
A Norm-based Approach for Personalising

Smart Environments

Patrizia Ribino, Carmelo Lodato, Antonella Cavaleri, and Massimo Cossentino

Istituto di Calcolo e Reti ad alte Prestazioni
Consiglio Nazionale delle Ricerche - Italy

{ribino,c.lodato,a.cavaleri,cossentino}@pa.icar.cnr.it

http://ecos.pa.icar.cnr.it

Abstract. People have a great variety in their needs. There is a great de-
mand for personalized services, especially those interacting with their en-
vironment. In this paper, we propose a norm based approach for person-
alizing smart environments that constraint user requirements by means
of non functional requirements expressed in terms of permissions, obli-
gations or prohibitions.

Keywords: Smart systems, norms, smart environment

1 Introduction

In recent years, a growing trend is the development of smart systems to improve
well-being of individuals in their environment by making everyday activities more
convenient and enjoyable. Smart systems aim at augmenting real environments
to create smart spaces where users are provided with pervasive electronic devices.
Usually each device can provide a set of services and functionalities. A smart
system connects such electronic devices into a network and control them by using
advanced ICT technologies in such away the devices satisfy user requirements.
A common architecture for smart environment is sketched in Figure 1(a). The
highest layer is related to the interaction with users. The second layer provides
intelligence of the environment, often using artificial intelligence capabilities.
Finally, the lowest layer is related to the electronic devices based on current
technologies used for smart systems.

The use of a smart environment is variable from a user to another. Designing
ad-hoc systems for each individual is not realistic economically. As well as, it is
not possible to hard-wire all possible user scenarios. Hence, how to personalise
smart environments? The most reasonable answer is that users have to be able
to define their own requirements, thus defining their own usage scenarios. There
are several kinds of systems that try to address this question [8]:

- Predefined Scenario Systems include centralized systems based on prede-
fined scenarios. They only provide the users the possibility to choose the
scenarios they want to execute. A new scenario definition generally consists
in assembling existing components [3, 6].

2 Ribino et.al

- Service Control Systems include systems that allow users to control available
services by providing automatic detection of devices in their environment. A
user may interact with the system for triggering service executions, but he
cannot define complex scenarios [9, 14].

- Scenario Definition Systems enable users to define their own scenarios. Only
some of them allow runtime scenario definition and in some cases such sce-
narios are sequences of service calls [8].

Such kind of systems do not allow to manage non functional requirements1

during a predefined scenario execution. In this paper, we propose a norm based
approach for the definition of highly personalised scenarios during the normal
execution of the system. The proposed approach allows for constraining user
requirements by means of non functional requirements (i.e: variable user per-
sonalizations) expressed in terms of norms (i.e: permissions, obligations or pro-
hibitions). In order to give the users the capability to define their own initial
requirements and to modify the behaviour of the system during its normal exe-
cution according to user personalizations, we introduced a Normative Layer in
the classical smart environment architecture (see Figure 1(a)).

The main contribution of this paper is an algorithm implemented in the Nor-
mative Layer, which integrates non functional requirements expressed by means
of norms (i.e: permissions, obligations and prohibitions) into user requirements
(expressed in terms of goals) in order to introduce personalizations into prede-
fined user scenarios.

In order to show some practical examples, in this paper, we use GoalSpec
[13] and SBVR [7] for modelling user requirements and personalizations in the
semantic layer and MUSA [4] for the composition and the orchestration of ser-
vices in the Execution Layer. GoalSpec is a language designed for specifying
user-goals and enabling at the same time goal injection and software agent rea-
soning. The Semantics of Business Vocabulary and Business Rules (SBVR) is an
adopted standard of the Object Management Group (OMG). It is designed for
formalizing complex business rules. MUSA (Middleware for User-driven Service
Adaptation) is a holonic multi-agent system for the composition and the orches-
tration of services in a distributed and open environment that is founded on the
BDI paradigm[11].

