating their behavior. Interactions are driven by the
current state of the world and by the need of exchanging
some data objects.

The Principle 1 arises from the fact that each capability
contributes to address one of the goals. A triggering-condition
(TC) is associated to each goal and specifies when the goal
becomes ready. This is the first condition that must hold for
executing the related service. However, the capability also
requires a pre-condition must hold. At the same way, the post-
condition reveals the success or failure of the service. Finally,
the goal’s final state (FS) asserts when the goal has been
successfully addressed. Figure 10 summarizes a schema of
the typical flow of activities associated to a generic capability.

When several capabilities are requested for addressing the
goal-set then all the capability functional schemes must be
merged.

Principle 2 states schemes must be combined though a
parallel gateway (see Figure 11) thus generating a worklfow in
which each branch represents a different service (Figure 10).
Different branches interact by two different synchronization
approaches. Implicit mode: a branch waits until a condition of
the state of the world is true. This state is generally generated
as final state of a prior service of the workflow. This model is

TC1

FS1

FS1 and TC2

FS1 and TC2

FS1 and TC2

FS1 and FS2 and TC3

FS1 and FS4

FS1 and TC4

FS1 and FS2
and FS3

FS1 and TC4

FS1 and TC4

CheckStorehouse

OrderPortalMonitor

GenerateInvoice

UploadOnCloudStorage

ShareFileLink

RegisterNewUser

RetrieveUserData

SendAlert

NotifyTask

CheckUserInfo

RequestUserData

UploadOnCloudStorage

These conditions hold:
TC1(W1) = true
FS1(W2) = true
FS1(W3) ^ TC2(W3) = true
FS1(W4) ^ TC2(W4) = true
FS1(W5) ^ TC2(W4) = true
FS1(W6) ^ TC4(W6) = true
FS1(W7) ^ FS4(W7) = true
FS1(W8) ^ TC4(W8) = true
FS1(W9) ^ FS2(W9) ^ TC3(W9) = true
FS1(W10) ^ TC4(W10) = true
FS1(W11) ^ FS2(W11) ^ FS3(W11) = true

Fig. 8. Example of navigation of the WTS for identifying goal-satisfaction.
States are annotated with logic expressions of TCi/FSi, indicating which
conditions holds for the goal gi (TCi and FSi stay respectively for triggering
condition and final state of the goal gi). Transitions are annotates with
the corresponding capability responsible of adding the arc. A thicker line
highlights a path for goal g2 that corresponds to [to notify invoice] in the
FashionFirm running example.

implemented by means of a shared blackboard that stores the
current state of the world. Explicit mode: a branch requires
to process some data object that is produced as output by
another branch. In this case a Query Interaction protocol [3]
is employed to enable the direct exchange of data.

Figure 11 reports an exemplar slice of the workflow
(using the BPMN 2.0 notation) obtained by applying the
two transformation principles to the configuration 1 (shown
in Figure 9). We highlight the branches corresponding
the [to notify invoice] goal that involves three capabilities:
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age. The first condition available(order) ^ available(user)
is the same for the three branches because it is the goal’s
triggering condition. For sake of clarity the workflow has been
simplified to avoid duplicate activities, as shown in Figure 11.

Therefore, when an order has been received from a reg-
istered user, the workflow waits for three possible events:

Figure 8 reports an example of WTS generated for the
fashion firm running example.

The final phase is the extraction of configurations from the
final WTS. A configuration associates each goal of the goal-set
to a simple or composed capability.

The procedure we report searches for paths between states
where TCi holds and states where FSi holds, for each goal
gi. Since graph transitions are associated to capabilities, a path
represents a simple or composed capability for addressing gi.
Therefore, the resulting capability is obtained by aggregat-
ing the capabilities corresponding to the transitions of the
discovered path. In the example, a path is detected for the
goal [to notify invoice]. In Figure 8 this path –from TC2 to
FS2– is highlighted with a thicker line and the correspond-
ing capabilities are annotated. Consequently the composition
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age represents a solution for the goal [to notify invoice].

