
Journal of Systems and Software 00 (2015) 1–35

JSS

A Goal-Oriented Approach for Representing and Using
Design Patterns

Luca Sabatuccia,, Massimo Cossentinoa, Angelo Susib

a ICAR-CNR, Palermo, Italy
b Fondazione Bruno Kessler, Trento, Italy

Abstract
Design patterns are known as proven solutions to recurring design problems. The role of pattern documentation format is to transfer
experience thus making pattern employment a viable technique. This research line proposes a goal-oriented pattern documentation
that highlights decision-relevant information. The contribution of this paper is twofold. First, it presents a semi-structural visual
notation that visualizes context, forces, alternative solutions and consequences in a compact format. Second, it introduces a
systematic reuse process, in which the use of goal-oriented patterns aids the practitioner in selecting and customizing design
patterns. An empirical study has been conducted the results of which supports the hypothesis that the goal-oriented format provides
benefits for the practitioner. The experiment revealed a trend in which solutions better address requirements when the subjects are
equipped with the new pattern documentation.

c© 2011 Published by Elsevier Ltd.

Keywords: Design Patterns, Goal Modeling, Goal Reasoning

1. Introduction

Software patterns are known as proven solutions to recurring problems in the design and the implementation of

software systems [1]. This common definition has been refined many times over the years. An interesting definition

mentions patterns as instruments for taking decisions during software development [2, 3, 4].

The importance of this observation is that the quality of a software product is highly dependent on the design

phase in which strategic decisions are made that remain with the system for the rest of the development. Bad design

decisions generally negatively affect the final product [5]. Software patterns help inexpert developers to assess the

impact of a decision when the final product is not mature enough to evaluate if a decision is good or not [5].

Since their invention, the response of the research community has been enthusiastic: practitioners have assisted

to a phenomenon of proliferation of the categories of patterns, and to an impressive number of collections of patterns

Email addresses: sabatucci@pa.icar.cnr.it (Luca Sabatucci), cossentino@pa.icar.cnr.it (Massimo Cossentino), susi@fbk.eu
(Angelo Susi)

1

*Manuscript
Click here to view linked References

http://ees.elsevier.com/jss/viewRCResults.aspx?pdf=1&docID=9028&rev=4&fileID=225736&msid={7CF585C9-C816-4EB1-B9F7-A250F1FD94D9}

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 2

addressing a fairly extensive set of problem domains [6, 7, 8]. Patterns exist for solving architectural issues [1],

object-oriented design [9], coordination and process problems [10], parallel and concurrency execution [11], security

concerns [12] and so on. For instance, the Pattern Almanac [7], published in the year 2000, contains over 1000

patterns. Such a proliferation also generated many duplicates, i.e. patterns that are variants of the same design

principle [6]. For instance the Extended Observer [13] and the Middle Observer [14] consider specific application

contexts of the original Observer pattern [9].

The value of design patterns is that of being the result of experience on the field gained over several years of

trial-and-error attempts. Using a pattern during software development consists in exploiting a well-proven solution,

with general benefits on software quality [15] and on maintenance process [16, 17]. Nevertheless the use of patterns in

software development practices is far from being trivial. A software pattern is generally less tangible but more flexible

than code. A class library provides a collection of classes and methods to use in a black-box fashion. Conversely a

pattern is generally described by highlighting a relation between a certain context, a problem, and a solution [1], and

it specifies a level of abstraction that is above the level of classes or components. Therefore a pattern is harder to use

because its abstractions must first be understood and later be instantiated in specific problem [15].

The most common format for the documentation of patterns is basically text with some visual support and code

examples. Advantages are in the richness and flexibility of the natural language and the way it fosters human creativity.

Shortcomings are in the potential ambiguity and the average length (in number of pages) necessary for documenting

all the details that tend to be spread among many sections of the documentation.

The research community has spent much effort in improving pattern documentation by increasing the level of

formalization and the integration with design processes and techniques [18, 19, 2, 3]. Nevertheless most of these

approaches are not able to fully represent the abundance of details (for instance they fail to represent alternative and

decision points in the solution). In addition, mainly focusing on the solution side, they raise the risk that practitioners

confuse a design pattern with its structure diagram [15].

The overall objective of this paper is to propose a novel approach for describing patterns that, on one hand,

preserve all the details and, on the other hand, makes accessible the decision-relevant information such as motivation,

alternatives, consequences, and forces.

The idea is that, regardless of the category of the pattern, the common element of many pattern descriptions is the

design rationale, i.e. a set of design goals, design decisions and expected consequences in terms of software qualities.

In other words, applying the patterns is similar to making a design decision, which is a cognitive process concerning

forces to balance [2, 3] and design decisions to take [20, 21] in order to configure the elements of the system for

solving a specific design problem.

Our first contribution is a goal-oriented approach for documenting patterns based on the i* strategic modeling [22],

a conceptual framework for modeling cognitive processes and strategic contexts. The main concepts of i* are exploited

for representing, in a semi-formal notation, a software pattern by preserving all the details that the textual format

provides. The i* notation was built for modeling strategic dependencies in the context of requirements engineering, but
2

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 3

it is general enough to be used in many other organizational application settings. By exploiting this general-purpose

nature, the goal-oriented pattern documentation was constructed to be independent of the programming paradigm

and the specific category of the pattern. Despite the fact that the notation revealed itself to be expressive enough to

document a number of software patterns belonging to different categories existing in literature [23, 14, 24], this paper

primarily shows examples of architectural and design patterns taken from the GoF’s book [9] or from the Pattern

Oriented Software Architecture book series [1]. Only one example of a workflow pattern [10] has been added for

discussing independence from the domain.

The second contribution is a systematic process in which the goal-oriented documentation format plays a central

role during the software development. The process includes guidelines for a methodical exploration of context prob-

lem and forces with the aim of improve the pattern selection activity. In addition the process provides guidelines for

driving the practitioner to focus on the design decisions to take for customizing its solution for the specific problem

context.

Finally, we report an empirical study conducted to investigate to which extent the goal-oriented format and the re-

lated process may offer benefits for practitioner. We empirically observed that class diagrams, created through pattern

employment, better meet requirements when inexpert designers are equipped with the goal-oriented documentation

format of the patterns. We argue that describing patterns through goals discourages the bad practice of using solutions

as code templates; conversely it fosters developers to reason with high level concepts that the pattern embeds and it

increases their ability to customize the pattern for the specific problem domain.

This paper is organized as follows. Section 2 analyzes the state of the art and sets up the background for the

proposed approach. Section 3 presents the notation used for the goal-oriented pattern documentation. Section 4

illustrates the employment of goal-oriented patterns in a systematic process in which goals aids at discovering which

one to use and how to customize it for the specific problem context. Section 5 illustrates an experiment to substantiate

our claims. Some remarks about the proposed approach are reported in Section 6 and finally, conclusions are drawn

in Section 7. Three complete examples of goal-oriented pattern descriptions are reported in Appendix.

2. Background for the Proposed Approach

The most common format for the documentation of patterns is basically natural language with some visual support

and code examples. Depending on the category of pattern the documentation structure slightly changes including a

different set of sections. For instance a GoF’s pattern is documented through name, intent, motivation, applicability,

structure, participants, collaborations, consequences, implementation, sample code, known uses and related patterns.

On the other side, a POSA pattern does not explicitly include intent, collaborations and participants, adding a sum-

mary, a solution, dynamics and variants. The strengths of such format are due to the natural language: the verbosity

and the flexibility allow conveying complex abstractions. This format has been conceived to foster interpretation and

creativity. The shortcomings are the potential ambiguity of the natural language, the average length (in number of

3

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 4

pages) and the redundancy of details that are spread among many sections of the documentation.

The design pattern community spent much effort in improving the pattern documentation by raising the level of

formalization and the integration with design process and techniques. It is possible to mention declarative [25, 26],

formal [18], UML based [19] and semantics approaches [2, 3, 4, 27]. A review is proposed below.

2.1. Formal and Semi-Formal Pattern Documentation

Eden et al. propose LePUS [25], a declarative pattern specification language that uses higher order monadic

logic to express pattern solutions. LePUS is based on abstractions of design elements, such as classes, methods,

and code and it also includes a visual notation for representing formula of the language. It is strongly based on

mathematics and formal logic. They propose a tool, based on Prolog without support for the visual notation. A

critic [26] moved to the framework is that, despite the compact form of the visual notation, it often includes too many

different syntactic elements making the diagram difficult to interpret. In a successive work Mak et al. [28] propose an

extension (ExLePUS) of the initial framework for a better integration with CASE tools also discussing the problem of

compound patterns. Patterns contain slots that are filled by other patterns to produce an interconnected architecture.

Mikkonen proposes DisCo [18], (Distributed Co-operation) which uses a form of Temporal Logic of Actions to

formally describe constraint interactions for reactive systems. Therefore, while LePUS focuses on the static aspects

of patterns, DisCo is primarily concerned with behavioral aspects. The framework allows for managing interactions

among objects whose correctness is ensured by property-preserving refinements.

Both LePUS and DisCo (and their available extensions) greatly reduce the ambiguity of the pattern solution,

but they must be complemented with the traditional documentation for what concerns the other aspects of pattern

description. Another note is that the proposed level of formalization requires special skills to interpret formula.

In addition, many semi-formal approaches exist in literature, most of which are based on UML [29, 30, 31, 32, 33]

so to be easily integrated into design practices. However these approaches inherit some limitations from the UML:

1) they are not able to represent alternatives and decisions points; 2) they focus on static and dynamic diagrams

enhance the common misconception of confusing a design pattern with its structure diagram [15]. The risk is that of

downgrading pattern usage to a mere design/code template. Practical experience teaches that this error is frequent [15]:

in particular the UML diagram often shown as illustrative structure of the pattern is often considered as the pattern.

Conversely, it is generally an example of one of the forms the pattern may take [34].

A Design Pattern Modelling Language (DPML) [26] has been proposed to model and use design patterns ac-

cording to separation of concerns between design patterns, design pattern instances and object models. An ad-hoc

visual notation is proposed for aiding to manage patterns. This may help in describing pattern structures in terms of

participating objects and relations between those objects. In particular the novelty of the notation is the concept of

dimension, a construct used to indicate that each participant represents a set of objects in the object model, instead

that just a single object.

4

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 5

Zdun [2] proposes to define a common grammar for pattern languages in order to simplify the pattern selection

process from a catalogue or from many catalogues. This semantically based pattern language grammar may be derived

from the design solution space. This work makes explicit positive/negative contributions of a pattern towards quality

factors.

In [3], authors make context forces explicit as non-functional requirements (NFR). They also introduce the concept

of design goals, leading the designer to explore many alternative impacts of each pattern over these non-functional

requirements. Weiss [4] carried out an extension of this approach by introducing a rigid form for goal hierarchy to

reason about a pattern. This structure is built as the interaction of NFRs coming from the pattern with NFRs coming

from the problem context.

The latter three approaches [2, 3, 4] support the idea that a pattern is an instrument for taking decisions. The main

objective is to facilitate the pattern selection activity by proposing elements for making the best solution according

to the characteristics of the problem. The level of granularity specified for the goal is at pattern level: each pattern

is associated to one or more goals. To the best of our knowledge, there is not a pattern description technique that

introduces a way to manage alternative solutions of a design pattern structure for the customization of the solution for

the application context.

2.2. Three Dimensions of a Design Pattern

The process suggested in the GoF’s book [9] and refined in many successive works [29, 30, 31, 35, 33] proposes

three fundamental steps.

1. To identify if conditions hold for which a pattern could be useful: i.e. the problem matches with the pattern

purpose. Since the pattern is created to be as general as possible, the practitioner has to pay attention on

applicability and consequences of a specific pattern to be sure that it is the right one for solving a specific

problem.