The remaining of the paper is organized as follows. Section 2 presents the
proposed norm-based approach along with some definitions is based on. Section
3 shows some application scenarios. Some related works are illustrated in Section
4. Finally, in Section 5 some conclusions are drawn.

2 The Normative Layer

Many studies have been conducted in order to develop systems that satisfy user
requirements in smart environments. These systems generally provide predefined

1 For the scope of this paper, we consider only user constraints. Thus, hereafter we use
non functional requirements, user constraints or user personalization as synonymous.

A Norm-based Approach for Personalising Smart Environments 3

Semantic Layer

Execution Layer

S
E
S

Device Layer

Semantic Layer
(SBVR GoalSpec)

Normative Layer

Execution Layer
(MUSA)

S
E
S

Device Layer
(ICasa Simulator)

a) b)

Fig. 1: The proposed Layered Smart Environment System

scenarios corresponding to general requirements and enable users to select those
he/she wants to trigger. Such hard-wired behaviours limit the personalization
degree of such systems. The main purpose of this work is to introduce more
flexibility in the scenario definition for personalising smart environments. In
order to reach this aim, we conceived a Normative Layer independent of the
Execution Layer (see Figure 1(b)) and we propose a norm based approach in
order to introduce personalizations in such smart environment systems.

The proposed approach is based on three key concepts: state of the world,
goal and norm.

Definition 1 (State of the world).

Let D the set of concepts defining a business domain. Let L be a first-order logic
defined on D with > a tautology and ? a logical contradiction, where an atomic
formula p(t1, t2..., tn)2L is represented by a predicate applied to a tuple of terms
(t1, t2..., tn)2D and the predicate is a property of or relation between such terms
that can be true or false.

A state of the world in a given time t (Wt) is a subset of atomic formulae whose
values are true at the time t:

Wt = [p1(t1, t2, ..., th), ..., pn(t1, t2, ..., tm)]

The state of the world represents a set of declarative information concerning
events occurred within the environment and relations among events at a spe-
cific time. An event can be defined as the occurrence of some fact that can be
perceived by or be communicated to the smart system. Events can be used to
represent any information that can characterize the situation of an interacting
user as well as a set of circumstances in which the smart system operates at a
specific time. Definition 1 is based on the close world hypothesis that assumes
all facts that are not in the state of the world are considered false.

Definition 2 (Goal).

Let D, L and p(t1, t2..., tn)2L as previously introduced in the definition 1. Let
tc2L and fs2L formulae that may be composed of atomic formulae by means of
logic connectives AND(^), OR (_) and NOT (¬).

A Goal is a pair htc, fsi where tc (trigger condition) is a condition to evaluate
over a state of the world Wt when the goal may be actively pursued and fs (final

4 Ribino et.al

state) is a condition to evaluate over a state of the worldW

t+�t when it is eventually
addressed:

- a goal is active i↵ tc(Wt) ^ ¬fs(Wt) = true

- a goal is addressed i↵ fs(Wt+�t) = true

Goals express what is the desired state of the world the system has to result
in. Conversely, norms denote the way the system has to operate in order to
achieve the desired state of the world in compliance with the normative context
in which that process takes place.

Definition 3 (Norm).

Let D, L and p(t1, t2..., tn)2L and let a state of the world in a given time
t (Wt) as previously introduced in the definition 1. Let �2L and ⇢2L formulae
composed of atomic formula by means of logic connectives AND(^), OR (_) and
NOT (¬). Moreover, let D

op

= {permission, obligation, prohibition} the set of
deontic operators. A Norm is defined by the elements of the following tuple:

n = hr , g , ⇢,�, di

where

- r2R is the Role the norm refers to. The special character “ ” indicates that the
norm refers any role.

- g2G is the Goal the norm refers to. The special character “ ” indicates that the
norm refers to any goal.

- ⇢2L is a formula expressing the set of actions and state of a↵airs that the norm
disciplines.

- �2L is a logic condition (to evaluate over a state of the world Wt) under which
the norm is applicable;

- d2D
op

is the deontic operator applied to ⇢ that the norm prescribes to the
couple (r , g)2R⇥ G.