The whole set of configurations is obtained as a combination
of the capabilities discovered for each goal. The configurations
for the FashionFirm running example are shown in Figure 9.

VI. FROM CONFIGURATION TO MASHUP

This section describes how a configuration, extracted from
the WTS, is transformed in an effective workflow in order to
operationalize the cloud application mashup.

The transformation follows two principles:
• Principle 1: Dynamic Association between Capability

and Goals. Each capability – selected for addressing
a goal – will be executed according to the lifecycle
represented in Figure 10.

• Principle 2: Distributed Control. All the capabilities act
autonomously (in parallel) and interact to the aim of
coordinating their behavior. Interactions are driven by the
current state of the world and by the need of exchanging
some data objects.

The Principle 1 arises from the fact that each capability
contributes to address one of the goals. A triggering-condition
(TC) is associated to each goal and specifies when the goal
becomes ready. This is the first condition that must hold for
executing the related service. However, the capability also
requires a pre-condition must hold. At the same way, the post-
condition reveals the success or failure of the service. Finally,
the goal’s final state (FS) asserts when the goal has been
successfully addressed. Figure 10 summarizes a schema of
the typical flow of activities associated to a generic capability.

When several capabilities are requested for addressing the
goal-set then all the capability functional schemes must be
merged.

Principle 2 states schemes must be combined though a
parallel gateway (see Figure 11) thus generating a worklfow in
which each branch represents a different service (Figure 10).
Different branches interact by two different synchronization
approaches. Implicit mode: a branch waits until a condition of
the state of the world is true. This state is generally generated
as final state of a prior service of the workflow. This model is

TC1

FS1

FS1 and TC2

FS1 and TC2

FS1 and TC2

FS1 and FS2 and TC3

FS1 and FS4

FS1 and TC4

FS1 and FS2
and FS3

FS1 and TC4

FS1 and TC4

CheckStorehouse

OrderPortalMonitor

GenerateInvoice

UploadOnCloudStorage

ShareFileLink

RegisterNewUser

RetrieveUserData

SendAlert

NotifyTask

CheckUserInfo

RequestUserData

UploadOnCloudStorage

These conditions hold:
TC1(W1) = true
FS1(W2) = true
FS1(W3) ^ TC2(W3) = true
FS1(W4) ^ TC2(W4) = true
FS1(W5) ^ TC2(W4) = true
FS1(W6) ^ TC4(W6) = true
FS1(W7) ^ FS4(W7) = true
FS1(W8) ^ TC4(W8) = true
FS1(W9) ^ FS2(W9) ^ TC3(W9) = true
FS1(W10) ^ TC4(W10) = true
FS1(W11) ^ FS2(W11) ^ FS3(W11) = true

Fig. 8. Example of navigation of the WTS for identifying goal-satisfaction.
States are annotated with logic expressions of TCi/FSi, indicating which
conditions holds for the goal gi (TCi and FSi stay respectively for triggering
condition and final state of the goal gi). Transitions are annotates with
the corresponding capability responsible of adding the arc. A thicker line
highlights a path for goal g2 that corresponds to [to notify invoice] in the
FashionFirm running example.

implemented by means of a shared blackboard that stores the
current state of the world. Explicit mode: a branch requires
to process some data object that is produced as output by
another branch. In this case a Query Interaction protocol [3]
is employed to enable the direct exchange of data.

Figure 11 reports an exemplar slice of the workflow
(using the BPMN 2.0 notation) obtained by applying the
two transformation principles to the configuration 1 (shown
in Figure 9). We highlight the branches corresponding
the [to notify invoice] goal that involves three capabilities:
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age. The first condition available(order) ^ available(user)
is the same for the three branches because it is the goal’s
triggering condition. For sake of clarity the workflow has been
simplified to avoid duplicate activities, as shown in Figure 11.