2. To identify classes of the system that the pattern will affect, or introduce new classes when necessary. The

description of responsibilities and collaborations associated with each participant may be used as a guide.

3. To modify involved classes according to the solution by introducing all the necessary elements (interfaces,

abstract class associations, and so on). Implementing the responsibilities and collaborations in the pattern may

complete classes. The practitioner has to pay attention on the implementing issue section in which several

alternative solutions are described; each alternative solution provides a different balance to system forces.

From these specific object-oriented guidelines it is possible to abstract three conceptual dimensions: let us refer

them as the WHY/WHEN, WHO and HOW dimensions.

The WHY/WHEN dimension matches with the pattern purpose and it answers the question ‘which conditions

must hold in order to consider a pattern useful’. This conceptualization raises from observing that design goals are

central elements of design activity, and a design pattern is an instrument to address some of these goals. A pattern can

5

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 6

be selected if it is able to address a design goal that matches with the current problem design goal (WHY). However

also the identification of system forces drives the selection of a pattern. These may be desired properties the system

should have, or side effects coming from the interaction with existing elements of the system. A pattern can be selected

when its consequences match with the current design context (WHEN).

The pattern solution orchestrates participants (sometimes mentioned as placeholders or roles). In an object-

oriented solution these are classes and objects, whereas in a architectural context these are components of the system.

The WHO dimension deals with the binding between participants and responsibilities; it answers the question ‘which

elements of the system should participate to the solution and which responsibility are assigned to them’. When cus-

tomizing a design pattern for a specific context problem, it is necessary to reason on the ‘WHO’ dimension. The first

step is to identify which elements of the system participates to the structure suggested by the pattern. Consequently

these elements are charged of (individual or collective) responsibilities prescribed by the pattern solution. When

requested, the practitioner has to select, among more alternatives, the most appropriate for the problem context.

Finally applying a pattern solution means to adopt a specific design model, thus introducing the effects of the

decisions made in the previous steps. The HOW dimension embeds this activity by exploring the question ‘in which

way the problem context is addressed by a specific design model’. This conceptualization derives from the idea

that the solution of a pattern prescribes a recipe (including possible variants) for addressing the design objective.

The practitioner, by following the instructions of this recipe, can implement the solution without being an expert in

solving that specific problem. In most pattern documentation this part is generally facilitated by visual aids. For

instance class diagrams and interaction diagrams are typically employed in the GoF’s book. It is worth stressing that

(i) implementing a solution is a customization activity that transfers a general idea to a specific context, where each

instruction is justified by a specific purpose and (ii) when many variants exist for a pattern, each decision made in the

previous steps allows a finer customization of the solution.

WHY/WHEN WHO HOW

Figure 1: The three dimensions of the pattern description.

2.3. From Goal-Oriented Concepts to Patterns

The design is conceived as the complex human activity of solving software design problems in which each task is

triggered by a design goal: for instance an architectural objective, a specific feature to implement, a quality the system

must have and so on. Each of these identifies a potential opportunity to take decisions that will influence many aspects

of the system-to-be [36].

Examples of decisions to front during the object-oriented design activity are: to determine the object granularity,

to choose inheritance versus composition, to implement sub-classing versus delegation.

If the design is the activity of solving software design problems, patterns are the means for recording cases of

success in which a design task have been properly solved, also documenting why this happened and in which cir-
6

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 7

cumstances the same strategy can be reused. The proposed goal-oriented format is intended to facilitate the access

to relevant information that drives a practitioner to take the correct decision: motivations, design alternatives, conse-

quence and forces.

The proposed approach for documenting patterns is based on i* that is Eric Yu’s seminal work, a conceptual frame-

work for modeling cognitive processes and strategic contexts. The main concepts of i* are exploited for representing,

in a semi-formal notation, a software pattern by preserving all the decision-relevant information the textual format

provides. In i* , goals are first-class citizens of a graphical language with the intrinsic capability to express alternate

visions of the desired outcome [22].

Goals are intentional entities because they are used for associating an actor’s behavior to a motivation. For instance

the sentence “I play the lottery because I want to become rich” embeds an intention (to become rich) and a way to

pursuit it (playing the lottery). The i* notation allows to model situation like that by employing concepts such as actor,

goal, task, contribution and decomposition. The goal-oriented pattern documentation uses i* concepts, specializing

them in a design context (design goal, design task, etc.). The elements of the notation for a goal-oriented pattern are

illustrated below.

• A Design Goal is a desired design outcome that the designer wants to meet. A goal may derive from (i) the

need to solve some design problems emerging during the development of a system or (ii) the need to ensure

non-functional requirement or quality assets. The design goal is enough abstract to be used to express several

categories of design problems; for instance [to make user-interface easily extendable] is a design goal for the

MVC (architectural pattern), [to define a one-to-many dependency] is a design goal for the Observer (behavioral

pattern) and finally [to separate the construction of an object from its representation] is a design goal of the Builder

(creational pattern).

• An Actor is an entity directed toward some object or state of affairs (design goals). This abstraction allows

explicitly representing who is responsible of addressing design goals. Each ‘Pattern’ is an actor that owns

a set of high-level goals. In addition, each ‘Participants’ of the pattern is represented as another actor that

owns sub-goals, i.e. goals obtained as decomposition of high-level goals. An example of pattern actors are the

Mediator (pattern actor) who desires [to implement many-to-many relationships], the Colleague and the Mediator

(participant actors) in charge respectively of [to manage behavior parts] and [to manage the control] (see Figure 2).

• A Design Task specifies a concrete way of addressing a design goal. It represents a step for implementing

the whole pattern solution. An example of design task is [make all the colleague classes inherit from the ab-

stract colleague class]. At the end of the customization activity the pattern solution is described as a sequence of

design tasks the practitioner have to execute.

• Finally, A Design Resource is an abstraction for indicating entities of the design model. Resources are men-

tioned inside design goals and tasks. Design goals express some kind of quality assets the resource must have
7

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 8

(for instance [to avoid subclass proliferation]). On the other side design tasks express instructions for manipulat-

ing resources in order to address some design goals (for instance [add a public request method]). When working

with object-oriented patterns the resources will be classes, attributes, methods, interfaces and so on. Conversely,

when working with architectural patterns the resources will be components, interfaces and responsibilities. This

is an elegant way to make the notation independent of a specific category of pattern and to make elements of a

particular programming paradigm interchangeable.

3. The Goal-Oriented Pattern Description

The goal-oriented pattern description spans across three views which details different aspects of the same pattern1.

Hereinafter we use the term 3V-Pattern, and the abbreviation 3VP, for indicating the conjoined use of these three

views for providing a design pattern.

• The first view is the Strategic Model that concerns pattern’s motivation and applicability. It summarizes main

design goals the pattern address and the distribution of responsibilities among pattern actors. It is ‘strategic’

because it allows the practitioner to perform a preliminary evaluation on the usefulness of the pattern for a

specific problem.

• The second view is the Design Goal Model that provides details about how the main goals are decomposed

into sub-goals and tasks. It also considers alternative ways to address the main goal and how each alternative

solution impacts the system forces.

• The third view is the Design Scenario that concerns with pattern implementation. It describes in details each

design task mentioned in the goal-model. It also suggests the correct sequence of execution in order to modify

the existing system and to implement the solution.

In the remainder of this section the three views are described in details.

3.1. The Strategic Model

The Strategic Model depicts the intentional structure of a pattern by considering a design pattern as model for

a social organization in which elements of a system are potential participants. This view also details relationships

among participants and the responsibilities for each element of the system that will collaborate.

The corresponding diagram (see Figure 2) provides a higher-level characterization of a pattern through actors,

design goals and dependencies. The view includes the pattern and all its participants that are represented as actors.

An example of strategic model for the Mediator pattern is shown in Figure 2. The proposed notation represents the

1The definition of View is provided by the ISO/IEC/IEEE 42010 standard, available at http://www.iso-architecture.org/42010/

8

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 9

design pattern and all its roles as actors (circles). The pattern actor is attached to rounded rectangles enclosing natural

language text: these are design goals the pattern address, i.e. these are the main motivation for reusing the pattern.

The actors in a strategic model are connected in a network of dependency-relationships that illustrates the rationale

behind the distribution of responsibilities. A Dependency describes how a source actor (the depender) depends on a

destination actor (the dependee) for an intentional element (the dependum). The dependum is generally expressed

through a design goal, thus to specify the nature of the dependency and its motivation. However two actors may also

depend for a resource. The Dependency relationship is represented as a sequence arrow-goal-arrow; it delegates a

responsibility (goal) from a role to another role. In Figure 2 the colleague role is delegated to [manage behavior parts]

whereas the mediator role is delegated to [manage the control].

to decentralize a
complex behavior

to implement many-to-many
relationshipMediator

Pattern

mediator
role messages

to manage the
control

colleague
role

to manage
behavior partsto make parts

easy to evolve
independently

++
to increase
decoupling

++

easiness of
maintenance

--

MEDIATOR PATTERN
strategy-model actor

design goal

design
quality

 resource

+/++/-/--
contribution

KEY:

delegation

Figure 2: Example of strategic-model for the Mediator.

Providing details about the quality assets of the pattern completes the strategic model. These are also design goals

but they are represented with a different graphical notation (clouds) because they are qualitative assets (not directly

measurable).

The Contribution is a further relationship to be used in the modeling for connecting two intentional elements [22]

— goals, tasks and resources — whose precise semantics is defined in [37]. In our work, contribution links may

be used to connect Goals to Goals, Design Tasks to Goals, and even Goals to Design Tasks. The relationships is

represented as an arrow with one of the +/++/-/ annotations that represent a qualitative measure of the contribution. A

(strong) positive contribution is the measure of benefits that, for example, the achievement of a goal provides to another

goal. Similarly, a (strong) negative contribution is the measure of drawbacks that the achievement of a goal provides

to another goal. Contributions are useful for the balance of trade-offs during pattern selection and customization. For

example, Figure 2 indicated that [to decentralize a complex behavior] strongly contributes [to make parts easy to evolve

independently] but globally it has very negative impacts on the [easiness of maintenance].

3.2. The Design-Goal Model

The core view of the pattern description is the Design Goal Model that depicts the strategic rationale of a pattern.

This view represents the decision-making process that drives a practitioner to move from a generic design goal to a

9

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 10

concrete pattern solution. Figure 3 is an example of design-goal-model for the Mediator pattern. In order to simplify

the graphical notation and improving readability when the diagram becomes dense, goals are represented as minimal

text. The root goal of the tree represents the main design goal the pattern wants to achieve. It must correspond to

main goals represented in the strategic model. For the mediator pattern the root goal is the composition of two design

goals: [to implement a many-to-many relationship] and [to decentralize a complex behavior].

The main instrument of this view is the Decomposition relationship that allows refining goals or tasks into sub-

goals or sub-tasks, thus generating a hierarchy of intentional elements. Two strategies of decomposition are possible:

1) the AND decomposition prescribes that the satisfaction of all the sub-goals are necessary for the target goal to be

satisfied; 2) the OR decomposition prescribes that the satisfaction the target goal is delegated to the satisfaction of one

of its sub-goals.