In particular d(⇢) =

8
><

>:

⇢ i↵ d = obligation

¬⇢, i↵ d = prohibition

⇢ _ ¬⇢ i↵ d = permission

In other words, let a state of the world Wt a norm prescribes to a couple
(r , g) the deontic operator d applied to ⇢ if � is true in Wt 2. Norms represent
system regulations by specifying obligations, permissions or prohibitions to be
followed during system activities in case of certain conditions occur, thus relaxing
or restricting a process.

Definition 4 (State of Norm). Let a norm n = hr , g , ⇢,�, di where g =
htc, fsi and let a state of the world in a given time t (Wt)

A norm can assume the following states:

2 It is worth noting that in order to be compliant in Wt with 1) an obligation ⇢ must
be true, 2) a prohibition ¬⇢ must be true 3) a permission ⇢ or ¬⇢ may be true. In
the context of this paper, we assume that the system does not violate norms.

A Norm-based Approach for Personalising Smart Environments 5

- n is applicable at time t if �(Wt) = true _ � = >
- n is active at time t if n is applicable and t

c

(Wt) = true
- n is logically contradictory if � is ?
- n is in opposition to goal if fs ^ d(⇢) is ?

Moreover, let a state of the world (W t) and let two norms n
1

= hr
1

, g
1

, ⇢

1

,�

1

, d
1

i
and n

2

= hr
2

, g
2

, ⇢

2

,�

2

, d
2

i where r
1

= r
2

, g
1

= g
2

, ⇢
1

= ⇢

2

- n
1

and n
2

are deontically contradictory i↵

(
�1(Wt) ^ �2(Wt) = true

d1 6= d2

It is worth noting that we talk about logically contradictory when the con-
tradiction concerns the logical conditions (�2L) under which the norms are
applicable. On the contrary, we talk about deontically contradictory when the
contradiction concerns the semantic meaning of the deontic operator (d2D

op

)
the norms apply.

Algorithms: The aim of the Normative Layer is to provide some mechanisms
that allow to modify the behaviour of the smart environment (that is based on
some predefined user scenarios) in order to adapt it to user personalization ex-
pressed by means of SBVR Rules in the Semantic Layer3.

Algorithm 1: Norms into Requirements
Data: a set of goals G and a set of norms N
Result: GN
GN ?;
create a list NormList, size(NormList) = card(N);
create a list GoalList, size(GoalList) = card(G);
// Loop for detecting logically contradictory norms

1� for j 1 to card(N) do
hr , g , ⇢,�, di nj ;
if nj is not logically contradictory then

add hr , g , ⇢,�, di to NormList;

GoalList G;
// Loop for encapsulating norms into goals

2� for i 1 to size(GoalList) do
// see Algorithm 2

(�mergedOR,�mergedAND) compose norm(GoalList[i], NormList);
// Goal composition

htc, fsi GoalList[i];
tc OR composition(tc,�mergedOR);
tc AND composition(tc,�mergedAND);
add htc, fsi to GN ;

3 It is out of the scope of the paper the algorithms that convert SBVR and GoalSpec
in the formalisms managed by the Normative Layer

6 Ribino et.al

Algorithm 1 is the core of the Normative Layer. It allows to modify goals,
making them norm compliant. By encapsulating the condition expressed by the
norms inside the goal they refer, it is possible to modify the activation of that goal
thus making it compliant with the norms. Algorithm 1 consists of an initial pre-
filtering (Step 1�) of logically contradictory norms (see Definition 4). Then norms
are encapsulated into goals (see Step 2�) by composing new trigger conditions
for goals from the norm conditions (see Algorithm 2).