Therefore, when an order has been received from a reg-
istered user, the workflow waits for three possible events:

These conditions hold:
TC1(W1) = true
FS1(W2) = true
FS1(W3) ^ TC2(W3) = true
FS1(W4) ^ TC2(W4) = true
FS1(W5) ^ TC2(W4) = true
FS1(W6) ^ TC4(W6) = true
FS1(W7) ^ FS4(W7) = true
FS1(W8) ^ TC4(W8) = true
FS1(W9) ^ FS2(W9) ^ TC3(W9) = true
FS1(W10) ^ TC4(W10) = true
FS1(W11) ^ FS2(W11) ^ FS3(W11) = true

Fig. 8. Example of navigation of the WTS for identifying goal-satisfaction.
States are annotated with logic expressions of TCi/FSi, indicating which
conditions holds for the goal gi (TCi and FSi stay respectively for triggering
condition and final state of the goal gi). Transitions are annotates with
the corresponding capability responsible of adding the arc. A thicker line
highlights a path for goal g2 that corresponds to [to notify invoice] in the
FashionFirm running example.

implemented by means of a shared blackboard that stores the
current state of the world. Explicit mode: a branch requires
to process some data object that is produced as output by
another branch. In this case a Query Interaction protocol [3]
is employed to enable the direct exchange of data.

Figure 11 reports an exemplar slice of the workflow
(using the BPMN 2.0 notation) obtained by applying the
two transformation principles to the configuration 1 (shown
in Figure 9). We highlight the branches corresponding
the [to notify invoice] goal that involves three capabilities:
CheckStorehouse, GenerateInvoice and UploadOnCloudStor-
age. The first condition available(order) ^ available(user)
is the same for the three branches because it is the goal’s
triggering condition. For sake of clarity the workflow has been
simplified to avoid duplicate activities, as shown in Figure 11.

Therefore, when an order has been received from a reg-
istered user, the workflow waits for three possible events:

Fig. 17 Example of navigation of the WTS for identifying
suitable configurations.

in the previous step for building the sub-graph in which

the capabilities may be used for addressing gi. Aggre-

gating the patterns (rather than single nodes) has the

effect that the resulting sub-graph is robust with re-

spect to both the exclusive-choice and the structured-

loop patterns. Indeed, if the identified portion of the

graph contains a choice or a loop, this structure is not

truncated. For instance, in Figure 17, goal g2 would be

Goal-Oriented Mashup 13

satisfied by the sequence (W3,W6,W8,W9), however

W3 is involved in a exclusive-choice pattern, thus the

resulting structure must also include the node W7, for

completing the exclusive-choice pattern.

6.3 The Resulting Orchestration Plans

The extracted configuration become executable when

it is converted into an orchestration business plan. The

main issue of this transformation is that a configuration

is made of goals and capabilities, whereas an orchestra-

tion plan is a business process made of tasks, events,

gateways and sequence/data/message flows. The trans-

formation follows two principles:

– Principle 1: Dynamic Association between Capabil-

ity and Goals. Each capability follows the lifecycle

represented in Figure 18.

– Principle 2: Distributed Control. All the capabili-

ties act autonomously (in parallel) and interact each

other, with the aim of coordinating their behaviour.

Interactions are driven by the need of exchanging

data objects and by the external environment.

Principle 1 arises from the fact that each capability

contributes to addressing one of the goals. A trigger-

condition (TC) is associated with each goal, and it

specifies when the goal may be pursued, and constitute

the first condition that must hold for executing the re-

lated service. However, the capability also requires that

a pre-condition must hold. At the same way, the post-

condition reveals the success or failure of the service.

Finally, the goal’s final state (FS) asserts when the goal

has been successfully addressed. Figure 18 summarises

a schema of the typical flow of activities associated with

a generic capability.

When several capabilities are requested for address-

ing the goal set then all the capability functional schemes

must be merged.