The AND decomposition supports the practitioner with an argumentative style of reasoning: by following the

chain of decomposition it is possible to understand the motivation behind any choice of the pattern. The main strength

of goal models is the natural capability to represent alternative paths for satisfying the main goal. In fact, the OR

decomposition provides a description of mutually exclusive ways of satisfying a design goal. In other words each OR

decomposition introduces a decision point for the practitioner.

to implement many-to many relationship
to decentralize a complex behavior

to identify which classes will interact
to identify how classes will interact

AND

to allow colleagues to
indirectly communicate

to centralize the
coordination algorithm

AND

the mediator knows which
colleagues are involved in the

algorithm

mediator knows how
colleagues communicate

AND

SET THE MEDIATION
ALGORITHM

to let colleagues
raise their events

PUSH EVENT
APPROACH

mediator inspects
colleagues' states

PULL EVENT
APPROACH

OR

TOP-DOWN
APPROACH

colleagues are a
static set
STATIC

APPROACH

colleagues can change
at run-time

DYNAMIC APPROACH

OR

MEDIATOR PATTERN
design-goal-model

BOTTOM-UP
APPROACH

OR

colleagues
proactiveness

+

mediator
independent

on colleagues

+

simpler
mediator class

+

--

colleagues
independent
on mediator

+ dynamic and
flexible

behavior

+ --
+

specialized
colleagues

--
++

classes
already get

responsibilities

the global
behavior is

already defined

+ +

design
quality

+/++/-/--
contribution

design goal

DESIGN TASK

AND

AND-decomposition

OR

OR-decomposition

KEY:

Figure 3: Example of design-goal-model for the Mediator.

In Figure 3 the root goal is AND-decomposed into two sub-goals: [to identify which classes interact] and [to identify

how classes interact]. At the same way, [to identify how classes interact] is decomposed into [to allow colleagues to

indirectly communicate] and [to centralize the coordination algorithm]. Also the goal [to centralize the coordination algorithm]

is decomposed into [mediator knows which colleagues are involved in communication] and [mediator knows how colleague

communicate].

Conversely, the OR decomposition introduces a Decision Point for the practitioner, i.e. a decision about which

variant to choose for the achievement of a design goal. This instrument supports the designer with the necessary
10

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 11

information for taking the best decision according to the current problem context. Indeed, each alternative path may

be analyzed by looking at positive/negative contributions towards some quality assets. This enforces the practitioner

to reason on possible consequences into the system. An example of decision point is the goal [to allow colleagues

to indirectly communicate] that is achieved either by [to let colleagues to raise their events] (marked as [PUSH EVENT

APPROACH]) or by [mediator inspects colleagues’ states] (marked as [PULL EVENT APPROACH]). The designer, ac-

cording to the specific design context, may choose between these two candidate solutions considering that the [PUSH

EVENT APPROACH] fosters [colleagues proactiveness], [mediator independent from colleagues] and [simpler mediator

class], whereas the [PULL EVENT APPROACH] is positive for [colleagues independent from mediator], but is strongly

negative for [simpler mediator class].

Finally, leaf nodes in the goal hierarchy are Design Tasks, i.e. blocks of instructions for implementing the solution.

In the goal-diagram, design tasks are represented in capital letters. For instance the [PUSH EVENT APPROACH] is the

design task directly associated to a goal. Sometimes a goal may be addressed through many tasks. Introducing the

corresponding decomposition relation represents this. For example, the design goal [to identify which classes interact]

can be achieved by two alternative design tasks: [BOTTOM-UP APPROACH] or [TOP-DOWN APPROACH].

BOTTOM-UP APPROACH
Look for system classes that will interact
if one of them is already “central”

then assign it the mediator role,
otherwise create a Mediator class

Assign the remaining classes the colleague role
Create an abstract AbstractColleague class
Set all the Colleague classes as subclasses of
AbstractColleague class.

TOP-DOWN APPROACH
Create a Mediator class
Create an abstract AbstractColleague class
Decompose the behavior in simpler parts:
for each parts of the behavior

create a Colleague class
make it subclass of the AbstractColleague

DYNAMIC APPROACH
Add to Mediator class methods for
registration/cancellation of colleagues
Add to Mediator class a data structure
for handling AbstractColleague

STATIC APPROACH
Add to Mediator class an array for
handling the predefinite set of
colleagues

PULL EVENT APPROACH
Identify all possible events that trigger for an interaction
among colleagues.
Add to the Mediator class a private method for each event
(this method will manage the interaction data flow)

Add to the Mediator class a controller method
(this method will inspect if some event occurs)

PUSH EVENT APPROACH
Identify all possible events that trigger for an interaction among
colleagues.
Create the AbstractMediator class
Add to AbstractMediator class, a method for each event
Make the Mediator class subclass of the AbstractMediator

Add to each Colleague class an attribute of type AbstractMediator
Make this attribute referencing to the mediator instance.

SET THE MEDIATION ALGORITHM
Define an interaction protocol for each
triggering event
(put the code in the mediator class, in
the event method)

KEY: start event decision point plan flow design task end event

Figure 4: Example of design-scenario for the Mediator.

3.3. The Design Scenario

The Design-Scenario view enters in the details of each design task by providing precise instructions for the prac-

titioner. An example is shown in Figure 4. It is a dynamic view similar to a flow of activities. The black circle

represents the starting point, whereas the vertical bar is the ending point. Each diamond corresponds to a decision

point encountered in the design-goal-model view.

Each rectangle is a design task that explores in details the set of instructions necessary for addressing a goal or a

sub-goal. Inside the rectangle there are design instructions provided as informal sentences. an example of instruction

from Figure 4 is [create an AbstractColleague class].

11

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 12

When executing a design scenario, many possible object models can derive. Each design task generates a portion

of the whole solution, thus, any design decision introduces alternative solutions. When a scenario contains more

decision points, then the number of solutions grows as a result of their combination.

4. The Process for Selecting and Customizing a Goal-Oriented Pattern

The use of a pattern is strictly correlated to taking decisions and selecting variants that fit with a specific problem

context [21]. The proposed process offers a systematic approach for pattern selection and customization in which the

three dimensions WHY/WHEN - WHO - HOW are explicitly related to design activities (Figure 5). The process deals

with two different reuse scenarios: (i) generative: pattern employment generates new design resources (classes/objects

as well as components/interfaces) and (ii) refactoring: the system already exists and the practitioner has to change

properties of the model by employing a pattern.

pattern selection pattern customization implement solution

how
exploration

why/when
exploration

who
exploration

design
decision

Figure 5: Phases and main objectives of the activities for implementing a pattern solution.

4.1. Pattern Selection Phase

The identification of design needs triggers the pattern selection phase dealing with the well known the pattern

decision problem [20]. A design need is mapped to a design goal that the designer manages to address by using a

pattern (Section 3). The phase helps the practitioner at discovering which pattern is suitable for the given design goal,

also considering non-functional requirements and forces to balance.

When many candidate patterns are evaluated for addressing the same problem, the pattern strategic-model may

simplify the balance of context forces. Indeed this view highlights relevant features that make patterns easily compa-

rable.

In the example of the Mediator pattern (see Figure 6), the main goals [to implement a many-to-many relationship]

and [to decentralize a complex behavior] come together with positive or negative contributions towards quality aspects.

In particular, in the case of the Mediator pattern quality aspects are [to increase decoupling], [easiness of maintenance]

and [to make parts easy to evolve independently].

In particular the WHY/WHEN Exploration activity represents a systematic comparison of the couple 〈context

problem , system forces〉 with the couple 〈design goal , quality aspects〉 associated to the pattern.

When the main goal matches designer’s needs and the balance of the forces is positive, then the pattern is a good

candidate for solving the design problem. The required matching is a semantic matching, that is more flexible than
12

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 13

to decentralize a
complex behavior

to implement many-to-many
relationshipMediator

Pattern

to make parts
easy to evolve
independently

++

to increase
decoupling

++

easiness of
maintenance

--
Contextual

Forces

WHY/WHEN
EXPLORATION

Selection of the
Mediator Pattern

Contextual
Problem

Figure 6: Example of contributions for the selection of the Mediator pattern.

syntax matching because it involves the meaning the expressions in natural language. Clearly, human interpretation is

fundamental for taking decisions during this activity.

For instance the sentence [to make parts easy to evolve independently] semantically matches with the sentence [to

allow future extensions of a family of classes].

4.2. Pattern Customization Phase

When a pattern is selected, then the designer is in charge to refine the proposed solution, according to the specific

problem context. This phase is full of decisions to take.

The first choice concerns how the elements of the system will participate to the proposed solution. Indeed almost

all pattern solutions are organized as a set of interacting roles [38]. Instantiating the pattern solution means to select

which of system elements will play these roles. The aim of WHO Exploration activity is to support this decision by

the strategic-model. It provides an explicit semantic of responsibilities that are associated to each role. The advantage

is to increase the designer awareness about the consequences of assigning a role to a system element (existing or

to-be).

Mediator
Pattern

mediator
role

 messages
to manage the

control

colleague
role

to manage
behavior parts WHO

EXPLORATION

Customization of the
Mediator Pattern

System
Elements

Figure 7: Example of guideline for identifying and assigning pattern actors to system elements.

In the example of the Mediator pattern, the strategic-model (Figure 7) indicates that members of the colleague role

will be responsible [to manage behavior parts], whereas members of the mediator role will be responsible [to manage

the control]. In addition the colleague role will deliver [messages] to the mediator role.

13

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 14

The second step, in order to customize the pattern solution, is the Design Decision activity, related to evaluating

and deciding among all the alternatives contained in the design-goal-model. Decision points are located in OR decom-

position relationships of the view. In order to lead the designer to the best choice, every alternative path is associated

to positive and negative consequences (qualities of the design). By giving a preference to the proposed quality aspects

the result is a force balance.

the mediator knows which
colleagues are involved in the

algorithm

colleagues are a
static set
STATIC

APPROACH

colleagues can change
at run-time

DYNAMIC APPROACH

OR

simpler
mediator class

dynamic and
flexible

behavior

+

--

+

specialized
colleagues

--
++

DESIGN
DECISION

System
Elements

Customization of the
Mediator Pattern

Contextual
Forces

Figure 8: Example of support to decisions encapsulated into the Mediator pattern solution.

An example of design decision is reported in Figure 8. In the Mediator pattern, one of the decisions is related

to the goal [the mediator knows which colleagues are involved in communication] and two alternatives are proposed: 1)

[colleagues are a static set], or 2) [colleagues can change at run-time]. The first choice has the consequence to generate

a [simpler mediator class], but it has a negative impact in creating a [dynamic and flexible behavior] because the set of

colleague cannot change at run-time. On the other hand, the second choice is preferred when creating a [dynamic and

flexible behavior], even if it is a negative impact in implementing a [specialized behavior], because all of them will have

the same interface. If the designer requires a dynamic behavior then it is trivial to decide what option to select. Other

cases exist in which the force balance is quite more complex, since there are many positive/negative contributions

versus many quality aspects.

4.3. Solution Implementation Phase

This phase aims at implementing the pattern solution, i.e. to apply the solution to the model of the system. The

design-scenario view aids the designer to modify the system under-development in order to implement the solution.

First the design-scenario view is refined on the base of the decisions taken in the previous phase. When all the decision

points are resolved, the result is a straightforward sequence of design tasks to execute.

The left side of Figure 9 shows an example of refined scenario in which the designer selected (i) the bottom-up

approach, (ii) the static approach and the (iii) the pull event approach. On the right side of the figure, the resulting

class diagram is shown. The numeric annotations in Figure 9 represent the connection between design tasks and their

impact to the resulting class diagram.

14

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 15

BOTTOM-UP APPROACH
look for system classes that will interact
if one of them is already “central”

then assign it the mediator role,
otherwise create a Mediator class

assign the remaining classes the colleague role
create an AbstractColleague class
all colleague classes inherit the
AbstractColleague class

STATIC APPROACH
add to the Mediator class a data
structure for each colleague

PULL EVENT APPROACH
identify all possible events that initiate an interaction
add to the Mediator class a private method for each event
(this method will manage the interaction data flow)
add to the mediator a controller method
(this method will inspect if some event occurs)

SET THE MEDIATION ALGORITHM
define an interaction protocol for each
triggering event
(put the code in the mediator class, in the event
method)

Implementation of
the solution of the
Mediator Pattern

(1)
(2)
(3)
(4)

(5)

(6)
(7)

- event1() : void
- event2() : void
+ controller() : void

+ coll1 : AbstractColleague
+ coll2 : AbstractColleague
+ coll3 : AbstractColleague

Mediator

Colleague1

Colleague2

Colleague3

AbstractColleague

(1)

(2)

(3)

(4)

(5)

(6,8)
(7)

(8)

HOW
EXPLORATION

Figure 9: Example of guideline for implementing the Mediator solution to the system.

