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Abstract. A smart travel system is a complex distributed system act-
ing as a tour operator for organizing holiday packages and supporting
travelers on-the-run. A couple of key characteristics of such a system are
the ability of self-configuring a set of heterogeneous services and self-
adapting to unexpected circumstances. This paper reports an experience
of developing a smart travel system by adopting MUSA, a Middleware for
User-driven Service Adaptation. The prototype supports users in orga-
nizing their time by the specification of goals: this triggers the automatic
composition and dynamic orchestration of touristic services. The chosen
middleware has played a fundamental role by simplifying the develop-
ment process thus to speed up the time-to-complete.

1 Introduction

Traditionally, the orchestration of services [4] uses approaches based on static
models that provide little support for allowing self-configuration and adapta-
tion of activities at run-time. Among these approaches, BPEL [14] – the main
standard for implementing the orchestration of services– does not support ad-
vanced features for facing mutable and dynamic operative environment. Some
of the well-known weakness are: 1) the flow of activities can not be changed
when the execution context changes; 2) incorporating dynamic user preferences
complicates the modeling activity; 3) revising the whole workflow is necessary
every time a new services is introduced in the model; 4) even if it is possible to
include service failures, the process is not robust enough to react to unexpected
situations.

This work reports the development of a smart travel system as a customiza-
tion of MUSA [11, 13, 2] (a Middleware for User-driven Service Adaptation).
The aim is to aggregate heterogeneous services on-demand and to orchestrate
touristic services in a dynamic, open and geographically distributed environ-
ment. Creating new travel experiences grounds on putting traveler at the center
of the process. Firstly users may express travel preferences supported by a flex-
ible language and a specific interface to convey her goals about: places to visit,
activities to do and –in general– the kind of vacation. It is worth noting that
this language deals with undefined (or better not completely defined) require-
ments, thus leaving users the choice to not specify something, and delegating
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the system to propose alternative ways to complete travel itineraries. The sec-
ond point is to allow the system to act as a local guide for traveler –running on
personal device– by providing contextual information, monitoring the state of
reserved resources and proposing viable alternatives on the run. Indeed, when
traveler deviates from the planned route (willingly or not) the smart travel sys-
tem will re-arrange services and resources to meet new emerging needs. So far,
the developed prototype simulates this latter point.

The paper is organized as follows. Section 2 presents the main features of
the smart travel system and motivates the choice of MUSA for the development.
Section 3 focuses on two of the main characteristics provided by the middleware:
self-configuration and self-adaptation. Therefore, the steps for implementing the
system are briefly described in Section 4. Concluding remarks are drawn in
Section 5.

2 The Smart Travel System

The smart travel system is a complex software designed to act as a tour operator,
combining travel components on-demand to create a holiday package. The user
may serve of the smart travel system to organize a vacation by specifying set of
preferences about the kind of desired vacation including the geographic area of
interest, places of interest, activities to perform, budget and so on. The system
arranges alternative solutions to these specifications by composing a set of travel
services: flights, transfers, hotels and tickets for museums, for the opera and for
other local events. Moreover, when a user selects and pay for the package, the
system works as a local assistant, providing contextual information, warning
about train delays, checking flight cancellations, and re-organizing the vacation
on the need. Such a software may be classified as a socio-technical system in
which tourists and touristic services must be orchestrated in order to satisfy the
former (improving the whole experience) and to maximize the use of the latter
(increasing incomes for providers).

It is worth to underline the nature of the involved services. From the one
hand services are real [5], i.e. each of them is composed of an electronic interface
(e.g. the web protocol for booking a flight) and of an actual service the user
will directly consume (e.g. flying). On the other hand, these services are hetero-
geneous –providing different benefits– and are geographically distributed in the
territory.

Other significant features of the system are: i) user preferences: these must
be flexible enough to allow configuring many aspects of the expected travel but
also supporting user indecision, by allowing to specify only partial information;
ii) self-configuration: the system must be able to check available touristic services
and to arrange one o more solutions (travel packages) that address all the user
preferences; iii) monitoring: as a local assistant, the system has to check that
travel proceeds correctly; iv) self-adaptation: during the travel, the system must
assure valid on-the-run alternatives, when something changes. It is possible that
traveler changes his desires, or that a booked service is no more available. The
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system must be able to re-configure the vacation, respecting new contextual
constraints.