Principle 2 states all the schemas must be combined

to work concurrently (see Figure 19). This basically

means generating a workflow in which each branch rep-

resents a different service (Figure 18). However, work-

flow patterns specified in the configuration regulate the

way branches are composed. Different branches interact

by two distinct synchronisation approaches.

Implicit mode: a branch waits until a condition of

the state of the world is true. This state is generated as

the final state of a prior service of the workflow. This

model is specifically suitable for sequences of capabili-

ties. It is implemented by means of a shared blackboard

that stores the current state of the world.

Explicit mode: a branch requires to process some-

thing (a variable, a data object, a message) that is

produced as output by another branch. In this case, a

Query Interaction protocol [3] is employed to enable the

direct exchange of data. This model is specifically suit-

able for implementing exclusive-choice and structured-

loop patterns.

Figure 19 reports an exemplary slice of the workflow

(using the BPMN 2.0 notation) obtained by applying

the two transformation principles to the configuration 1

(shown in Figure 11). We highlight the branches corre-

sponding the goal [to notify invoice] that involve three

capabilities: CheckStorehouse, GenerateInvoice and Up-

loadOnCloudStorage.

The first condition, available(order)∧ available(user),
is the same for the three branches because it is the

goal’s triggering condition. For the sake of clarity, the

workflow is optimized to avoid duplicate activities.

Therefore, when an order has been received from a

registered user, the workflow waits for three possible

events: i) an order data object to be processed, ii) a

notification that the order has been accepted, or iii)

an invoice to deliver. These are the entry points for

the branches corresponding to the three capabilities to

be executed: (check storehouse, generate invoice,

upload on cloud storage).

For example, after the service check storehouse is

executed, the capability’s post-condition and the goal’s

final state are checked. An example of explicit syn-

chronisation happens between the second and the third

branches: the invoice data object is produced by the

service GenerateInvoice and consumed by the Upload-

OnCloudStorage.

Figure 20 reports the aforementioned scenario with

execution with some screenshots concerning the front-

end parts of the exploited capabilities.

7 Related Work

The current state of the art in cloud computing de-

lineates mashup as an innovative technology for the

integration of cloud applications [22,1,18]. Compared

to traditional ‘developer-centric’ composition technolo-

gies, a mashup is inspired by principles of flexibility and

user-friendliness.

OpenCloudware [2] and FIWARE [12] represent ex-

amples of interesting initiatives that have begun imple-

menting this vision through a backend infrastructure.

OpenCloudware [2] is a project coordinated by France

Telecom Orange. It aims at building an open software

engineering platform (PaaS) for the collaborative de-

velopment of distributed applications to be deployed on

multiple cloud infrastructures (IaaS). OpenCloudware

supports mashup through a set of tools for managing

14 Sabatucci et. al.

Check
Goal TC

Check
Capability

pre-condition
Invoke the

Service
Check Capability
post-condition

Check
input Data

Objects

Check Goal
final-state

trigger capability failure trigger goal failure

Fig. 18 Flow of activities corresponding to the execution schema related to a generic association (goal,capability).

 check_storehouse

Check
available(invoice) upload_on_cloud_storage Check

uploaded_on_cloud(invoice)

Check
accepted(order)OR
refused(order)

trigger capability failure

trigger capability failure… …

Order

Wait
Order data object

exists

… …

Invoice Invoice
[uploaded_on_cloud]

generate_invoice Check
available(invoice)

trigger capability failure

Check
accepted(order)

Check
registered(user)

AND
available(order)

Check
MESSAGE invoice SENT

TO THE user ROLE

trigger unexpected state

Fig. 19 Overview of the resulting workflow equivalent to a full-parallel execution model. Each branch of the workflow corre-
sponds to a capability. It is built by instantiating and optimizing the lifecycle presented in Figure 18 with specific goal and
capability properties.

the lifecycle of such applications from many points of

view: modelling, developing, deployment and orchestra-

tion. The composition of OpenCloudware services is op-

erated through the definition of a Service Level Agree-

ment. In [1] it is the responsibility of the system ar-

chitect to define this contract. The authors provide a

complex component, based on a MAPE-K loop [7], able

to provide autonomic behaviour at the component level.