5. An Experiment for the Evaluation of the Approach

This work has been conducted under the intuition that the pattern documentation format has an impact on the reuse

process. This section presents a controlled experiment, designed according to the guidelines of Wohlin et al. [39], for

observing how the use of a different documentation format results in different outcomes in terms of quality of the

produced model. This experiment represents the opportunity of validating of the 3V-Pattern notation in the context

of object-oriented (GoF) patterns. However the validation of the ‘reuse process’ is out of the scope of the empirical

study, and it is left as future work.

5.1. Experiment Design and Execution

The goal of the experiment is to analyze the pattern reuse process for the purpose of comparing the impact of the

documentation format into the design activity. The quality focus regards the quality of the pattern customization when

a specific documentation format is provided to unskilled pattern users. The context of the experiment is composed of

subjects (students and young researchers with few experience in using patterns) and objects (the design tasks to solve

by the use of assigned patterns). Table 1 summarizes the major characteristics of the experiment.2

5.1.1. Subjects

The experiment consists of a study with 12 computer science students and young researchers of the University

of Palermo, in Italy. Such subjects have already attended Software Engineering and Object-Oriented programming

2All the material of the experiment is available at pa.icar.cnr.it/aose/patterns/Experiment.zip, including the experiment design,

the description of tasks, and the results.

15

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 16

Table 1: Overview of the experiment.

Goal To compare the impact of two different pattern documentation formats

(Gamma-like documentation — GoF — and Goal-based pattern de-

scription — 3VP) on the quality of the produced models.

Context Two different design tasks (BankLoanSystem and RoboCup) to be per-

formed using the two different pattern documentation formats (Gamma-

like documentation — GoF — and Goal-based pattern description —

3VP); 12 computer science students and young researchers unskilled in

pattern employment.

Main Null Hypotheses the goal-oriented pattern description does not increase the quality of the

produced model.

Independent variables Exercise, Pattern documentation format.

Other factors Order of the labs, System (Application), Background, OO experience,

UML experience, Design Pattern experience.

Dependent variables Correctness.

courses and they are fairly skilled in Java programming. They also had familiarity with UML modeling and scholar

knowledge about design patterns but no or very limited practical experience in employing patterns. Some subjects

also hold industrial experience as part-time software developers.

5.1.2. Hypotheses Formulation

From this experiment we expect that 3VP increases the quality of the outcome with respect to the employment of

traditional GoF.

Based on this informal statement, we can formulate the subsequent null hypothesis H0 and alternative hypothesis

Ha to be tested:

H0: goal-oriented pattern description does not increase the quality of the produced model, H0 : quality(GoF) ≥

quality(3VP).

Ha: goal-based pattern description increases the quality of the produced model, Ha : quality(GoF) <

quality(3VP).

5.1.3. The Design task

For testing H0 we planned two design tasks, each of these asks the subjects to produce a UML class diagram for

modeling the architecture of a sub-system by employing a pair of design patterns. In delivering their UML diagrams,
16

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 17

the subjects are requested to fulfill a set of design goals and to obtain a set of quality concerns.

We envisaged two application contexts: the BankLoanSystem and the RoboCup problems. The first is a design

problem in a bank context, in which the subject is asked to design the architecture for loan applications. The exercise

prescribes the employment of Template Method and Proxy patterns. The RoboCup system is a design task in a context

of robotic simulation, where the designer is asked to define a flexible architecture for coordinating a team of virtual

robots; it recommends the use of Mediator and Strategy patterns.

5.1.4. Experiment design principles

In order to test H0 we need to measure the quality of the UML class model produced by employment of patterns. In

order to reduce the subjectivity in assessing the correctness, we prepared in advance a checklist for verifying whether

a set of desired design goals or quality assets is satisfied in the delivered UML class diagram (the checklist was kept

secret to the subjects). We balanced the two tasks thus to have 5 significant properties to be checked for each of

them. Therefore checklists contain five entries for each task. Examples of entries of the checklist are: 1) “are the

checkCredit, checkStock and checkIncome methods defined as abstract in the BankLoanSystem class and overridden

in any of its subclasses (from the Template Method)?” 2) “does the Coach class implement a dynamic set of Players

with register/unregister methods (from the Mediator)?”.

Therefore the experimental design uses two independent variables that are the exercise and the pattern docu-

mentation format and one dependent variables that is the correctness of the solutions. This is measured by evaluating

whether each entry in the checklist is fulfilled in the model (score=1) or not (score=0). The total score for this variable

stays in the range [0 : 5].

Other secondary-factors may influence the outcome of the experiment and we controlled them as follows. The

lab: the order of the labs may have an effect (learning effect), as subjects who already received the treatment in the

first lab may pay higher attention on requirements in the second lab. The system: since we use two systems, subjects

could show different performances on different systems. So the system is also a secondary-factor.

We adopted a balanced design with two subsequent experimental sessions (called Lab 1 and Lab 2), each one

during up to one hour in the same day. Subjects are randomly assigned to a group from A to D. The design ensures

that subjects work on the two applications with the two treatments in all the possible permutations, as shown in

Table 2. A pre-questionnaire have been administrated to profile the subjects, while a post-questionnaire allowed us to

collect reactions to the exercise proposed in the Labs.

Co-factors, we cannot control but just measure, may also have influenced the experiment. Among them, in the

profiling questionnaire, we measure the following aspects. Subjects’ background: we identify two courses that are

mandatory for the experiment tasks on patterns (e.g., Software Engineering and Java Programming). OO experi-

ence: when a subject already worked as programmer in big/real software projects with the use of object-oriented

programming language, her/his experience is considered high, low otherwise; UML experience: when a subject al-

ready worked as designer in big/real software projects with the use of UML language, her/his experience is considered

17

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 18

Table 2: Design of the experiment.

Group Lab 1 Lab 2

(exercise/format) (exercise/format)

A LoanSystem/GoF RoboCup/3VP

B RoboCup/3VP LoanSystem/GoF

C LoanSystem/3VP RoboCup/GoF

D RoboCup/GoF LoanSystem/3VP

high, low otherwise. Design Pattern experience: when a subject already worked as programmer/designer in big/real

software projects with the use of Design Patterns, her/his experience is considered high, low otherwise. In our case,

as emerged from the responses to a pre-questionnaire administered to the subjects, very few of them had a limited

experience in using design patterns.

We did not include the use of any tool in the experiment. The motivation is that selecting one of the (commercial)

tools available for supporting GoF-style patterns into the design implies, for balancing the experiment, to extend

it with a plug-in for supporting also the 3VP patterns. This would raise additional threats, difficult to control: (i)

usability - are the two treatments equally supported by the CASE tool? (ii) Experience and learning effect - are the

subjects already familiar with the instrument? is there a learning effect after the first lab? (iii) Internal Validity - is

there an interaction between treatment and instrumentation? what do we measure, the documentation impact or the

tool impact?

5.1.5. Analysis Method

In order to test the hypothesis H0 we use a non-parametric test. Since we collect two measurements for each

subject, data are intrinsically paired so we use a paired statistical test, the Wilcoxon one-tailed test. Such a test allows

checking whether differences exhibited by the same subjects with different treatments over the two labs are significant.

The analysis of secondary-factors and co-factors is performed using a two-way Analysis of Variance (Anova) and,

in case of interaction, it is visualized using an interaction plot. Although Anova is a parametric test, it is considered

quite robust also for non-normal and non-interval scale variables [39].

5.1.6. Experimental Material

As already discussed, the experimental material consisted of two design tasks, one in the context of the BankLoan

System and the second for the RoboCup System.

Figure 10 shows how the Task Description and the Checklist have been prepared. We have identified a design

problem and selected two design patterns that could be used for solving that problem. Therefore, an analysis of

possible forces to balance allowed us to define a list of properties the system must have. This list has been used for

deriving (for each task) a description of the task (for the subjects) and a checklist for evaluating whether the desired

property is fulfilled.

18

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 19

Definition of
Design Problem

Selection of
Design Patterns

Force Analysis
(List of Properties)

Experimental Task
Description

Checklist for
the Evaluation

RoboCup:
dynamic

collaboration
among robot

classes though a
coach class that

contextually
selects the

strategy

Mediator for
implementing the

collaboration,
Strategy for

implementing the
dynamic switch of

game strategy

1. players on the
field may vary in

number and
composition

…
5. the collective
strategy must
change at run-

time

1. does the coach
class implement a

dynamic list of
robots (with

register/unregister
mechanism)?

…

Problem Description
The subsystem architecture
must comprise classes for
robots and a class for the

coach…

Exercise Description
Define the UML class
diagram by using the
Mediator pattern for

implementing the coach
class and coordinating the
game of the team and the
Strategy pattern for…

Figure 10: Description of the activities for contextually preparing the Task Description for the subjects and the Checklist for evaluating the

correctness.

Only the description of the two tasks is provided to the subjects, and it is organized in two sections: i) the problem

description illustrates the sub-system to be modeled, including the desired functions and class interactions; ii) the

exercise description illustrates the suggested patterns and the non-functional qualities that are expected as an outcome

(for instance “use the Mediator pattern for implementing a flexible collaboration mechanism among robot classes”).

We also prepared the description of four patterns (Mediator, Strategy, Template Method and Proxy) in both the

two documentation formats Gamma-like (GoF) and Goal-based (3VP).

Finally, in order to focus the design of the experiment we decided to let the subjects work only by handwriting

using A4 papers and pencils. We also provided them with a common notation to use for unequivocally expressing

their UML class diagrams. We have not provided any software design tool to the subjects to use in their task since it

may represent a threat to validity (as already discussed in Section 5.1.4).

5.1.7. Operation and Execution

The experiment has been carried out in two parts, in two different days (see Table 3). The first day, subjects got

trained with a lesson about the design patterns. The points focused in the training are: 1) how to read a GoF pattern,

paying particular attention on applicability, consequences and implementing issues; 2) a simple exercise of employing

a design pattern (specifically the Observer, documented in the GoF style); 3) how to read a goal-based pattern (the

three views); 4) a simple exercise of employing the same design pattern but documented in the goal-based style.

Table 3: Activities and timing of the experiment execution.

day 1 day 2

activity training pre-quest lab 1 break lab 2 post-quest

timing 2 h 10 m 50 m 5 m 50 m 10 m

The second day we provided the subjects with an experiment pack, covering all the four phases, composed of

the following material: a) pre-questionnaire, b) Lab 1 description, c) Lab 2 description, d) post-questionnaire. For
19

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 20

each lab we provided: i) a description of the design problem to solve, ii) an indication of the patterns to use, iii) the

corresponding Gamma-like or Goal-Oriented description of patterns to be used for problem solution, iv) two blank

sheets to draw the UML diagram to deliver.

The control of time has been kept by projecting a common clock in the room wall. We synchronized all the

subjects by assigning 10 minutes for each questionnaire and 50 minutes for each lab. We also imposed a 5 minutes

break between Lab1 and Lab2 to mitigate the fatigue effect. At the end of the scheduled times, all subjects returned

us two questionnaires and two UML diagrams.

5.2. Results analysis

As a first step, descriptive statistics are used to visualize the collected data. Figure 11 shows the box plot of

correctness for the two treatments (traditional vs goal-based pattern documentation). A clear trend is that the goal

notation produces better results. This is confirmed by the paired analysis of correctness using the Wilcoxon one-tailed

test (also known as Mann-Whitney’s test). Table 4 shows a p-value very close to 0.035, therefore we can conclude

that H0 is rejected and Ha can be formulated. The negative difference shows that better results are obtained with the

goal-based treatment, with a medium effect size (Cohen d effect).