Algorithm 2: Compose Norm
Data: a goal gcurrent, a list of norms NormList
Result: a couple (�mergedOR,�mergedAND)
List� OR ?;
List� AND ?;
// Identification of norm types

1�for j 1 to size(NormList) do
hr , g , ⇢,�, di NormList[j];
htc, fsi g;
// Choose among norms of the current goal, which are directly

linked to the goal final state and which are not in opposition

to the same goal

if (g = gcurrent) ^ (fs = ⇢) ^ ((fs ^ d(⇢)) 6= ?) then
switch d do

case Obligation
break;

case Prohibition
add ¬� to List� AND;

case Permission
add � to List� OR;

// Permissions give alternatives (OR)

2�if Size(List� OR) 6= 0 then

�mergedOR List� OR[1];
for h 2 to Size(List� OR) do

�mergedOR OR composition(�mergedOR, List� OR[h]);

// Prohibition are mandatory (AND)

3�if Size(List� AND) 6= 0 then

�mergedAND List� AND[1];
for h 2 to Size(List� AND) do

�mergedAND AND composition(�mergedAND, List� AND[h]);

Such composition takes into consideration di↵erent types of norm and ad-
dresses the following question: when norms regulate a goal, in what cases that
goal is activated? The activation table shown in Figure 2 shows all the possible
cases in which the system can pursue a goal: i) when the trigger condition is true
and the norm is not applicable or ii) when the norm is applicable and its deontic
operator is permission; iii) when the norm is active and its deontic operator is
an obligation. As we can see in Figure 2, when an obligation is introduced in the

A Norm-based Approach for Personalising Smart Environments 7

A) Permission

tC φtC ⋁ φ

1 0
10

0 0
1 1

1
1

1
0

n = ⟨_,g,ρ,φ,d⟩ g=⟨tC, fs⟩

C) Prohibition

tC φtC ⋀ ¬φ
1 0

10
0 0
1 1

1

0
0

0

B) Obligation

tC φtC ⋁ (φ ⋀ tC)

1 0
10

0 0
1 1

1

1
0
0

Fig. 2: Goal activation regulated by norms.

system, it does no e↵ective change to the original activation of the goal. Because
in any case the original trigger condition has to be satisfied.

In common smart environments all the parameters that trigger the execution
of some scenarios have to be defined a priori for each of them. Our approach
allows to define prohibitions or permissions (that express conditions under which
something is allowed or forbidden) without a specific relation with a scenario. In
our approach norms are transversal to several scenarios, thus decoupling what
we want the system do and the boundary in which it has to move.

In the following, we show some simple application scenarios.

3 Application scenarios

In this section we provide some examples of application scenarios. We simulate
such scenarios in ICasa simulator [1]. The purpose is to show as the same smart
environment behaves according to di↵erent user personalizations. Let us suppose
to install the same smart home system in two di↵erent apartments. Thus, each
apartment is furnished with sensors for the detection of individuals, with digital
cooking stove, air conditioner, electronic shutters and so on. The first apartment
is occupied by two adults, Sara and John, and a teenager, Luke. Sara and John
establish some norms they want their smart apartment follows. In particular,
they forbid the system to activate any cooking device if there are no adults at
home. Thus, supposing the system owns an appropriate knowledge, such norm
could be expressed in SBVR as follows:

N1: It is prohibited turning on the cooking device if Sara is not at home or John
is not at home.

In the second apartment live Mike and his wife. Mike forbids the system to
turn o↵ the exterior lights of the apartment during the night if the house is
empty or if only one person is at home. The corresponding norm could be:

8 Ribino et.al

(a) Apartment 1 without norm (b) Apartment 2 with active norm

Fig. 3: Good Night Scenario

N2: It is prohibited turning o↵ exterior lights if it is night and house habitant
are not at home.

Let us suppose the smart system has two predefined scenarios: good night
and have a lunch. In the good night scenario, the exterior lights of home turn o↵
and the curtains and shutters of the bedroom will be automatically closed. In
the have a lunch scenario, the TV switches on, the conditioner turns on at the
desired temperature and the cooking stove turns on if there is a pot on. Such
scenarios could be expressed in GoalSpec as follows:

Good night :
WHEN on(10:00 pm) THE system SHALL ADDRESS closed(shutter) AND
closed(curtains) AND exterior lights(o↵).