Our approach extends this work because cloud capabil-

ities are able of automatically generating the definition

of their composition to be executed.

Conversely, FIWARE is an open architecture and a

reference implementation of a service infrastructure [12]

whose mission is: “to build an open, sustainable ecosys-

tem around public, royalty-free and implementation-

driven software platform standards that will ease the

development of new Smart Applications (SaaS) in mul-

tiple sectors”. FIWARE provides compelling software

components, available through APIs, able to provide

valuable Cloud platform functionalities. In particular,

it offers an application mashup platform in which end

users without programming skills can easily create web

applications by manually integrating heterogeneous data,

application logic, and UI components sourced from the

Web. Generic Enablers are similar to our capabilities,

but they lack the ability to interact autonomously. Com-

posing them requires a deep knowledge of architecture

and its API [10]. Integrating our approach with FI-

WARE’s GE would reduce the time of development

of the whole solution increasing modularity, scalability

and flexibility of the final product.

Helin and Laukkanen [17] present an approach for

composing workflows that are based on semantic type

matching. As well as our approach, authors highlight

the importance of ontology for creating semantically

annotated services. The main difference is that their

approach mainly automatizes finding and matching se-

mantically similar web services, whereas the composi-

tion still requires the human intervention during the

composition process.

In [6] authors model web service composition as

a planning problem and use nondeterministic transi-

tion systems where a composition is achieved by model

checking. Despite there exist similarities with our work,

their strategy for building the transition system is not

specifically suitable for running in a distributed fashion,

a requirement that is necessary for the Cloud environ-

ment.

Another related work is Colombo [4] a framework

for automatic web service composition that exploits re-

lational database schema, atomic processes, message

passing and a finite-state transition system. As well

as our approach, they introduce the goal service, i.e.

they make explicit that a composite service is aggre-

gated for addressing a goal. The main difference is that

in Colombo a service goal is directly represented as a

transition system, that demands a user to learn very

technical skills.

Goal-Oriented Mashup 15

CheckStorehouse

OrderPortalMonitor

GenerateInvoice

NotifyTask

CheckUserInfo

UploadOnCloudStorage

W1

W3

W2

W6

W8

W9

W11

Fig. 20 Execution of a scenario for the fashion firm running
example. Some screenshots of the cloud application mashup
have been attached to the capabilities of configuration 1.

The goal-oriented approach for self-configuring cloud

application mashups provides an alternative vision with

respect to the classic workflow model definition. It aims

at decoupling the technical skills for developing a ser-

vice (how) from the analytic skill of describing mashup

compositions (what). The result is an autonomic com-

position of services based on dynamic user’s goals. The

output is provided as a classical business process schema

that a workflow engine is able to execute.

A different execution approach is followed by Blanchet

et al. [5], who propose to view service orchestration as

a conversation among intelligent agents, each one re-

sponsible for delivering the services of a participating

organisation. An agent also recognises mismatches be-

tween its own workflow model and the models of other

agents.

Another execution model is provided by OSIRIS [29],

an Open Service Infrastructure for Reliable and In-

tegrated process Support that consists of a peer-to-

peer decentralised service execution engine and organ-

ises services into a self-organizing ring topology.

Conceptually close to our orchestration model, Hahn

and Fischer, in [15] illustrate how a service choreog-

raphy can easily be implemented through holons. An

holon is a highly scalable and distributed organisation

of autonomous entities based on a recursive approach to

hierarchy. Their approach is a design-to-code technique

based on model-driven transformations which result is

a holonic multi-agent system. However, there are many

works that study strategies for dynamic formation of

holons for executing complex activities.

