Method Fragments for agent
design methodologies: from
standardization to research

M. Cossentino

Istituto di Calcolo e Reti ad alte prestazioni,

(ICAR) - Consiglio Nazionale delle Ricerche (CNR), Palermo,Italy
SET - Universite de Technologie Belfort-Montbeliard - Belfort, France
E-mail: cossentino@pa.icar.cnr.it

S. Gaglio

DINFO - Universita degli studi di Palermo - Palermo, Italy

Istituto di Calcolo e Reti ad alte prestazioni,

(ICAR) - Consiglio Nazionale delle Ricerche (CNR) - Palermo, Italy
E-mail: gaglio@Qunipa.it

A. Garro
D.E.L.S. - Universita della Calabria - Rende, Italy
E-mail: garro@unical.it

V. Seidita
DINFO - Universita degli Studi di Palermo - Palermo, Italy
E-mail: seidita@csai.unipa.it

Abstract: The method engineering paradigm enables designers to reuse portions of
design processes (called method fragments or chunks in literature) to build processes
that are expressly tailored for realizing a system that is specific for some problem or
development context. This paper initially reports the standardization attempt carried
out by the FIPA Methodology Technical Committee (TC) and then presents the re-
search activities we did starting from that proposal; these resulted in a little different
definition of some of the most important elements of the approach in order to support
a multi-view representation of the fragment (the views are process, reuse, storing, and
implementation). The paper also describes the documents we use for representing a

fragment and concludes with an example.

Keywords: Software Engineering Process, Methodologies, Multiagent systems.

1 Introduction

In the last years, the agent-oriented approach (Bauer et al.,
2001; Jennings, 2001) has been recognized as very suitable
for the development of complex software systems since it
fully exploits the well known techniques of Decomposition,
Abstraction and Organization (Booch, 1994) for helping to
manage complexity. In particular in the context of complex
software systems:

e the agent-oriented decomposition is an effective way
of partitioning the problem space;

e the key abstractions of the agent-oriented mindset
(agents, interactions, and organizations) are a natu-
ral means of modelling;

e the agent-oriented philosophy for modelling and man-
aging organizational relationships is appropriate for
dealing with existing dependencies and interactions
(Jennings, 2001).

The development of complex software systems by using the
agent-oriented approach requires suitable agent-oriented
modelling techniques and methodologies which provide
explicit support for the key abstractions of the agent
paradigm.

Several methodologies supporting analysis, design and
implementation of Multi-Agent Systems (MASs) have been
to date proposed in the context of Agent Oriented Software
Engineering (AOSE) (Lind, 2001). Some of the emerg-
ing methodologies are Adelfe (Bernon et al., 2002), Gaia

Copyright (© 200x Inderscience Enterprises Ltd.



(Zambonelli et al., 2003), MaSE (DeLoach, 2001), Message
(Caire et al., 2002), Passi (Cossentino, 2005), Prometheus
(Padgham and Winikoff, 2003), and Tropos (Bresciani et
al., 2004) . Although such methodologies have different ad-
vantages when applied to specific problems, it’s a matter of
fact that an unique methodology cannot be general enough
to be useful to everyone without some level of customiza-
tion. In fact, agent designers, for solving specific problems
in a specific application context, often prefer to define their
own methodology specifically tailored for their needs in-
stead of reusing an existing one. Thus an approach that
combines the designer’s need of defining his own methodol-
ogy with the advantages and the experiences coming from
the existing and documented methodologies is highly re-
quired.

A possible solution to this problem is to adopt the
method engineering paradigm so enabling designers of
MAS to (re-)use parts coming from different methodologies
in order to build up a customized approach for their own
problems (Henderson-Sellers, 2003). According to this ap-
proach, the “development methodology” is constructed by
assembling pieces of other methodologies (method frag-
ments) from a repository of methods (method base).
The method base is built up by taking method fragments
coming from existing methodologies or ad hoc defined
methods. This approach has been adopted, in the past
few years, by the FIPA Methodology Technical Committee
(TC) (Foundation for Intelligent Physical Agents (FIPA))
in which the authors were active members. FIPA recently
moved to the IEEE Computer Society under the name of
IEEE FIPA Standards Committee and in this occasion the
activity of the Methodology TC stopped.