Have a lunch :
WHEN on(1:00 pm) THE system SHALL ADDRESS television(on) AND con-
ditioner(on,T)
WHEN on(1:00 pm) AND pot on(cooking stove) THE system SHALL ADDRESS
cooking stove(on)

Although in each apartment both the scenarios have been activated, the
system behaves di↵erently. In the first apartment the good night scenario will
be executed as well as it is defined. In Figure 3(a), Sara and John are coming
back at home later in the night. Luke is at home. The system at 10 o’clock closes
shutters and curtains and turns o↵ exterior lights. In the second apartment the
good night scenario will be di↵erently executed. In Figure 3(b), Mike went to walk
after the dinner, his wife is at home. At 10 o’clock the system closes shutters and
curtains. The system does not turn o↵ exterior lights, until Mike comes back at
home. Similarly, in the have a lunch scenario, if both families are at home the

A Norm-based Approach for Personalising Smart Environments 9

(a) Apartment 1 (b) Apartment 1 with active norm

Fig. 4: Have a Lunch Scenario

system behaves in each apartment in the same way. TV and air conditioner are
turned on and cooking device starts to cook the lunch (see Figure 4(a)). A day,
Luke unusually comes back at home for lunch before of his parents. At 1 o’clock
the TV and air conditioner turn on while cooking device continues to be o↵,
although there is a pot on the stove (see Figure 4(b)). It is worth noting that
norms defined by Mike and Sara are not directly related to good night or have
a lunch scenario. They may also act in other scenarios that include the same
actions the norms discipline.

These are simple examples we can simulate. But the proposed approach goes
beyond the smart home systems. We can apply our approach also in other con-
texts. For example in smart tra�c and transportation contexts, we can conceive
a smart system that allows to automatically drive a vehicle. Such systems have
to follow di↵erent tra�c regulations, according to the country they will operate.

4 Related Works

Personalization is a key issue to be addressed in order to widely di↵use the use of
smart environments. The approach we propose is quite simple, but at the same
time e↵ective. It works to a higher abstraction level by introducing norms for
personalizing user requirements, thus not modifying the lower execution layer of
a smart environment system.

To the best of our knowledge, there are no works that use norms for per-
sonalising smart environments. Such an issue is commonly addressed as scenario
definition problems [3, 6, 9, 14, 8]. Such kind of systems do not allow to manage
non functional requirements during a predefined scenario execution.

Other specific works cope with this problem by endowing the system with
ad-hoc devices or specific system infrastructures. Only to cite a few, in [5] Giroux
et.al present a multi-agent infrastructure where agents collaborate to personalize

10 Ribino et.al

cognitive assistance by adapting their behaviour to the need of the people living
in the smart home. In [10], Loseto et.al present a distributed multi-agent frame-
work for home and building automation, based on a semantic enhancement of
EIB/KNX domotic standard by exploiting knowledge representation and reason-
ing technologies. The proposed approach supports the semantic characterization
of user profiles and device functionalities to discovery and orchestrate resources
in HBA (Home and Building Automation). In [12], Russell et.al propose a general
methodology that defines how to use unobtrusive sensors within smart environ-
ments to provide physical context and metadata for system personalization. In
[2], Bergesio et.al propose a method for personalizing the behaviour of smart
environments by means of the configuration of smart objects through mobile de-
vices. With respect to the previous ones, our approach introduces more flexibility
in the scenario definition by means of a Normative Layer that is independent
from the Execution Layer.

5 Conclusions

The paper proposes an approach for personalising user requirements by express-
ing non functional requirements (i.e: variable user personalizations) by means of
norms (i.e: permissions, obligations or prohibitions). The proposed norm-based
approach is able to support the specification of the variable parts of a scenario
execution in a smart environment. The approach we propose facilitates the cus-
tomization of a smart environment to a particular usage context by decoupling
the variable parts (i.e: user personalization) from standard user requirements.
Then an algorithm implemented in the Normative Layer combines system re-
quirements with user personalizations. Norms allow to specify user personaliza-
tions in a way that is understandable by the user, but also executable by the
Execution Layer, thus bridging the gap between user and technology. At the
moment we are working on the integration in the Normative Layer of an algo-
rithm to allow runtime modification of the system. We are also developing a
norm editor that allows to easily compose norms according to the domain the
system will operate. The work proposed in this paper is part of a larger one that
aims at creating normative smart environments that can be compliant with the
legislative environments they are plugged in.