GoF Goal Notation

0
1

2
3

4

Treatment

C
or

re
ct

ne
ss

Figure 11: Box plot of correctness for the two treatments (traditional vs goal-based pattern documentation).

name mean median sd p.value effect.size

1 Gamma 1.25 1.00 0.87

2 Goal 2.08 2.00 0.90

3 Difference -0.83 -1.00 1.11 0.0356 -0.7476

Table 4: Descriptive statistics and paired analysis (Wilcoxon one-tailed test).

Analysis of Secondary-factors and Co-factors. The analysis of secondary factors and co-factors is performed using

the Analysis of Variance (Anova) and, in case of interaction, it is visualized using an interaction plot.

20

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 21

Df Sum Sq Mean Sq F value Pr(>F)

Treatment 1 4.17 4.17 4.90 0.0386

Lab 1 0.00 0.00 0.00 1.0000

Treatment:Lab 1 0.17 0.17 0.20 0.6627

Residuals 20 17.00 0.85

Table 5: ANOVA of Correctness versus Lab.

Table 5 is the ANOVA table for the analysis of the Correctness versus the Lab and the Treatment. It shows that the

secondary factor Lab did not significantly influence the dependent variable, thus, no learning effect could be observed

between the two labs. In addition the interaction between Lab and the Treatment is not statistically significant; this

also supports the thesis that the order of the treatments did not impact the observed results.

Also none of the co-factors has significantly influenced the correctness of the produced outcome. This is sum-

marized in Table 6, 7, 8. In particular, having a high or low experience on object-oriented programming, or UML

modeling did not influence the correctness of the produced outcome.

An interesting finding is the interaction between the experience in UML and the treatment (see Figure 12). Dif-

ferently from expectation, the outcome of the exercise with GoF documentation is quite independent from the UML

experience, whereas comparing the two curves, the greater is the knowledge on UML the better the results are with

the new format of documentation.

Df Sum Sq Mean Sq F value Pr(>F)

Treatment 1 4.17 4.17 5.80 0.0258

OOExp 1 0.01 0.01 0.01 0.9296

Treatment:OOExp 1 2.78 2.78 3.87 0.0632

Residuals 20 14.38 0.72

Table 6: ANOVA of Correctness versus OO Experience.

Df Sum Sq Mean Sq F value Pr(>F)

Treatment 1 4.17 4.17 5.90 0.0247

UMLExp 1 0.06 0.06 0.09 0.7623

Treatment:UMLExp 1 2.98 2.98 4.22 0.0532

Residuals 20 14.12 0.70

Table 7: ANOVA of Correctness versus UML Experience.

5.3. Threats to validity

Here we discuss some of the main threats to the validity we envisage in the experiment. The classification of the

threats is based on those described by Wohlin et al. [39].

Construct validity threats concern the relationships between theory and observation. They are mainly due to the

method used to assess the outcomes of tasks. The proposed task requires a creative effort from subjects: they have
21

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 22

Df Sum Sq Mean Sq F value Pr(>F)

Treatment 1 4.17 4.17 5.07 0.0357

GoFExp 1 0.10 0.10 0.12 0.7275

Treatment:GoFExp 1 0.64 0.64 0.78 0.3874

Residuals 20 16.42 0.82

Table 8: ANOVA of Correctness versus GoF Experience.
1.

0
1.

5
2.

0
2.

5
3.

0

UMLExp

m
ea

n
of

 C
or

re
ct

ne
ss

1 2 3 4 5

 Treatment

Goal
Gamma

Figure 12: Interaction plot. Analysis of the interaction between Experience on UML and Treatment.

to build solutions to the design problem that can potentially differ from one another; anyway the structure of the

resulting models should exhibit a set of properties that can be checked by the evaluators to rate the resulting quality.

The proposed tasks have been prepared for including only GoF’s patterns, therefore there is no evidence that results

can be generalized to other categories of software patterns. The researchers who were present during the experiment

ensured the duration of the various phases of the experiment.

Internal validity threats concern external factors that may affect a dependent variable. They may be due to the

fatigue and learning effects between Labs, experienced by the subjects having them in sequence. The learning effect

is mitigated by the experiment design we chose (a counter-balanced experiment design), while the fatigue effect is

mitigated by the break we imposed between the two Labs. Another threat can be due to the fact that subjects were

students and young researchers (mainly already working in our labs); so they were not selected randomly. Anyway,

they were all very motivated to participate to the experiment because of their limited experience in the matter. At the

same time this allowed us to have a group of individuals with quite homogeneous skills that have been further balanced

through the training session on patterns documentation we organized the day before the actual experiment. We did not

provide a CASE tool for supporting the design task, in order to avoid usability issues, learning effects and uncontrolled

interaction between tool and treatment. Therefore there is no threat of instrumentation in this experiment. During the

experiment, subjects were told that their grading in the course was not depending on the outcome of the task (design

outcomes could be delivered in an anonymous form). It is the experiment facilitator’s opinion that subjects felt a

personal interest in the design exercise and the topic, so they made a serious attempt in their inspection.

22

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 23

Conclusion validity concerns the relationship between the treatment and the outcome. The statistical analysis is

performed using a non-parametric test, Wilcoxon one-tailed test. It does not assume data normality and is also well

suited for use on small samples. Moreover, two-way ANOVA was used mainly to detect possible interactions between

each co-factor (e.g., application domain and labs schedule) and the Treatment.

External validity concerns the generalization of the results. The main threats, in this area, stem from the type

of subjects. Subjects were students and young researchers with good experience in Software Engineering, close to

finalize their education and to start a job in industry. They also have little experience in selecting and customizing

patterns for a specific context. This allowed us to investigate the situation in which an individual has to be trained in,

and also actually perform reuse practices, starting from a good knowledge on software design and Object Oriented

programming. This is a quite frequent situation in the real practice, for example, when a young practitioner, having

a culture that is comparable to that of a student, is employed in a software project [40]. So, the results of this study

seem to be generalizable in this particular context.

Further studies and experiments should be performed to investigate whether or not our results can be generalized

to more experienced subjects (e.g., professional software designer) having a deeper knowledge of the Gamma-like

documentation and of patterns in general, when using the Goal-oriented format as a support to the reuse activity.

5.4. Interpretation and Discussion of Experiment Findings

Here we summarize our interpretations of the results of the experiment.

Subjects’ degree of knowledge of the pattern does not impact the correctness of the produced result. The pre-

questionnaire revealed that a few subjects already had a very limited experience in the use of patterns. However

the analysis of co-factors revealed that background knowledge of the employed patterns had no impact into their

employment. This means the new format is, at least, as effective as the traditional pattern format for providing pattern

details. Although, given that the correctness is higher for the new format, it is possible to argue that the motivation for

this result is that the pattern is understood in a shorter time with the new format.

Subjects’ experience does not impact the correctness of the produced result. As long as subjects hold a certain level

of experience in object-oriented programming and UML (in our case they were all students and young researchers in

Computer Science) other differences in their background do not influence their ability to customize design patterns

for a specific design context (see analysis of co-factors). We also verified something unexpected: those who have a

greater experience in UML design produced better results with the use of the goal-based pattern documentation rather

than the traditional one.

Explicitly providing decision points and trade-offs, thanks to the goal-oriented notation, helps the designer in

producing a better customization of the design patterns for the specific problem context. The result of the experiment

suggests that the new goal-based format encourages the pattern practitioner to focus on the reasoning process rather

than on the solution, and this has an impact on the design outcome. By analyzing the outcome of the exercises,

where the treatment was the GoF documentation, the produced UML diagram is in most of the cases, very similar to
23

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 24

the UML example shown in the book. We retain that the UML example reported as hook for designers represents a

temptation for oversimplifying the solution. In our opinion, the designer is not encouraged in reading the whole pattern

description (especially the section where all variants are described) and tries to reason only on the reported diagrams.

This is not possible in the goal-based format, where there is no explicit UML diagram. The use of this format requires

focusing on design goals and alternatives and to reason on the decisions to take and their consequences on the model.

Validating the process for reusing goal-oriented patterns. As mentioned before, the systematic reuse process is out

of the scope of the empirical study, thus the second contribution of this paper remains un-validated. We are planning

a new experiment in which subjects will be instrumented with two or more different processes. The crucial point to

solve is that, so far, a standard process for pattern reuse does not exist. However, in literature there are many possible

approaches, such as POAD [41], that could be used as alternative treatments for the experiment. In order to avoid

internal threats to validity, subjects will be trained in the use of all the reuse processes to compare.

6. Final Remarks

This section reports some considerations concerning the expressiveness, the applicability and the authoring phase

of the proposed goal-oriented method.

6.1. Expressiveness of the 3VPattern Documentation Format

In order to evaluate the scope of the 3VP notation we worked on the conversion of a selection of well-known

patterns from the literature3.

We currently limited the analysis to four categories of patterns: behavioral pattern, structural patterns and cre-

ational patterns (from the GoF’s book [9]) and architectural patterns (from the POSA’s book - volume I [1]). Three

examples of these patterns are reported in the Appendix.

The first consideration concerns the possibility to shift category of patterns with a minimal impact on the notation

and the overall approach. We experienced that shifting from classes-and-object towards components-and-interfaces

was smooth and the semantics of the notation did not require particular changes. The explanation for this is that the

notation does not directly include formalism for representing categories of elements that compose the solution. The

Resource concept is a high level placeholder used to refer both to classes and objects and to components and interfaces

without any specific change in the notation.

An extensive analysis of the use of the goal-oriented documentation to other categories of patterns (beyond the

architectural and design patterns) is out of the scope of this paper and it is planned as future work. As a preliminary

result, we report the use of the 3VPattern for documenting a pair of patterns from totally different domains.

3In order to share these patterns a wikiThe 3V Design Pattern Repository is available for the pattern community at http://af.pa.icar.cnr.

it/3vpattern/wiki

24

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 25

The first example is a pattern for multi-agent systems [42] called Embassy which use is suggested to manage

security mechanisms in a multi-agent organization and to facilitate the communications among different communities

(Figure 13 shows the strategic-model). In this case the patterns deals with agents, communications and ontology.

to allow interactions
between heterogenous

applications

actor

design goal

design
quality

 resource

+/++/-/--
contribution

KEY:

delegation

to provide access
control to a

foreign agent

to integrate a remote
application at run-

time

to request the
access

Embassy

embassy
agent

to manage the
access request

foreign
agent

EMBASSY PATTERN
strategy-model

++

to implement a
security access

mechanism
++

local
agent

to handle a
common
ontology

 translated
message

Figure 13: Example of strategic-model for the Embassy pattern from a repository of patterns for multi-agent system [42].

On the other hand Figure 14 shows the strategic-model of a workflow pattern [43]. This category of patterns

deals with the organization of elements of a business process. In particular these patterns aim at capturing the various

ways in which tasks and data are represented and utilized in workflows, in a form that does not rely on specific

technologies. In particular, the Block Data is related to the extent and manner in which data elements can be viewed

by various components of a workflow process. The elements of the solution are basically the process, the task and the

data element. As shown in Figure 14 resources inside goals are provided as free text. This mechanism seems enough

flexible to fit the change of paradigm without specific adaptation.

Anyhow, limiting to object-oriented design patterns and to architectural patterns the applicability of the approach

is still significant. Indeed the notation can be employed to describe more than 350 different patterns 4.

Considerations about the expressiveness of the strategic model. The strategic diagram uses the abstraction of

actor for referring to the participants and therefore to assign responsibilities. The representation has an informative

content similar to that of CRC cards [44], which is generally suitable for representing collaboration among many

entities. However a strategic diagram also indicates main system forces that are impacted (positively or negatively)

by the pattern.

Compared to several approaches based on the UML notation, the proposed notation has some intrinsic advantages.