2.1 A Smart Travel Scenario

In this section we illustate a scenario for the smart travel system.
Herbert from Munich wants to travel to Sicily for a week with his family. By the smart travel
system he plans a vacation of 7 days and set the following preferences: to stay 2-3 days in
Palermo to look around the old city; at least 1 day at the beach to please his son; to watch
a performance in the Greek theater in Syracuse; and finally at least 1 day in Catania city.
He decides to leave the system free to suggest something for the remaining 2 or 3 days.
As response, the smart travel system suggests to flight to Palermo, where to stay 2 days,
than 1 relaxing day at the Cefalù beach, 1 day in Catania, 2 days in Syracuse, (tickets for
assist at the Greek tragedy are available only on day 5th), then 1 day at Agrigento and
finally back to Palermo for the return flight.
Herbert confirms the travel plan and the smart travel system books the two flights, buys
the ticket for the Greek tragedy, reserves hotels and buy tickets for transfers.

The whole package is shown on the left side of Figure 1. The second part of
this scenario illustrates the ability of the system to adapt.
Herbert and his family are enjoying their vacation. They have been visiting Palermo for two
days and decide to extend staying in the city by 1 day (variation to the plan).
Therefore the smart travel system proposes to variate the vacation, trying to maintain the
tickets for the theater that are not reimbursable. The new plan comprises to stay another
day in Palermo (addressing the new desire), and to skip the day at Agrigento and delaying
the beach day (Cefalù) at the end. The new package is shown on the right side of Figure 1.
Herbert confirms the new travel plan, so the smart travel system cancels trains and hotels
reservations that are no more necessary according the new plan.

We conducted a traditional study of the domain, followed by a requirement
engineering analysis. A subset of the requirements are detailed in the next sec-
tion.
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Fig. 1. On the left the original travel plan. On the right the new travel plan, adapted
on the run, after a user preference to visit Palermo one day more.
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3 Self-Composition and Adaptation

This section analyzes some of the Smart Travel System’s requirements, in order
to drive strategic choices for the implementation phase. In this context we present
MUSA [2], a Middleware for User-driven Service Adaptation 1.

A summary of the main characteristics of the system to implement are listed
and described hereafter.

– Heterogeneity. The same result may be addressed by properly composing
different categories of services and resources. The design phase requires new
design abstractions for describing services and the corresponding resources.

– Proactivity. The smart travel system holds a degree of freedom in taking
decisions about how and when achieving user’s goals. This requires a flexi-
ble description language to convey user’s preferences that drive the system
decision making.

– Dynamism. When the travel package is formed, the system must deal with
a situation in which the operative context may change: services could fail,
resources may be unavailable or even user’s goals may change.

– Mobility. The system shall run on personal mobile devices with the aim of
monitoring traveler’s position and service failures. The system control loop
must be flexible enough to support distributed data.

– Human Interaction. During the travel, users may either change preferences
or react to warning about failures/changes. The system must support an
active role of the user in the control loop. Moreover, the system must deal
with user’s changes of preferences.

– Awareness. The system shall constantly acquire knowledge about the state
of services thus to raise the adaptation when necessary. Monitoring is a fun-
damental but costly activity. It must be optimized for the specific dynamic
context.

The MUSA middleware offers a suitable infrastructure for implementing
many of the high level features of the smart travel system. In the following
we describe the main characteristics of the middleware, highlighting between
brackets the impact on a category of requirements. The MUSA backbone is the
decoupling of the dimensions of what and how. The GoalSPEC language [13]al-
lows run-time specification of users requirements (human interaction) whereas
the system adopts a descriptive logic for supporting the high-level reasoning on
service semantic (heterogeneity).

Specific abstractions [12] are provided for representing what the system
knows being able to do (awareness). The main function of MUSA is the ability
of automatically associating system functions to user’s goals thus to address the
desired requirements (proactivity). This approach allows for implementing an
architecture for self-configuration and self-healing (dynamism).

In MUSA the working key is configuring a solution as a response to the users
request. It is implemented as a multi-agent system where entities are autonomous

1 Website: http://aose.pa.icar.cnr.it/MUSA/.
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and driven by a proactive goal-directed behavior. Agents guarantee knowledge
acquisition, distributed coordination and robustness. When a solution becomes
operative, the system executes special monitoring activities that capture the
deviations between expected results and runtime performance, thus to adjust its
behavior accordingly.

3.1 Main Concepts of the System

We informally introduce some important concepts used in the middleware. For
the sake of clarity formal definitions and the reasoning framework are described
with more details in [11, 12].

A Capability is a semantic wrapper for services that allows the developer to
specify i) how to invoke the specified functionality (which data must be passed
and which data will be returned) and ii) which effect is expected by executing
the encapsulated application or service. The capability also has the advantage
of being composable in order to address a complex result.

A User-Goal is “a desired change in a state of affair the user wants to
achieve”. The concept of goal is often used in the context of business process for
representing enterprise strategic interests that motivate the execution of business
processes [15].