The FIPA Methodology Technical Committee (T'C) has
been constituted in 2003 with the aim of capitalizing the
efforts of many researchers in the area of MASs design and
contributing to the reuse of parts of existing mehtodologies
(and the related knowledge) through an appropriate set of
specifications
More in details, the main goals of the TC were:

e Definition of the method fragments meta-
model. It is necessary to formally represent method
fragments in order to facilitate their identification,
representation, integration and storing in the method
base;

e Identification of the method base architecture.
The method base needs of a technological infrastruc-
ture for the instantiation of the previously defined
method meta-model;

e Collection of method fragments. They can origin
from the most diffused methodologies and other spe-
cific contributions. After the formalization they can
be introduced in the method base;

e Description of techniques for methods integra-
tion. It is necessary to define guidelines for meth-
ods integration in order to both construct the new

methodology (by retrieving the method fragments
from the method base and integrating them) and ap-
ply it in the real design work.

A more ambitious goal was enabling the use of:

e CAPE (Computer Aided Process Engineering) tools
that could enable the construction of the new design
process; these tools should be able to support the def-
inition of the process life-cycle as well as the reuse of
fragments from the method base. They should enable
the adoption of a specific process life-cycle (waterfall,
iterative/incremental, spiral, ...) and the placing
of different fragments in it. The CAPE tool should
“Instantiate” a proper CASE tool (see below) that
is specifically customized to support the designer in
working with the composed methodology.

e CAME (Computer Aided Method Engineering) tools
that could offer specific support for the composi-
tion/mainteinance of a method fragment; these tools
should enable the definition of a method fragment
accordig to its definition and the prescriptions com-
ing from the method base; besides they would allow
the modification of these fragments when assembling
needs or other customization requests could emerge.

e CASE (Computer Aided Software Engineering) tools
that assist the designer in performing the development
process based on the composed methodology. These
tools should be the evolution of existing CASE instru-
ments since they enforce the execution of the design
phases in the the order defined at the methodology
composition time (accordingly to the adopted process
life-cycle Cernuzzi et al. (2005)) and they guide the
designer in profitably applying it.

The work done by the FIPA Methodology TC can be
summarized as follows: definition of a method fragment
meta-model (including an XML-based method fragment
representation); definition of a method base general archi-
tecture; representation of some methodologies using a pro-
cess description language, the TC adopted OMG SPEM
(Software Process Engineering Metamodel) (SPEM, 2002),
the described methodologies are: ADELFE, Gaia, and
PASSI (see the TC documents (Gleizes et al., 2003; Garro
et al., 2004; Cossentino et al., 2004)); collection of method
fragments, this has been done by extracting method frag-
ments from the previously listed methodologies according
to the defined method fragment meta-model (see the TC
documents (Gleizes et al., 2004; Garro and Turci, 2004;
Cossentino, 2004)), a new fragment that is specific to
deal with complex systems has been listed too (Pena and
Corchuelo, 2004); and finally, identification of some ap-
proaches and guidelines for methods integration.

This represent the first part of the work presented in
this paper, from the activity of the Methodology TC, we
started our own researches aimed at applying the pro-
posed specifications and eventually improving them. In
the second part of the paper (sections 4, 5) we present



the results of these studies. We made minor changes to
the structure of the fragment and we introduced new ele-
ments in it (the explicit support for the workflow of design
activities, and other elements aimed at a successful im-
plementation of the method fragment). In order to really
experiment these definitions, we extended our interest to
the study of the whole development process with a multi-
perspective approach that resulted in the representation
of the fragments according to the following views: process,
reuse, storing, implementation. We furtherer improved the
FIPA repository with new methodologies/fragments, we
produced a web-based method base and finally we realized
some experiments also with the support of some prototyp-
ical CAME/CASE tools.

In the next sections these points will be discussed in
details.

2 Method Engineering

The term Method Engineering was coined by Kumar and
Welke in 1992 (Kumar and Welke, 1992) when they real-
ized that a standard design methodology suitable for each
kind of problem did not exist so they proposed the en-
gineering of new methodologies starting from the compo-
sition of techniques in order to meet a specific problem
in a specific application context. Successively Brinkkem-
per defined the method engineering as “the engineering
discipline to design, construct and adapt methods, tech-
niques and tools for the development of information sys-
tems” (Brinkkemper, 1996). All of them worked in the
field of information systems where the growing complexity
of systems led designers to modify and adapt the design
methodology in order to meet the needs arising from the
particular problem/context they were working on and the
specific skills they had; as a consequence of this trend, the
term Situational Method Engineering grew up (Harmsen
and Brinkkemper, 1995).