4This is the sum of the number of Architectural patterns and Object-Oriented Design patterns surveyed by Henninger and Correa in [6].

According the same source, Architectural patterns and Object-Oriented Design patterns constitute a majority of the types of development patterns

(65%)
25

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 26

actor

design goal

design
quality

 resource

+/++/-/--
contribution

KEY:

delegation

to handle visibility of
data in the layers of

process
decomposition

tasks can be
described in terms of

a corresponding
subprocess

 to allow data
inheritance

Block
Data

block
task

 to propagate
data back to
parent task

data
element

BLOCK DATA PATTERN
strategy-model

++

data declared at level of
block task are available
within the subprocess

++

data declared at level
of the subprocess

are available to tasks
of the process

++

Figure 14: Example of strategic-model for the Block Data pattern from a repository of workflow patterns [43].

The strategic-model view provides an explicit structure that highlights intent and applicability of a design pattern.

This view is a valid support for searching in a pattern catalogue, because the explicit semantics clarify the difference

among some patterns that present similar structures. Let’s take in consideration, for instance, the State and the Strategy

patterns. This two patterns proposes a very similar static structure (see Figure 15), whereas the strategic-model view

is sufficiently expressive for highlighting their totally different purposes.

to decouple algorithm
implementation and context

data
Strategy
Pattern

strategy
rolealgorithm

+

context
role

context is easier
to understand,
maintain and

extend

to avoid
conditional
statements

+

let clients to select
strategies with different

trade-offs

to define a family
of interchangeable

algorithms

Strategy-Model

STRATEGY
PATTERN

STATE
PATTERN

request()
Context

handle()
State

handle()
ConcreteStateA

handle()
ConcreteStateB

request()
Context

handle()
Strategy

handle()
ConcreteStrategy A

handle()
ConcreteStrategy B

UML: structural diagram
to make state

transitions
explicit

avoid
multiple

conditional
statements

to configure a
class with

interchangeable
behavior

++

to encapsulate
the state-specific

behavior

states
are easy
to evolve

to manage
current state

and transitions

to implement a
state-dependent

behavior State
Pattern ++

++

state
role

context
role behavior

Figure 15: Semantic difference among State and Strategy.

Considerations about the expressiveness of the design-goal model. The design goal is an abstraction for rep-

resenting recurrent design problems as first level citizen of the documentation. Goal models are conceived as a

26

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 27

systematic way for reasoning on a general problem by decomposing it in a simpler set of sub-problems. Exploring

motivations and forces empathizes the activity of making contextual decisions.

This notation allows spanning a range of different categories of problems. For instance, when designing or de-

veloping an object oriented system typical problems are: finding appropriate objects, determining object granularity,

specifying interfaces, identifying static relationships among classes, establishing dynamic interactions among objects.

Finally, the design-goal model provides a solution to the common problem of confusing a design pattern with a

design template [15]. The UML notation is not appropriate to represent alternative solutions, because a diagram may

show only one structure. Two mutually alternative solutions require two different diagrams. If a pattern contains many

decision points, then the number of diagrams rapidly increases. Conversely, the design-goal model synthesizes many

variants in a compact format thus to reduce this risk to confuse the example with the solution.

6.2. Some Notes on Authoring 3V-Patterns

This section provides some suggestions for converting a pattern from the classic format to a 3V-Pattern.

Guideline 1 - identify the actors: the name of the pattern is the main actor by default; then all the pattern par-

ticipants are actors. Some design patterns have a further implicit actor (client) that represents classes that access to

functionality of the roles: in these cases it is useful to make it explicit. For instance the Mediator pattern has three

actors: the mediator pattern, the mediator role and the colleague role.

Guideline 2 - identify design goals: highlight all the sentences that define consequences of the pattern into the

system, whether they are functionality or qualities of the system. When these sentences are identified then try to

generalize them by using a shared vocabulary and the infinitive form. Examples of annotate design goals are shown

in Figure 16: [distribution of behavior among objects] is revised into [to decentralize a complex behavior]. This activity

suffers of the problem of lack of a common ontology. In order to reduce ambiguity and redundancy it is preferable to

have many revisions, also considering other patterns.

Guideline 3 - put quality aspects in positive terms: this is a rule for supporting the coherence among quality assets

of the system. The problem is that pattern descriptions sometime refer to a quality asset in positive terms (example

[to provide simpler class]) whereas other times the same aspects is given in negative terms (example: [to reduce the

complexity]). By default we prefer to use positive terms and, on the occurrence, to use a negative contribution to

specify the negative form (for instance to [to increase the complexity] becomes a negative contribution towards [to

provide simpler class]).

Guidelines 4 - look for variants and issues: in order to build the tree structure we use a mixed top-down bottom-up

approach. Look at the two sections “Consequences” and “Implementing Issues” for all the possible variants of the

pattern and their dependencies with quality aspects of the context. These variants are, very probably, the leaves of

the tree. Then use a generalization to identify common points among these variants and decomposition in order to

identify why these variants are connected to high level goals. For instance in the Mediator pattern description, the

authors refer to two possible ways to manage interaction among colleagues and mediator (we called them [PUSH] and
27

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 28

Mediator

 Intent

Define an object that encapsulates how a set of objects interact. Mediator promotes loose coupling by

keeping objects from referring to each other explicitly, and it lets you vary their interaction

independently.

 Motivation

Object-oriented design encourages the distribution of behavior among objects. Such distribution can

result in an object structure with many connections between objects; in the worst case, every object ends

up knowing about every other.

Though partitioning a system into many objects generally enhances reusability, proliferating

interconnections tend to reduce it again. Lots of interconnections make it less likely that an object can

work without the support of others—the system acts as though it were monolithic. Moreover, it can be

difficult to change the system's behavior in any significant way, since behavior is distributed among

many objects. As a result, you may be forced to define many subclasses to customize the system's

behavior.

As an example, consider the implementation of dialog boxes in a graphical user interface. A dialog box

uses a window to present a collection of widgets such as buttons, menus, and entry fields, as shown here:

Often there are dependencies between the widgets in the dialog. For example, a button gets disabled

when a certain entry field is empty. Selecting an entry in a list of choices called a list box might change

the contents of an entry field. Conversely, typing text into the entry field might automatically select one

or more corresponding entries in the list box. Once text appears in the entry field, other buttons may

become enabled that let the user do something with the text, such as changing or deleting the thing to

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5efs.htm (1 of 9) [21/08/2002 19:19:17]

Mediator

cooperative behavior by routing requests between the appropriate colleague(s).

 Consequences

The Mediator pattern has the following benefits and drawbacks:

1. It limits subclassing. A mediator localizes behavior that otherwise would be distributed among

several objects. Changing this behavior requires subclassing Mediator only; Colleague classes can

be reused as is.

2. It decouples colleagues. A mediator promotes loose coupling between colleagues. You can vary

and reuse Colleague and Mediator classes independently.

3. It simplifies object protocols. A mediator replaces many-to-many interactions with one-to-many

interactions between the mediator and its colleagues. One-to-many relationships are easier to

understand, maintain, and extend.

4. It abstracts how objects cooperate. Making mediation an independent concept and encapsulating

it in an object lets you focus on how objects interact apart from their individual behavior. That can

help clarify how objects interact in a system.

5. It centralizes control. The Mediator pattern trades complexity of interaction for complexity in the

mediator. Because a mediator encapsulates protocols, it can become more complex than any

individual colleague. This can make the mediator itself a monolith that's hard to maintain.

 Implementation

The following implementation issues are relevant to the Mediator pattern:

1. Omitting the abstract Mediator class. There's no need to define an abstract Mediator class when

colleagues work with only one mediator. The abstract coupling that the Mediator class provides

lets colleagues work with different Mediator subclasses, and vice versa.

2. Colleague-Mediator communication. Colleagues have to communicate with their mediator when

an event of interest occurs. One approach is to implement the Mediator as an Observer using the

Observer (293) pattern. Colleague classes act as Subjects, sending notifications to the mediator

whenever they change state. The mediator responds by propagating the effects of the change to

other colleagues.

Another approach defines a specialized notification interface in Mediator that lets colleagues be

more direct in their communication. Smalltalk/V for Windows uses a form of delegation: When

communicating with the mediator, a colleague passes itself as an argument, allowing the mediator

to identify the sender. The Sample Code uses this approach, and the Smalltalk/V implementation

is discussed further in the Known Uses.

 Sample Code

We'll use a DialogDirector to implement the font dialog box shown in the Motivation. The abstract class

DialogDirector defines the interface for directors.

 class DialogDirector {
 public:

http://lci.cs.ubbcluj.ro/~raduking/Books/Design%20Patterns/pat5efs.htm (5 of 9) [21/08/2002 19:19:17]

to decentralize a complex behavior to increase decoupling

to make parts to evolve independently

to manage control

to implement many-to-many relationship

complexity of the mediator class

Figure 16: An example of annotation over the Mediator description extracted from the GoF’s book [9].

[PULL] approaches). By reasoning on these two methods we generalized them as an answer to the problem of making

the colleague classes indirectly communicate. So [to allow colleague to indirectly communicate] is connected to the root

goal by an intermediate goal: [to identify how classes will interact].

7. Conclusions

This paper proposes a new format for documenting patterns that is based on strategic modeling, a conceptual

framework originated in requirement engineering. The rationale of this choice is that when trying to understand and

use a software pattern, it is often necessary to grasp the ‘why’ that underlie the ‘how’. The new documentation format

and the consequent reuse process is conceived for pushing the designer to focus on design decisions enclosed in

design patterns rather than on the solutions. The empirical validation provided some interesting evidence that goes in

the direction of confirming the hypothesis that the way the new documentation format conveys the information has a

positive impact on the quality of the reuse process.
28

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 29

We also consider a series of open points that we discuss below.

Lack of a common ontology. The representation grounds on natural language to identify design goals, qualities of

the system and design tasks. On one hand this maintains the original flexibility of the pattern description, but on the

other hand it may be confusing. For instance the same design task may be proposed in different terms: [class A inherits

class B] and [class is a subclass of class B] indicate the same relation between A and B. This problem is particularly

relevant in the contribution analysis. For instance two patterns may have a (positive/negative) contribution to the same

system quality, but they may use different terms for indicating it: [decrease coupling] and [increase class independence].

Being represented as two separated graphical elements, these may be considered different, whereas they are not. The

problem would be solved by introducing a common ontology to use for disambiguate the natural language.

Understanding of the domain forces. The proposed approach aims at improving the understanding software de-

signer needs to have of the properties of the system that a pattern will impact. It may happen that a designer is facing

a complex problem and she has not yet gained a full understanding of all the components of the system and of all the

forces that play a role in it. This is a relevant issue, because working with incomplete information from the domain

may complicate the identification of the correct pattern to apply, and also the capability to customize it for the specific

context. We have identified in a work from Gross and Yu [3] a way to overcome this issue. The solution, still in

progress, is to complement them, having the two approaches put in sequence. The cited approach takes as input a set

of requirements for the current system and it offers a systematic way to decompose them in a hierarchy of sub-goals

and quality properties. Then, these design goals and the quality properties become an input for our approach: they are

used to take design decisions and to customize the pattern for the specific context.

Testing other properties of the pattern format. Actually the experiment was conducted firstly for evaluating the

correctness of the customization of a pattern for a specific problem context. Other experiments must be planned for

testing other properties of the new format. In particular learnability may be tested with the following experiment.

Subjects are provided with some patterns (in both formats) and they have a fixed time for studying them, than they

have to answer to a set of questions about patterns’ details. By measuring the time factor in the answering phase, it is

possible to check what format is easy to learn.

Another interesting experiment could be conducted for testing the composition of goal-oriented patterns (blending

activity). Even if the experiment in the previous section was already based on reusing two patterns in each laboratory,

a more complete experiment should consider cases of conflicts among roles in the proposed patterns and the use of

pattern composition techniques. Moreover, to assure the effectiveness of the experiment, the documentation formats

must be carefully selected considering as possible treatment, for example, the POAD design models [19].