In the context of the SASSY research project [13],

Gomaa and Hashimoto use software adaptation pat-

terns for Service-Oriented Applications. The goal is not

only to execute a mashup but to dynamically adapt

distributed transactions at run-time. This is possible

by separating the concerns of individual components of

the architecture from concerns of dynamic adaptation.

In their approach, the solution has been using a cen-

tral manager that works as connector adaptation state-

machine.

On the same direction, Ghezzi et al. [11] propose

ADAM (ADAptive Model-driven execution) a mixed

approach between model transformation techniques and

probability theory. The modelling part consists of creat-

ing an annotated UML Activity diagram whose branches

can have a probability assigned, plus an annotated im-

plementation. Then an activity diagram becomes an

MDP (Markov Decision Process). It is possible to cal-

culate the possible values for the different executions

and thus navigate the model in order to execute it.

A topic that is currently out of our work is the man-

agement of the QoS. Grassi et al. [14] propose a QoS-

aware decentralised service assembly based on a dy-

namic set of agents may enter/leave the system, each

offering a specific service. In this context, producing

fully resolved assemblies is complicated by dependen-

cies among service. Moreover, non-functional require-

ments and only the currently available services should

be considered. Even further, all of this should be done

using decentralised self-assembly (no external control,

dynamic operation, no central control).

Concluding, in an open market paradigm, trust and

reputation are frequently used to regulate social inter-

actions and is to support decision-making when there

is incomplete information. There are many works on

16 Sabatucci et. al.

service selection that incorporate trust in peer-to-peer

networks. The novelty in [33] is a process for formu-

lating trust as a belief in what a service will deliver

based on evidence such as credential authority, expe-

rience, reputation and recommendation from multiple

sources. Trust is then calculated as a function of beliefs,

each of which may use different evidence types. So the

problem is to create a trust model that allows for trust

calculation.

8 Conclusions

In this paper, we describe our approach to the devel-

opment of Cloud Application Mashup. This approach

has been exploited in the context of a research project

whose some characteristics have been presented as run-

ning example.

Our approach is based on the decoupling of what

to do from how to do it. To this aim, we used a three

levels architecture where the user specifies his problem

and automatic tools build the resulting application.

On the developer side, services must be encapsu-

lated within Cloud Capabilities, lively and autonomous

SaaS applications that provide reasoning and composi-

tion facilities.

On the final user side, she has to define the business

logic of the mashup in the form of goal-set as Goal-

SPEC specifications. There is indeed the need of some

minimal skill in order to specify the problem to be re-

solved. Goals must be specified adopting some ontolog-

ical formality and conflict-free. In order to reduce the

complexity of this work, off-line tools – such as that

presented in [25] – may help the user in defining his

desired application.

Service providers could have their own goals too. We

are still working on integrating a third component close

to goals and capabilities: norms. Norms are rules that

must hold during all the phases of self-configuration

but also during service orchestration and execution. To

date, this is yet an ongoing work.

When both capabilities and goals are specified, then

we can build a new mashup application just composing

available cloud applications or web services exploiting

the proactive characteristic of cloud capabilities as long

as these exist in the repository. Capabilities can be fig-

ured out as proactive entities that bind an abstract de-

scription of some action to a real web service or cloud

application. The main feature of cloud capabilities is to

be ‘social’ i.e. able to interact in order to generate a

shared solution to the set of user’s goals.

The novelty of our approach lies in the fact that

the user does not need to know how his mashup appli-

cation will be composed or which components will be

assembled. Each capability corresponds to specialised

web services or cloud applications. Furthermore, redun-

dant capabilities can make the resulting application safe

from any service failure.

All these features are implemented in a middleware [26]

that offers a whole architecture for monitoring goal in-

jections, self-configuring ad-hoc solutions and finally

to orchestrate Cloud components. The approach is not

tied to a specific application domain. Indeed the spec-

ification of a domain ontology is a fundamental step

for customising the middleware for the specific work-

ing context. Examples of different customizations can

be found in the website5. To date, the middleware has

been adopted for implementing a document sharing so-

lution, a cloud mashup platform (the running example

reported in this paper), a risk management system and

a smart travel agency.