A Configuration is a set of capabilities that address a set of user-goals. The
main advantage of MUSA is the ability to self-configure, i.e. to automatically
discover and aggregate capabilities to address dynamic user-goals.

A User-Norm is the description of a constraint the system must hold when
addressing user-goals. It is described as a function in the domain of configura-
tions that returns a boolean indicating admissible/non-admissible aggregation
of capabilities.

A User-Metric is a user defined quality, associated to how the system will
address user-goals. It is described as a function in the domain of configurations
that returns a real number. This number may be used to compare two different
aggregation of capabilities.

3.2 The Three Layered Architecture

The MUSA’s core architecture for self-configuration and self-adaptation is com-
posed of three communicating levels.

The uppermost layer of this architecture is the Goal Layer responsible
for arranging system evolution. The user may specify the expected behavior of
the system in terms of high level goals, norms and metrics. Whereas goals are
dynamic entities specified through a language, norms and metrics are, so far,
hard coded at design time. At run time, the goal injection phase allows free
specification of user-goals; conversely norms and metrics are selected from pre-
set lists. Injecting goals triggers a change in the system behavior. The user may
be involved also as supervisor of the process, in order to take decisions about
alternative cases of adaptation.



6 Sabatucci et al.

The second layer is the Capability Layer , responsible of managing the
strategic deliberation. The objective is selecting, aggregating and configuring
available capabilities [11] as the response to i) self-evolution events (generated
from the upper level) and ii) self-adaptive events (generated from the lower
level). This activity may be very costly when the number of services (and their
dependencies) grows. To reduce the complexity, the implemented algorithm rea-
sons about services and environment through abstract data rather than concrete
data [7, 8], so to be more affordable and scalable. The consequent output is one
or more configurations of abstract services.

The third layer is the Service Layer , responsible of translating from ab-
stract services to concrete ones by adding the coordination logic necessary for
enacting the corresponding business process. This layer provides atomic blocks
of computation for acquiring and analyzing real data from the environment and
producing the desired result. The proposed implementation adopts a distributed
MAPE-K model [9, 1] that comprises: i) a Monitor component that acquires
information from the environment, and updates the system knowledge accord-
ingly; ii) an Analyze component that uses the knowledge to determine the need
for adaptation with respect to expected goals and capabilities failure; iii) a Plan
component that synchronizes the available capabilities according the goals to
address and, finally, iv) an Execute component that modifies the environment by
activating the appropriate capability.

4 Implementing the Smart Travel System

The middleware we have decided to adopt for implementing the advanced fea-
tures of the smart travel system is a general purpose one: it has been recently
used for implementing a document management system, a cloud mashup ap-
plication process and a emergency management scenario. The strength is the
easiness in customizing self-configuration and self-adaptation features for the
specific domain of interest. The purpose of this section is to illustrate the steps
for this customization.

4.1 Implementing Self-Configuration

In the smart travel system, self-configuration is mainly intended for automat-
ically generating a number of alternative travel plans that are suitable for the
user’s goals. The challenge relies on the fact that travel services are heteroge-
neous, and they are not designed to be composed. Aggregating them means
evaluating a great number of combinations. Figure 2 illustrates, in practice, the
business process behind this activity.

1. The user will set his own preferences via either a web interface or a personal
device.

2. The smart travel system discovers available services, and filters those may
be useful for addressing the user request.
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Fig. 2. Flow of activities for generating a travel plan.

3. The self-configuration algorithm arranges travel services, considering user’s
goals, uncertainty and domain constraints.

4. The result is a set of possible configurations (i.e. travel plans) to present via
a user interface.

5. Finally, the user selects the travel plan he prefers.

The MUSA system allows to easily generate such behavior by associating
user’s preferences to user-goals/norms/metrics and by implementing travel ser-
vices as capabilities.

The first step is a preliminary study of the domain for building the reference
ontology. Ontologies provide a shared understanding of a domain of interest to
support communication among human and computer agents. An ontology will
be the base for matching design-time elements (norms, metrics and capabili-
ties) and run-time elements (goals). An ontology for the travel domain has to
cover i) geographical places (ex: Sicily, Palermo, Syracuse), ii) activities (visit-
ing, swimming, watching opera), iii) transportation (by train, by car), and iv)
immaterial qualities (cost, hotel rating). A plethora of web ontologies already
exist, ready to be reused. In our system we adopted a subset of the Knublauch’s
OWL ontology [3] for a Semantic Web of tourism 2.