Situational Method Engineering is mainly based on the
concept of reuse and on the belief that each methodology
can be decomposed in parts (components) so that a de-
signer can create an ad hoc methodology by starting from
these reusable parts (called method fragments); hence the
method fragment is the most important element when ap-
plying the method engineering paradigm. Method frag-
ments have to be extracted from existing design method-
ologies and stored in a repository, called method base, from
which they are retrieved during the process of new method
construction by the designer (the method engineer); obvi-
ously the definition of a proper assembly technique is of
fundamental importance for the successful application of
this approach.

Thus it is a matter of fact that three elements have to
be considered during a method engineering process: the
method fragment, the repository and the assembly tech-
niques.

Different approaches today exist for the application of
the method engineering paradigm (Brinkkemper, 1996;

Henderson-Sellers, 2002, 2005, 2006; Ralyté and Rolland,
2001; Rolland and Prakash, 1996; Hofstede and Verhoef,
1997; Tolvanen et al., 1996), all of them start from the
same consideration that the growing complexity of systems
needs ad hoc methodologies and that the three previously
cited elements are the core points but each of them pro-
vide different meanings and definitions basing on the spe-
cific domain they are working on and the specific develop-
ment context; that is even if they all share the same main
phases for a method engineering process: method require-
ments definition, method fragments selection and method
fragments assembly.

The (situational) method engineering paradigm, which
until now we illustrated referring to the information system
context, can be obviously used and extended to all the
cases in which a complex system has to be developed using
a purposefully created methodology and in particular we
are working on adapting this approach to the development
of multi-agent systems design methodologies.

Before introducing the work done within FIPA on the
matter, we would like to adopt an unique denomination for
the process composed by applying the method engineering
paradigm (but also for the process from which the method
fragments were extracted). In literature we can find au-
thors using the terms methodology (the preferred one in
the agent context), process, design process and also soft-
ware design process. In order to avoid confusion and not
to participate to this debate, we will adopt a wide enough
definition coming from Fuggetta (Fuggetta, 2000) who de-
fined a Software Engineering Process (SEP hence after)
as “the coherent set of policies, organizational structures,
technologies, procedures, and artifacts that are needed to
conceive, develop, deploy, and maintain (evolve) a software
product”.

The approach proposed by the FIPA Methodology TC
is an extension of the method engineering paradigm as
proposed in (Brinkkemper, 1996; Kumar and Welke, 1992;
Saeki, 1994). As already said, according to this approach,
a SEP is built up by assembling pieces of the process
(method fragments) (Brinkkemper et al., 1996, 1999; Ra-
lyté and Rolland, 2001) taken from a repository of meth-
ods that has been built by extracting pieces from existing
design processes. Besides (and this has been decisive in the
FIPA context), this approach allows the contribution of a
large community (several design processes for MAS design
already exist in literature (Luck et al., 2004)) without im-
posing any kind of discrimination on what is “compliant”
and what is not. Compliant SEPs would be simply com-
posed by reusing parts from the repository accordingly to
the proposed guidelines, nothing more than that. Most of
all, different contributions to the repository are valuable
because they are the consequence of some specific need,
development context, application environment or theoret-
ical background and as such they can be profitably reused
when something similar is found in facing a new problem
(just like a bridge pattern (Gamma, 1994) can be reused
whenever it is necessary to decouple an interface from an
implementation, regardless of the original context that al-



lowed the identification of this pattern).

2.1 Method Engineering and Agents

Some authors already started to work in this direction
in the agent community (Cossentino and Seidita, 2004;
Garro and Palopoli, 2003; Henderson-Sellers, 2005; Juan
et al., 2002) thus confirming that the method engineer-
ing paradigm can be profitably applied to multi-agent sys-
tems design too. Figure 1 describes the approach to the
whole method engineering process studied by the FIPA
Methodology TC. Although this was not intended to be a
standardization issue, its definition was supposed to help
members in practicing the construction of new SEPs. It
includes three main phases: the fragments repository con-
struction, the SEP definition and the SEP enactment. The
fragments repository is built by conveniently modularizing
the existing design processes and converting them to the
method fragment structure defined by the TC (see section
3). The identification of guidelines for fragments extrac-
tions from existing processes has not been studied during
the FIPA Methodology TC activity although it has some
effect on the fragment structure (for instance on its gran-
ularity). This problem is still an open research issue and
some contributions can be found in (Ralyté and Rolland,
2001; Brinkkemper et al., 1999; Cossentino and Seidita,
2004). The method base can also list fragments not coming
from an entire process but conceived as stand alone con-
tributions to the repository. This is the case of the MaC-
MAS fragment that allows dealing with the analysis phase
of complex systems (Pefia and Corchuelo, 2004). The TC
members regarded this is a relevant contribution to the
research on AOSE: it proved that it is no more necessary
to prepare an entire design process in order to study one
single aspect of agency. A researcher can focus his own at-
tention on the specific problem he wants to study and then
complement the resulting method fragment(s) with others
coming from the method base thus quickly completing a
process that he can use to test the results of his work.
During the SEP construction, the method engineer, has
to consider several different factors that effect his work:

e The SEP should be fitted for the specific family of
problems it will be applied. This means that if the
problem is typically effected by some constraint (e.g.
real-time or security issues) it should include proper
methods to explicitly deal with them.

e The SEP is to be used by persons. This means that
the method engineering should compose a SEP that
is coherent with their skills (or at least not too far);
a group of designer already skilled with some design
practice should not be forced to change this use if it is
possible to adopt (eventually part of) the old approach
to solve the new problem.

e Designing agents is different from designing objects.
Several papers deal with this issue (this is out of the
scope of this paper, see (Odell, 2002; Zambonelli et

al., 2003) for further details), by now it’s worth not-
ing that designing an agent society is characterized by
fundamental choices about the social structure (peer-
agents, hierarchical organizations and so on) or the
agent architecture (reactive, BDI, state-based, ...)
that becomes a kind of requirement for the SEP. They
often descend from the development context or the
specific problem to be solved: a company that has a
consolidated tradition in adopting BDI agents orga-
nized in groups of peer agents will more likely choose
a similar form of society for solving future problems
rather than change it if not really necessary (or re-
markably profitable); as a consequence, the new SEP
should encompass these choices.

e Agent is not a well defined concept; several differ-
ent definitions can be found in literature (Russell and
Norvig, 1995; OMG Agent Platform, 2000; Franklin
and Graesser, 1996) and this also includes most of the
concepts used when defining a MAS (role, task, be-
havior, goal, ...). The MAS is usually designed and
implemented by considering abstractions and compo-
nents that could be significantly different. Several
studies have been carried out during these last years
about MAS meta-models (Odell et al., 2005; Bernon
et al., 2004; Caire et al., 2002; Ferber and Gutknecht,
1998; Bernon et al., 2005) and a final result has not
been achieved. The same absence of a real, pure agent-
oriented coding language is the consequence of this sit-
uation (most diffused solutions are Java-based). The
FIPA Methodology TC approach encouraged stud-
ies in this direction and allowed an easier application
of their results since the method fragment definition
given by this TC explicitly considers the MAS meta-
model elements involved in its workflow and artefacts.

The construction of a new SEP is a well-studied phase
within the method engineering community and nonetheless
it is still open to new contributions. During the Method-
ology TC activity no specific work has been done on that;
members of the committee applied the techniques they con-
sidered more productive. Generally speaking we can say
that usually in order to compose a new process, the ac-
tivities to be done are: selection of fragments from the
method base, assembling of fragments, adaptation of frag-
ments that do not perfectly fit the new process in their
native structure. This activities will be further described
in the following sub-section. The resulting SEP will be es-
sentially composed of a flow of activities to be done, the
descriptions of a set of artefacts, the related guidelines and
the suggested notation for the required artefacts.

During the last phase (SEP enactment), the system de-
signer, adopts the new process (and the supporting CASE
tool) to design a MAS-based solution to the problem he is
facing and in so doing, he produces the required artefacts
accordingly to the process guidelines.

In the following section the method fragment definition
will be introduced.



—
—k\

B

Existing
processes

Agent Society
Specifications

Fragments New SEP
Collection [~ Construction |~

Method Base New SEP

MAS 4—1
Design . <¢————— Problem

New Method
Fragment(s)

& —]

MAS Running on MAS Model
FIPA Platforms

Figure 1: The discussed Agent-Oriented Method Engineer-
ing process

3 A Proposal of Fragment from the FIPA TC

The FIPA methodology TC started his work by giving a
definition of the method fragment and complementing it
with some studies on MAS meta-models and a glossary of
terms. As regards the method fragment (Method Frag-
ment Definition, 2003), it is considered as a portion of the
development process, composed of the following parts:

1. A specification of the portion of process which defines
what is to be done by the involved stakeholder(s) and
in what order. The fragment specification prescribes
the use of the OMG SPEM (SPEM, 2002) for describ-
ing its procedural aspect. According to SPEM, the
FIPA fragment can be regarded as a process compo-
nent.