9 Acknowledgment

The research was partially funded by the Autonomous

Region of Sicily, Project OCCP (Open Cloud Com-

puting Platform), within the Regional Operative Plans

(PO-FESR) of the EU Community.

References

1. T. Aubonnet, L. Henrio, S. Kessal, O. Kulankhina,
F. Lemoine, E. Madelaine, C. Ruz, and N. Simoni. Man-
agement of service compositionbased on self-controlled
components. Journal of Internet Services and Applica-
tions, 6(1):1–17, 2015.

2. T. Aubonnet and N. Simoni. Self-control cloud services.
In Network Computing and Applications (NCA), 2014
IEEE 13th International Symposium on, pages 282–286.
IEEE, 2014.

3. F. Bellifemine, A. Poggi, and G. Rimassa. Developing
multi-agent systems with a fipa-compliant agent frame-
work. Software-Practice and Experience, 31(2):103–128,
2001.

4. D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and
M. Mecella. Automatic composition of transition-based
semantic web services with messaging. In Proceedings
of the 31st international conference on Very large data
bases, pages 613–624. VLDB Endowment, 2005.

5. W. Blanchet, E. Stroulia, and R. Elio. Supporting adap-
tive web-service orchestration with an agent conversation
framework. In Web Services, 2005. ICWS 2005. Pro-
ceedings. 2005 IEEE International Conference on. IEEE,
2005.

6. M. Carman, L. Serafini, and P. Traverso. Web service
composition as planning. In ICAPS 2003 workshop on
planning for web services, pages 1636–1642, 2003.

7. B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi,
J. Magee, J. Andersson, B. Becker, N. Bencomo, Y. Brun,
B. Cukic, et al. Software engineering for self-adaptive
systems: A research roadmap. Springer, 2009.

5 http://aose.pa.icar.cnr.it/MUSA/

Goal-Oriented Mashup 17

8. M. Cossentino, D. Dalle Nogare, R. Giancarlo, C. Lodato,
S. Lopes, P. Ribino, L. Sabatucci, and V. Seidita. Gimt:
A tool for ontology and goal modeling in bdi multi-agent
design. In Workshop” Dagli Oggetti agli Agenti”, 2014.

9. E. A. Emerson. Temporal and modal logic. Handbook of
Theoretical Computer Science, Volume B: Formal Mod-
els and Sematics (B), 995(1072):5, 1990.

10. M. Fazio, A. Celesti, F. G. Márquez, A. Glikson, and
M. Villari. Exploiting the fiware cloud platform to de-
velop a remote patient monitoring system. In Computers
and Communication (ISCC), 2015 IEEE Symposium on,
pages 264–270. IEEE, 2015.

11. C. Ghezzi, L. S. Pinto, P. Spoletini, and G. Tambur-
relli. Managing non-functional uncertainty via model-
driven adaptivity. In Proceedings of the 2013 Interna-
tional Conference on Software Engineering, pages 33–42.
IEEE Press, 2013.

12. A. Glikson. Fi-ware: Core platform for future internet
applications. In Proceedings of the 4th Annual Interna-
tional Conference on Systems and Storage, 2011.

13. H. Gomaa and K. Hashimoto. Dynamic self-adaptation
for distributed service-oriented transactions. In Soft-
ware Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS), 2012 ICSE Workshop on, pages 11–20,
2012.

14. V. Grassi, M. Marzolla, and R. Mirandola. Qos-aware
fully decentralized service assembly. In Proceedings of the
8th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, pages 53–62.
IEEE Press, 2013.

15. C. Hahn and K. Fischer. Service composition in holonic
multiagent systems: Model-driven choreography and or-
chestration. In Holonic and Multi-Agent Systems for
Manufacturing, pages 47–58. Springer, 2007.