References

1. Icasa a dynamic pervasive environment simulator, http://adele.imag.fr/icasa-a-
dynamic-pervasive-environment-simulator/.

2. Luca Bergesio, Igo Marquinez, Ana M Bernardos, Juan A Besada, and José R
Casar. Perseo: A system to personalize the environment response through smart
phones and objects. In Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2013 IEEE International Conference on, pages 640–645.
IEEE, 2013.

A Norm-based Approach for Personalising Smart Environments 11

3. André Bottaro, Anne Gérodolle, and Philippe Lalanda. Pervasive service composi-
tion in the home network. In Advanced Information Networking and Applications,
2007. AINA’07. 21st International Conference on, pages 596–603. IEEE, 2007.

4. M Cossentino, C Lodato, S Lopes, and L Sabatucci. Musa: a middleware for user-
driven service adaptation. in proc. of XVI WORKSHOP ”DAGLI OGGETTI
AGLI AGENTI”, Napoli, June, 17-19, 2015, 1382, 2015.

5. Sylvain Giroux, Matthieu Castebrunet, Olivier Boissier, and Vincent Rialle. A
multiagent approach to personalization and assistance to multiple persons in a
smart home. In Workshops at the Twenty-Eighth AAAI Conference on Artificial
Intelligence (AAAI-14), pages pp–11, 2014.

6. Guillaume Grondin, Noury Bouraqadi, and Laurent Vercouter. Madcar: an ab-
stract model for dynamic and automatic (re-) assembling of component-based ap-
plications. In Component-Based Software Engineering, pages 360–367. Springer,
2006.

7. Object Management Group. Semantics of business vocabulary and business rules
(sbvr). version 1.3. may 2015.

8. Fady Hamoui, Marianne Huchard, Christelle Urtado, and Sylvain Vauttier. Specifi-
cation of a component-based domotic system to support user-defined scenarios. In
SEKE 2009: 21st International Conference on Software Engineering and Knowl-
edge Engineering, pages 597–602. Knowledge Systems Institute Graduate School,
2009.

9. Hiroo Ishikawa, Yuuki Ogata, Kazuto Adachi, and Tatsuo Nakajima. Building
smart appliance integration middleware on the osgi framework. In Object-Oriented
Real-Time Distributed Computing, 2004. Proceedings. Seventh IEEE International
Symposium on, pages 139–146. IEEE, 2004.

10. Giuseppe Loseto, Floriano Scioscia, Michele Ruta, and Eugenio Di Sciascio.
Semantic-based smart homes: a multi-agent approach. In 13th Workshop on objects
and agents (WOA 2012), volume 892, pages 49–55, 2012.

11. A.S. Rao and M.P. George↵. Bdi agents: From theory to practice. In Proceedings
of the first international conference on multi-agent systems (ICMAS-95), pages
312–319. San Francisco, 1995.

12. Luke Russell, Rafik Goubran, and Felix Kwamena. Personalization using sensors
for preliminary human detection in an iot environment. In Distributed Computing
in Sensor Systems (DCOSS), 2015 International Conference on, pages 236–241.
IEEE, 2015.

13. Luca Sabatucci, Patrizia Ribino, Carmelo Lodato, Salvatore Lopes, and Massimo
Cossentino. Goalspec: A goal specification language supporting adaptivity and
evolution. In Engineering Multi-Agent Systems, pages 235–254. Springer, 2013.

14. Chao-Lin Wu, Chun-Feng Liao, and Li-Chen Fu. Service-oriented smart-home ar-
chitecture based on osgi and mobile-agent technology. Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, IEEE Transactions on, 37(2):193–205,
2007.