8. Acknowledgement

We would like to thank Mariano Ceccato for many hours of discussions on techniques for conducting and reporting

experiments of software engineering.

29

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 30

References

[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented Software Architecture, A System of Patterns, John Wiley &

Sons Ltd, Chichester, England, 1996.

[2] U. Zdun, Systematic pattern selection using pattern language grammars and design space analysis, Software: Practice and Experience 37 (9)

(2007) 983–1016.

[3] D. Gross, E. Yu, From non-functional requirements to design through patterns, Requirements Engineering 6 (1) (2001) 18–36.

[4] I. Araujo, M. Weiss, Linking Patterns and NonFunctional Requirements, in: Proceedings of the Ninth Conference on Pattern Language of

Programs (PLoP 2002), September 8–12, 2002, 2002, pp. 8–12.

[5] S. Yacoub, H. H. Ammar, A. Mili, Constructional design patterns as reusable components, in: Software Reuse: Advances in Software

Reusability, Springer, 2000, pp. 369–387.

[6] S. Henninger, V. Corrêa, Software pattern communities: Current practices and challenges, in: Proceedings of the 14th Conference on Pattern

Languages of Programs, ACM, 2007, p. 14.

[7] L. Rising, The pattern almanac, Addison-Wesley Longman Publishing Co., Inc., 2000.

[8] M. Cline, The pros and cons of adopting and applying design patterns in the real world, Communications of the ACM 39 (10) (1996) 47–49.

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements od Reusable Object-Oriented Software, Addison-Wesley Profes-

sional Computing Series, Addison-Wesley Publishing Company, New York, NY, 1995.

[10] W. M. van Der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, A. P. Barros, Workflow patterns, Distributed and parallel databases 14 (1) (2003)

5–51.

[11] D. C. Schmidt, M. Stal, H. Rohnert, F. Buschmann, Pattern-Oriented Software Architecture, Patterns for Concurrent and Networked Objects,

Vol. 2, John Wiley & Sons, 2013.

[12] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, P. Sommerlad, Security Patterns: Integrating security and systems

engineering, John Wiley & Sons, 2013.

[13] UIUC, Pattern Stories Wiki, Avaiable at http://c2.com/cgi/wiki?PatternStoriesWiki.

URL http://c2.com/cgi/wiki?PatternStoriesWiki

[14] P. Iarı́a, U. Chesini, Refining the observer pattern: The middle observer pattern, in: Proceedings of PLoP’98 (Group 7 Scattered Work), 1998,

pp. 1–6.

[15] D. Riehle, Lessons learned from using design patterns in industry projects, in: Transactions on pattern languages of programming II, Springer,

2011, pp. 1–15.

[16] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, W. Tichy, Two controlled experiments assessing the usefulness of design pattern documen-

tation in program maintenance, Software Engineering, IEEE Transactions on 28 (6) (2002) 595–606.

[17] M. Duell, Managing change with patterns, in: Design patterns in communications software, Cambridge University Press, 2001, pp. 251–258.

[18] T. Mikkonen, Formalizing design patterns, in: Proceedings of ICSE ’98, IEEE Computer Society, Washington, DC, USA, 1998, pp. 115–124.

[19] S. Yacoub, H. Ammar, UML Support for Designing Software Systems as a Composition of Design Patterns, Uml 2001: The Unified Modeling

Language: Modeling Languages, Concepts, and Tools: 4th International Conference, Toronto, Canada, October 1-5, 2001: Proceedings.

[20] J. McPhail, D. Deugo, Deciding on a pattern, Lecture Notes in Computer Science (2001) 901–910.

[21] N. Harrison, P. Avgeriou, U. Zdun, Using patterns to capture architectural decisions, Software, IEEE 24 (4) (2007) 38–45.

[22] E. S.-K. Yu, Modelling strategic relationships for process reengineering, Ph.D. thesis, University of Toronto, Toronto, Ont., Canada, Canada

(1996).

[23] D. Riehle, Bureaucracy, Pattern Languages of Program Design 3 (1998) 163–186.

[24] E. Wallingford, Sponsor-selector, Addison-Wesley Software Pattern Series (1997) 67–78.

[25] A. Eden, Y. Hirshfeld, A. Yehudai, LePUS-a declarative pattern specification language, Techn. rep 326 (1998) 98.

[26] D. Mapelsden, J. Hosking, J. Grundy, Design pattern modelling and instantiation using dpml, in: Proceedings of CRPIT ’02, Australian

Computer Society, Inc., Darlinghurst, Australia, Australia, 2002, pp. 3–11.

30

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 31

[27] L. Sabatucci, M. Cossentino, A. Susi, Introducing Motivations in Design Pattern Representation, in: Formal Foundations of Reuse and

Domain Engineering: 11th International Conference on Software Reuse, ICSR 2009, Falls Church, VA, USA, September 27-30, 2009.

Proceedings, Springer, 2009, p. 201.

[28] J. Mak, C. S. T. Choy, D. Lun, Precise specification to compound patterns with ExLePUS, Proceedings of the 27th Annual International

Computer Software and Applications Conference (COMPSAC 2003).

[29] D. Kim, R. France, S. Ghosh, E. Song, A UML-Based Metamodeling Language to Specify Design Patterns, Proc. Workshop Software Model

Eng.(WiSME) with Unified Modeling Language Conf.

[30] R. B. France, D.-K. Kim, S. Ghosh, E. Song, A uml-based pattern specification technique, IEEE Trans. Softw. Eng. 30 (3) (2004) 193–206.

doi:http://dx.doi.org/10.1109/TSE.2004.1271174.

[31] G. Sunyé, A. L. Guennec, J.-M. Jézéquel, Design patterns application in uml, in: ECOOP ’00: Proceedings of the 14th European Conference

on Object-Oriented Programming, Springer-Verlag, London, UK, 2000, pp. 44–62.

[32] J. Mak, C. Choy, D. Lun, Precise modeling of design patterns in UML, in: Proceedings of the 26th International Conference on Software

Engineering, IEEE Computer Society Washington, DC, USA, 2004, pp. 252–261.

[33] J. Dong, Uml extensions for design pattern compositions, Journal of Object Technology.

[34] J. Vlissides, Tooled composite, C++ Report (1999) 43–47.

[35] G. Larsen, Designing component-based frameworks using patterns in the uml, Commun. ACM 42 (10) (1999) 38–45.

doi:http://doi.acm.org/10.1145/317665.317674.

[36] B. Chandrasekaran, Design problem solving: A task analysis, AI magazine 11 (4) (1990) 59.

[37] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, A. Perini, Tropos: An agent-oriented software development methodology, Au-

tonomous Agents and Multi-Agent Systems 8 (3) (2004) 203–236.

URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.7049

[38] D. Riehle, Describing and composing patterns using role diagrams, in: K.-U. Mätzel, H.-P. Frei (Eds.), 1996 Ubilab Conference, Zürich,

Germany, 1996, pp. 137–152.

URL citeseer.ist.psu.edu/riehle96describing.html

[39] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén, Experimentation in software engineering, Springer, 2012.

[40] M. Höst, B. Regnell, C. Wohlin, Using students as subjects—a comparative study of students and professionals in lead-time impact assess-

ment, Empirical Software Engineering 5 (3) (2000) 201–214.

[41] S. M. Yacoub, H. H. Ammar, Pattern-oriented analysis and design: composing patterns to design software systems, Addison-Wesley Profes-

sional, 2004.

[42] S. C. Hayden, C. Carrick, Q. Yang, A catalog of agent coordination patterns, in: Proceedings of the third annual conference on Autonomous

Agents, ACM, 1999, pp. 412–413.

[43] N. Russell, A. H. Ter Hofstede, D. Edmond, W. M. van der Aalst, Workflow data patterns, Tech. rep., QUT Technical report, FIT-TR-2004-01,

Queensland University of Technology, Brisbane (2004).

[44] K. Beck, W. Cunningham, A laboratory for teaching object oriented thinking, in: ACM Sigplan Notices, Vol. 24, ACM, 1989, pp. 1–6.

31

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 32

Appendix A. Flyweight Pattern

to reduce the number
of instances

to support large numbers of
fine-grained objects

Flyweight
Pattern

flyweight
role

 extrinsic state

to manage the
intrinsic state

client
role

pool
management

run-time costs
-

to reduce
storage size

++

FLYWEIGHT PATTERN
strategy-model

actor

design goal

design
quality

 resource

+/++/-/--
contribution

KEY:

delegation

flyweight
factory

role

object-key

identity test
(all shared
objects are
identical)

to support large numbers of fine-grained objects
to reduce the number of instances

to separate extrinsic state
from intrinsic state

to decide how
to use sharing objects

AND

FLYWEIGHT PATTERN
design-goal-model

design
quality

+/++/-/--
contribution

design goal

DESIGN TASK

AND

AND-decomposition

OR

OR-decomposition

KEY:

to identify sharable objects

--

STORE INTRINSIC
STATE

STORE
EXTRINSIC

STATE

COMPUTE
EXTRINSIC

STATE

OR

AND

CLASSIFY KINDES OF
EXTRINSIC STATE

storage
cost

--
(too many different kinds)

+
-

HOW TO IDENTIFY SHARABLE
OBJECTS
identify candidate objects as
classes with high number of
instances
identify the context of use of these
objects
identify recurrent properties that all
instances owns independently of the
context (intrinsic state)
identify properties that depends on
the context (extrinsic state)
[the most object state must be the
intrinsic state]

CLASSIFY KINDES OF EXTRINSIC STATE AND STORE INTRINSIC
STATE
create a flyweight abstract class
for each kind of extrinsic state,

add a concrete_flyweight class
make concrete_flyweight inherits the flyweight abstract class
add attribute to concrete_flyweight for storing intrinsic state
add methods to concrete_flyweight for handling extrinsic state
add the same virtual methods to the abstract flyweight

create the flyweight_manager class
add to the flyweight_manager class a technique to store the pool of
concrete_flyweight associated to a key
add to the flyweight_manager class methods for creating, finding,
managing concrete_flyweight classes

STORE EXTRINSIC STATE
add to client classes a technique to
store the extrinsic state associated to a
flyweight key

COMPUTE EXTRINSIC STATE
add to client classes a method to
compute the extrinsic state given a
flyweight key

KEY: start event decision point plan flow design task end event

32

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 33

Appendix B. State Pattern

to make state
transitions explicit

avoid multiple
conditional
statements

to configure a
class with

interchangeable
behavior

++

to encapsulate the
state-specific

behavior

states are easy
to evolve

to manage
current state

and transitions

actor

design goal

design
quality

 resource

+/++/-/--
contribution

KEY:

delegation

STATE PATTERN
strategy-model to implement a

state-dependent
behavior State

Pattern ++

++

state
role

context
role state-specific

requests

to implement a state-dependent behavior
to make state transitions explicit

AND

to identity how to encapsulate
the behavior

AND

to manage state
transition

to identify
interactions with
out-of-boundary
classes

to encapsulate
state-specific
behavior

OR

to create state
objects on demand
DYNAMIC STATES

to static set of
state state objects
STATIC STATES

OR

to pass argument
to active state
object
PASSIVE STATE

active state object
recovers useful
data
ACTIVE STATE

to decompose the behavior in
states and transitions

to identify the
state-behavior
boundary

AND

simpler interface

efficient method
invocation state can activate

transitions

resource
optimization

fast and efficient
state transitions

shared state
objects

+

-
-- +++

+

- ++

+
--

STATE PATTERN
design-goal-model

design
quality

+/++/-/--
contribution

design goal

DESIGN TASK

AND

AND-decomposition

OR

OR-decomposition

KEY:

KEY: start event decision point plan flow design task end event

HOW TO IDENTIFY THE STATE-BEHAVIOR BOUNDARY
identify states of a complex behavior
add an abstract state class
for each state

identify individual sub-behavior
add a concrete_state class
make concrete_state inherits the abstract state class
add to concrete_state an handle method to

implement the associated behavior

PASSIVE STATE
add to concrete_state’s handle method
argument to receive context data

ACTIVE STATE
create a context_interface for states
add to concrete_state’s handle method an argument
of type context_interface
add to the context_interface and the context class
methods to get private context data (including event
methods the state-classes can also generate a
transition)

DYNAMIC STATES
add to the context class a get_state method (add there
the logics for creating instances on demand)
set the current_state attribute as the result of get_state
with the initial state as argument)

STATIC STATES
add to the context class a structure to store all the states
add to the context class a initialize_states method for
instantiate all the state class
set the current_state attribute as the initial state

HOW TO IDENTIFY THE INTERACTIONS WITH OUT-OF-
BOUNDARY CLASSES
create a context class
add to the context class an attribute for the current state
add to context class a request method for clients
identify external events that generate a state-transition
for each event

add to the context class an event method
implement there the state transition

33

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 34

Appendix C. Broker Pattern

Broker
Pattern

BROKER PATTERN
strategy-model to structure a distributed

software system with
decoupled components

server
 role

response/
exceptions

+

client
role

server and client
locations

transparencyscalability,
changeability

and extensibility
+

to implement user
functionality

to implement
services

efficiency

-
fault tolerance

-

broker
 role registration

request

client
proxy
role

server
proxy
role

to implement
client-server

communication

to handle the
client-side service

request

to handle the
server-side

service request

service
directory

actor

design goal

design
quality

 resource

+/++/-/--
contribution

KEY:

delegation

to structure a distributed software system with decoupled components
AND

to ensure the component
interoperability

to define the object
model

to define the inter-process
collaboration mechanism

to hide implementation details
from client and serversOR

DIRECT
COMMUNICA
TION

INDIRECT
COMMUNICAT
ION

protocol
independence

-- ++

BROADCAST
COMMUNICAT
ION

-

AND

to define registration
mechanism

OR

SERVICE
IDENTIFIER

SERVER
IDENTIFIER

OR

INTERFACE
DESCRIPTION
LANGUAGE

BINARY
REPRESENTA
TION

decide
association ID

decide service
description

AND

use a proxy in
the server side
for handling
service
invocations

use a proxy in the
client side to deal
services as local
objects

AND

flexibility

++

efficiency

++--

to define
interface for
accessing
services

OR

STATIC
INVOCATION

DYNAMIC
INVOCATION

simplicity of API

-

use the broker to
maintain
information of
services

BROKER PATTERN
design-goal-model

design
quality

+/++/-/--
contribution

design goal

DESIGN TASK

AND

AND-decomposition

OR

OR-decomposition

KEY:

open service
system

+ --

flexibility

++

IDENTIFY THE OBJECT MODEL
Specify entities to handle by client, broker and
server

objects,
interfaces,
operations,
exceptions,
…

Create a Broker component running in every
participating machine in the distributed system.

INTERFACE DESCRIPTION
LANGUAGE
Choose the IDL to describe all
interfaces servers offer to clients
Develop an IDL compiler for each
programming language to
support.

BINARY REPRESENTATION
Create an association between each
element of the object model and the
binary representation, depending on the
specific programming language used.
If available, use an existing support of the
specific programming language.

SPECIFY STATIC INVOCATION
Add to the Broker component methods for

constructing requests
passing requests to the broker
receiving responses from servers

SPECIFY DYNAMIC INVOCATION
Add to the Broker component methods for

registering/unregistering services
locating a service
constructing requests
passing requests to the broker
receiving responses from servers

USE PROXIES
For each client, add a Client-Side Proxy
component running in the client process
Add to this component private methods for

pack data into request format
send request to the broker
unpack response
un-marshal response data

For each server, add a Server-Side Proxy
component running in the server process
Add to this component provate methods for

unpack data from request format
call the service
pack response
marshal response data

INDIRECT COMMUNICATION
Define a protocol for the communication from client
to broker. Also define one protocol for each server
in the system (protocols may coincide). Plan the
mapping of requests, responses and exceptions in
messages of the protocols.

Add to Client-Side Proxy and Broker components
the ability to handle the first protocol
Add to broker and Server-Side Proxy components
the ability to handle the other protocol(s).

Add to the Broker component a private method to
locate the proper server and establishing the
communication between client and server.
Add to the Broker component two private methods
to forward request and responses.

DIRECT COMMUNICATION
Define a unique communication protocol. Plan the mapping of
requests, responses and exceptions in messages of the protocol.

Add to Client-Side Proxy, Broker and Server-Side Proxy components
the ability to handle this protocol

Add to the Broker component a private method to locate the proper
server and establishing the communication between client and server.

Add to Client-Side Proxy and Server-Side Proxy components the
ability to exchange messages in accordance to the protocol.

BROADCAST COMMUNICATION
Do not add to the Broker any mechanism to store
identifier.
When the Broker has to forward a request, it forwards
the request to all the available server thus to locate
the proper one.

RECORD SERVICE IDENTIFIER
Add to the Broker component a way for
server to register as available for a specific
service identifier. When the Broker has to
forward a request, it dispatches the
request to all the servers that are
registered for that service.

RECORD SERVER IDENTIFIER
Add to the Broker component a way to dynamically
map a unique service identifier with a server name.
When the Broker receives a request, it uses this
mapping for identifying the specific server to contact.

KEY:

start event

decision point

plan flow

design task

end event

34

Sabatucci et al. / Journal of Systems and Software 00 (2015) 1–35 35

Appendix D. Checklists for Evaluating the Correctness

This section reports an extract of the design of the experiment presented in this paper.

Exercise 1: banking loan application. The exercise requires to define the UML class diagram for implementing

the suggested architecture (a sequence diagram is provided) for bank loan applications in which the Template Method

pattern to define a flexible way for encapsulating the general procedure for loan application, and allow a set of alter-

nating concrete procedures by sub-classing and the Proxy pattern for abstracting the communication with a remote

bank.

Evaluators must provide a score (from 0 to 1) to each of these item in the checklist (considering that names of

classes or methods may slightly change in each delivered class diagram):

1. are checkBank, checkLoan and takeLoan methods factored in the BankLoanSystem class?

2. are checkCredit, checkStock and checkIncome methods defined as abstract in the BankLoanSystem class and

then overridden in any subclass?

3. is there only one generic proxy class and many RealBank classes?

4. is the PrivateLoanSystem class able to access to an array of proxy objects, each of these referring to a RealBank

objects?

5. is the checkBankCredit method abstract in the Bank class and then overridden in BankProxy class and in all

RealBank sub-classes?

Exercise 2: Robocup Soccer Team. The exercise requires to define the UML class diagram for implementing

the suggested architecture (three sequence diagrams are provided) in which each robot and the coach are modeled as

classes. The Mediator pattern is suggested for implementing the collaboration among the robots of the team through

their coach. The mechanism must be flexible enough to allow teams with different number of players. The Strategy

pattern allows the coach to change game strategy among at least three different game strategies to implement in

separated classes.

Evaluators must provide a score (from 0 to 1) to each of these item in the checklist (considering that names of

classes or methods may slightly change in each delivered class diagram):

1. is there a bidirectional reference between players and coach?

2. are the methods stay, move, follow, pass, kick public operations of the Player class, whereas methods ball

position, opponent position are public operations in the Coach class?

3. does the Coach class implement a dynamic set of players with register/unregister methods?

4. does the Coach class get a current strategy attribute (or analogue) typed as GameStrategy?

5. does the GameStrategy class and all its sub-classes get a private method to communicate the strategy to each

Player class that is on the field?

35

Luca	
 Sabatucci	
 is	
 a	
 research	
 scientist	
 in	
 the	
 Agent-­‐Oriented	
 Software	

Engineering	
 unit	
 of	
 the	
 Italian	
 National	
 Research	
 Council	
 of	
 Italy	
 (CNR)	
 since	

2011.	
 His	
 research	
 interests	
 are	
 in	
 the	
 areas	
 of	
 Self-­‐Adaptive	
 Systems,	

Requirements	
 Engineering,	
 and	
 Design	
 Patterns.	
 He	
 is	
 the	
 author	
 of	
 about	
 fifty	

papers	
 published	
 in	
 scientific	
 journals,	
 conferences	
 and	
 workshops.	
 He	

participated	
 in	
 the	
 organization	
 committee	
 of	
 RE	
 ‘11	
 and	
 in	
 program	
 committees	

of	
 many	
 international	
 conferences	
 and	
 workshops.	

	

Massimo	
 Cossentino	
 got	
 his	
 PhD	
 in	
 Computer	
 Science	
 Engineering	
 from	
 the	

University	
 of	
 Palermo	
 and	
 his	
 Habilitation	
 à	
 Diriger	
 des	
 Recherches	
 (HDR)	
 from	

the	
 University	
 Paul	
 Sabatier	
 of	
 Toulouse	
 in	
 2008.	
 He	
 is	
 a	
 Research	
 Scientist	
 of	
 the	

National	
 Research	
 Council	
 of	
 Italy	
 from	
 2001.	
 In	
 2006-­‐2008	
 he	
 has	
 been	
 an	

invited	
 Associate	
 Professor	
 at	
 the	
 University	
 of	
 Belfort-­‐Montbelliard	
 (UTBM).	
 He	

is	
 currently	
 researching	
 on	
 Agent-­‐Oriented	
 Software	
 Engineering,	
 more	

specifically	
 on	
 adaptive	
 workflows,	
 simulation	
 of	
 traffic	
 and	
 transportation	

systems,	
 design	
 methodologies.	
 He	
 is	
 the	
 author	
 of	
 about	
 one	
 hundred	
 and	
 forty	

papers	
 published	
 in	
 scientific	
 journals,	
 conferences	
 and	
 workshops.	
 He	
 is	

currently	
 chairing	
 the	
 IEEE	
 FIPA	
 Design	
 Process	
 Documentation	
 and	

Fragmentation	
 Working	
 Group.	
 In	
 the	
 past	
 he	
 organized	
 and	
 chaired	
 several	

international	
 scientific	
 events.	
 He	
 also	
 got	
 funded	
 some	
 national	
 projects	
 where	

he	
 was	
 the	
 principal	
 investigator	
 and	
 he	
 participated	
 in	
 several	
 others.	

	

Angelo	
 Susi	
 is	
 a	
 research	
 scientist	
 in	
 the	
 Software	
 Engineering	
 unit	
 of	
 FBK.	
 His	

research	
 interests	
 are	
 in	
 the	
 areas	
 of	
 Requirements	
 Engineering,	
 Goal-­‐oriented	

software	
 engineering,	
 Formal	
 Methods	
 for	
 requirements	
 validation,	
 and	
 Search-­‐
based	
 software	
 engineering.	
 He	
 published	
 more	
 than	
 80	
 refereed	
 papers	
 in	

journals	
 and	
 international	
 conferences	
 and	
 participated	
 in	
 the	
 organization	

committee	
 of	
 several	
 conferences,	
 such	
 as	
 SSBSE	
 ‘12	
 (General	
 Chair),	
 RE	
 ‘11	

(Local	
 and	
 Financial	
 chair)	
 and	
 in	
 program	
 committees	
 of	
 international	

conferences	
 and	
 workshops	
 (such	
 as	
 AAMAS,	
 ICSOC,	
 CAiSE	
 and	
 SSBSE).	
 He	

participated	
 to	
 several	
 funded	
 projects	
 and	
 he	
 is	
 currently	
 acting	
 as	
 Scientific	

Manager	
 of	
 the	
 FP7	
 RISCOSS	
 project.	

*Biography