4.2 Capabilites for Touristic Services

A Capability is described as a self-contained autonomic entity. Whereas web-
services are typically passive entities that act when receive the control [6], Capa-
bilities are based on software agents able of self-managing, sensing the environ-
ment and making decisions on their own [11]. Despite their intrinsic complex-
ity, developing a capability is not such a hard work, because MUSA provides
basic facilities for self-awareness, self-adaptation, social interactions and self-
configuration. The capability-developer has to specify two additional aspects.
The abstract description: a specification of why, when and how the related web-
service may be used. This specification exploits a description-logic language
based on the reference ontology. Typical fields are: pre/post conditions, infor-
mation for simulating the aggregation, data input and data output.
The concrete implementation: contains the entry points for invoking the specific
web-service and a reference to the protocol to use (examples are HTTP, SOAP
or REST).

2 Available via the Protegé website: protege.cim3.net/file/pub/ontologies/travel/travel.owl
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In the context of the smart travel system we have defined 6 capabilities for
touristic services: flight, hotel, train, bus, theater and museum. Each of them is
able of gathering information and making/canceling reservation. An additional
capability – visit city – has been conceived for arranging time for freely visiting a
place. During the visit, it has the special purpose of providing useful information
via personal device and to monitor the traveler’s position.

4.3 Norms and Metrics for Traveling Preferences

Besides the capabilities, norms and metrics are fundamental mechanism to in-
crease user’s flexibility in expressing their desires. Despite the intrinsic simplicity
of the presented norms and metrics –more complex one could be added with-
out changing the model– they represent a powerful instruments to dynamically
refine the set of requirements.

A norm is a rule that describes the configurations of capabilities that produce
undesired situations. For the smart travel system we have defined four norms
the user may attach to goals:

– budget(MAX): for ensuring total expenses will not exceed a given budget.
– km(MAX): for ensuring the total number of kilometers will not exceed a

max number.
– noTrain, noBus, a couple of norms for preventing respectively the use of

either trains or buses for the transportation.

On the other side, metrics are high level elements that measure the quality
associated to a configuration, thus to allow the system to compare and sort them.
They are generally used in MUSA for enriching user’s goals for specifying non-
functional preferences. For the smart travel system we have defined the following
metrics:

– artCityTour, that rewards spending time in famous cities of art.
– beachTour, that rewards spending time in seaside places.
– trainLovingTour, that rewards trips with continuous movements by train.
– wineFoodTour, that rewards visiting farmhouses and wineries.

4.4 A Web Application for Facilitating the Definition of Goals

MUSA provides a high-level language, GoalSPEC [13], to specify requirements as
set of goals. For increasing flexibility and user-friendliness, it has been conceived
as a controlled natural language. However such a language can not be directly
used by smart travel users because it requires specific skills [10].

To this aim a web-based interface has been designed to mediate between
users and their goals. It is based on a set of templates for specifying goals. Each
template is a fixed structure in which some elements must be replaced by data
coming from the forms.
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Fig. 3. An example of the MUSA approach to the case study of the smart travel

This approach reduces the flexibility of the language, but it allows an un-
skilled user to produce a valid set of goals without supervision. He also may
select metrics and norms from pre-filled combo-boxes.

When the user confirms the whole set of preferences, then the web-portal
generates the corresponding set of goals (step 1 of Figure 3) and injects them in
the platform thus to activate the self-configuration phase (step 2 of Figure 3). The
self-configuration phase consists in aggregating available services according to
user preferences (goals, norms, metrics) and contextual availability of resources.
The result is presented in geotagged maps where the travel plan is detailed
step-by-step.

So far, we have not implemented the payment module necessary to buy each
service of the travel package, but we have rather built a simulator engine that
replaces the orchestration phase (step 2 of Figure 3). It simulates the progression
of the stages of the vacation, by updating the current state as if the user is
going to benefit of the acquired services. The evolution of the trip is represented
directly in a geotagged map via an animation. During this simulation the user
interface also allows to interactively produce events for adaptation. For instance,
it is possible to mark a resource (e.g.: a train route) as unavailable. This triggers
a new cycle of self-adaptation, as shown in step 5 of Figure 3, for proposing an
alternative plan for the remaining part of the trip.

5 Conclusions

We presented a practical experience of customizing the general-purpose MUSA
middleware in the context of the smart travel. This represents a novel approach
for the development of smart and complex system where most of the complexity
is inherited by reusing the underlying platform. After a traditional requirement
engineering phase, the adoption of MUSA has facilitated the overall effort by
limiting the development to three fundamental steps: 1) building (or reusing)
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an ontology of the domain, 2) developing and deploying a repository of au-
tonomous functions that incorporate the available services (capabilities) and
finally 3) designing and developing the interface for supporting user participa-
tion in the loop. By following this approach, fundamental characteristics such as
self-configuration, self-evolution and self-adaptation are automatically integrated
and do not impact the time-to-complete.
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