2. One or more deliverables such as AUML/UML dia-
grams (Bauer et al., 2001) and text documents; these
should be part of the fragment specification in form
of a description of their structure (in order to clarify
what is the expected output of the presented activ-
ities) also including a reference to the suggested (or
adopted, in the original methodology from which this
fragment has been extracted) modelling notation.

3. Some preconditions which represent a kind of con-
straint specifying when it is possible to fire the ac-
tivities specified in the fragment. They are usually
related to the required input data; these precondi-
tions can be thought as the similar preconditions in a
contract between two classes. In particular, the pre-
ceding fragment (or the n preceding fragments) is/are
responsible for establishing the conditions that will
enable the successful execution of the following frag-
ment. The formalization of this preconditions would
allow the introduction of some kind of automatic as-
sistance in the composition of the fragments but a
formal language has not been specified nor adopted
yet and the only considerations that can be easily au-
tomated according to this specification, regards the
required input set in terms of already defined MAS
meta-model components (see below).

4. A list of components of the MAS meta-model to be de-
fined or refined through the specified process (they be-
long to the MAS meta-model adopted by the method-
ology from which the fragment was extracted); while
this list could be theoretically speaking void (this is
for instance the case of a fragment whose purpose con-
sists in selecting between two different paths in the
design process accordingly to the evaluation of some
aspects of the actual design), all the fragments that
have been up to now identified, are concerned with
some components to be defined/refined, thus showing
that the community is, by now, still more concerned
about a product-oriented identification of fragments
rather than a process-oriented one.

5. Application guidelines that illustrate how to apply the
fragment and the related best practices; the same for-
malization of these guidelines in the existing agent-
oriented methodologies has its own specific impor-
tance since otherwise, except for a few well docu-
mented approaches, guidelines often remain bounded
to the personal knowledge of some skilled designers or
the methodology creators.

6. A glossary of terms used in the fragment; this avoids
misunderstandings if the fragment is reused in a con-
text that is different from the original one; in order to
facilitate this part of the fragment documentation the
members of the TC discussed a list of definitions for
many commonly used terms.!

7. Composition guidelines which describe the con-
text/problem addressed by the specific fragment and
that is behind the methodology from which it has been
extracted.

8. Aspects of fragment; they are textual descriptions of
specific issues such as platform to be used for system
implementation, application area, etc; this helps in de-
limiting the proper application field for the fragment.

9. Dependency relationships useful to assemble frag-
ments. When the fragments granularity is fine grained
(and the FIPA repository is conceived to allow the in-
troduction of different sized fragments) it is frequent
to reuse more fragments from a specific methodology
since their adoption probably corresponds to adopt-
ing some philosophy for the composition of a specific
portion of the SEP.

It should be noted that although a complete description
of the fragment in all of the above listed fields is advisable
if possible, not all of these elements are always mandatory;
some of them (for instance deliverable notation or guide-
lines) could be not applicable or not necessary for some
specific fragment.

The resulting method fragment is represented by using
an UML Class Diagram in Figure 2 at the level of refine-

Thttp://www.pa.icar.cnr.it/cossentino/FIPAmeth/glossary.htm



= - Aspect Guideling Compasition

Glogsary — =
—— — uideling
——— 1

— [

MasModelElementTipe

defitesirefines artifact_elerment

Fragment

depen dant

Guard Condition

1.n

1.

dependeg

fragment_name : String
Process

b
Description
1 .
1 *T activities

<<Guideling>=
Fragments dependency
descripfion :text

MASModel
Relationship

premnl:lili-]lumlO_
| condition: Sting

WA SWods
Waok Product Entity

title : String
actiaty_product |5e RL

involved roleg 1.* Activity

lactivity_name : String
[description : String

1.7 [adivity_rele : Role Actor
lguideline : String

Role Actar
role_name : Sting

performs

ac vty input ?U * 0 ff&f ity

Ltput Text Dacument

Activity Data

Ciagram
notation : String

template : URL

ref: MasModelE lementType

Figure 2: The method fragment defined by the FIPA methodology TC

ment reached during the work of the TC; our further works
on it are presented in the following sections.

According to the reported definition of method frag-
ment the method base structure proposed by the FIPA
Methodology TC is an XML based repository storing a col-
lection of XML document, each one representing a method
fragment, validated by a DTD or an XML Schema. In fact,
the proposed method fragment meta-model can be easily
translated in a XML Document Type Definition (DTD) or
in a XML Schema that can be used for validating an XML
document representing a particular method fragment. The
validation process ensures that the method fragment was
extracted and defined according to the prescribed meta-
model. It is worth to point out that the XML document
representing a fragment is not self-contained but could con-
tain some URI addressing resources that can not be coded
in XML but that are nonetheless part of the fragment.