16. V. Krishna. Auction theory. Academic press, 2009.
17. M. Laukkanen and H. Helin. Composing workflows of

semantic web services. In Extending Web Services Tech-
nologies, pages 209–228. Springer, 2004.

18. S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and
A. Ghalsasi. Cloud computing—the business perspective.
Decision support systems, 51(1):176–189, 2011.

19. D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDer-
mott, S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia,
T. Payne, et al. Owl-s: Semantic markup for web services.
W3C member submission, 22:2007–04, 2004.

20. B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid.
Composing web services on the semantic web. The VLDB
Journal—The International Journal on Very Large Data
Bases, 12(4):333–351, 2003.

21. A. Newell. The knowledge level. Artificial intelligence,
18(1):87–127, 1982.

22. M. P. Papazoglou and W.-J. van den Heuvel. Blueprint-
ing the cloud. IEEE Internet Computing, 6:74–79, 2011.

23. M. Pistore and P. Traverso. Planning as model check-
ing for extended goals in non-deterministic domains. In
IJCAI, volume 1, pages 479–486, 2001.

24. L. Sabatucci and M. Cossentino. From Means-End Anal-
ysis to Proactive Means-End Reasoning. In Proceedings
of 10th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems, Florence,
Italy, May 18-19 2015.

25. L. Sabatucci, C. Lodato, S. Lopes, and M. Cossentino.
Towards self-adaptation and evolution in business pro-
cess. In AIBP@ AI* IA, pages 1–10. Citeseer, 2013.

26. L. Sabatucci, C. Lodato, S. Lopes, and M. Cossentino.
Highly customizable service composition and orchestra-
tion. In S. Dustdar, F. Leymann, and M. Villari, ed-
itors, Service Oriented and Cloud Computing, volume

9306 of Lecture Notes in Computer Science, pages 156–
170. Springer International Publishing, 2015.

27. L. Sabatucci, P. Ribino, C. Lodato, S. Lopes, and
M. Cossentino. Goalspec: A goal specification language
supporting adaptivity and evolution. In Engineering
Multi-Agent Systems, pages 235–254. Springer, 2013.

28. R. Siebeck, T. Janner, C. Schroth, V. Hoyer, W. Wörndl,
and F. Urmetzer. Cloud-based enterprise mashup in-
tegration services for b2b scenarios. In Proceedings of
the 2nd workshop on mashups, enterprise mashups and
lightweight composition on the web, Madrid, 2009.

29. N. Stojnic and H. Schuldt. Osiris-sr: A safety ring for self-
healing distributed composite service execution. In Soft-
ware Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS), 2012 ICSE Workshop on, pages 21–26,
2012.

30. D. Sykes, W. Heaven, J. Magee, and J. Kramer. From
goals to components: a combined approach to self-
management. In Proceedings of the 2008 international
workshop on Software engineering for adaptive and self-
managing systems, pages 1–8. ACM, 2008.

31. W. M. van Der Aalst, A. H. Ter Hofstede, B. Kie-
puszewski, and A. P. Barros. Workflow patterns. Dis-
tributed and parallel databases, 14(1):5–51, 2003.

32. M. J. Wooldridge. Reasoning about rational agents. MIT
press, 2000.

33. C. H. Yew and H. Lutfiyya. A middleware and algorithms
for trust calculation from multiple evidence sources. In
Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2012 ICSE Workshop on, pages 83–
88, 2012.

34. E. Yu and J. Mylopoulos. Why goal-oriented require-
ments engineering. Proceedings of the 4th International
Workshop on Requirements Engineering: Foundations of
Software Quality, 15, 1998.

35. J. L. Zhao, M. Tanniru, and L.-J. Zhang. Services com-
puting as the foundation of enterprise agility: Overview
of recent advances and introduction to the special issue.
Information Systems Frontiers, 9(1):1–8, 2007.