The repository is oriented toward a MAS meta-model
based classification of fragments; each one of them is in
fact labelled with the MAS meta-model components that
are defined or refined during its activities. Each activity
has some inputs and produces some outputs in terms of
defined/refined components of the MAS meta-model. The
instances of these components are reported in the fragment
work products (text documents or diagrams with a link to
the adopted notation) that are related to those activities.
The fragment preconditions are represented in terms of re-
quired work products or guard conditions (these can for
instance detail the required refinement level of some ele-
ments of the MAS meta-model).

Further details about the repository implementation or
querying approaches have been considered out of the scope
of the work of the TC and left to tool implementers.

The definition of the fragment meta-model was the main
aim of the FIPA Methodology TC and it had been pro-
posed to the FIPA board but the interruption of the activ-
ities and the subsequent moving of FIPA within the IEEE

Standards Society stopped the publication process of the
work as a preliminary specification.

In the following sub-section an important phase of the
construction of the new SEP, the method fragment integra-
tion, will be discussed.

3.1 Method fragments integration

Method fragments integration is the process of composition
of the new SEP and usually consists of two different and
complementary phases: the selection of the reused frag-
ments from the method base and their assembling (here
including the modification of fragments when necessary).
Several approaches exist in literature to deal with these
crucial phases, among the others the work of Ralyté where
fragments are composed by association and integration
(Ralyté and Rolland, 2001b), and the Brinkkemper’s pa-
per (Brinkkemper et al., 1999) where the composition pro-
cess is based on three orthogonal dimensions: perspective,
abstraction and granularity.

The FIPA Methodology TC members discussed about
this topic and, specifically, they mainly studied two basic
approaches for the integration of methods during the con-
struction of the agent-oriented SEP (Garro et al., 2004):
(i) meta-model driven, which is based on the MAS meta-
model adopted by the designer for the development of
a MAS for a specific problem in a specific application
domain; (ii) development process driven, which is based
on the instantiation of a software development process in
which each phase is carried out using appropriate method
fragments selected on the basis of the supported activities
and of the resulting work products.

Both of the proposed approaches have been experi-
mented by the authors in various applications and case
studies. For instance, the meta-model driven approach to
method fragments integration was exploited for the con-
struction of a SEP suitable for developing a MAS for the



prediction of the three-dimensional structures of proteins
(Garro et al., 2004a) and a MAS for E-Learning and Skill
Management context (Garro and Palopoli, 2003). The de-
velopment process driven approach to method fragments
integration was exploited for the construction of a SEP
for the modelling and the validation through simulation
of MAS (Fortino et al., 2004). These two approaches will
be further explored and then compared in the following
sub-sections.

3.1.1 The MAS meta-model driven approach for
method fragments integration

To build a SEP by exploiting the meta-model driven ap-
proach, the designer has to:

e choose or define the MAS meta-model suitable for the
specific problem and/or the specific application do-
main;

e choose the method fragments that are able to produce
the identified meta-model elements; the first criterion
here is related to the complete coverage of the meta-
model instantiation procedure;

e defining a development process characterized by a
method fragments execution order on the basis of the
relationship existing among the meta-model elements
produced by each fragment; in this phase a kind of de-
pendency matrix among the artifacts produced by the
fragments could help together with opportunity con-
siderations (for instance, in an agile approach, test
planning is done as soon as it is possible).

Hence, the obtained SEP is able to completely ensure
the MAS meta-model instantiation for the given problem
in a specific application domain.

3.1.2 The development process driven approach
for method fragments integration

The development process driven approach focuses on the
instantiation of a software development process that com-
pletely covers the development of MAS and complies with
some specific needs related to it (like the creation of an ex-
tensive documentation or the flexibility in managing new
requirements).

To build a SEP by exploiting the development process
driven approach, the designer must:

e choose or define a SEP life-cycle suitable for the spe-
cific problem and for the specific application domain;
this means for instance the adoption of a waterfall
life-cycle if the customer explicitly requires it (as it
happens in some government contracts) or an itera-
tive/incremental one to cope with evolving require-
ments and development risks management;

e instantiate the development process by selecting, for
each phase of the life-cycle, some suitable method
fragments, chosen from the method base or even ad-
hoc defined.

It’s worth noting that if two subsequent phases (P; and P»)
are carried out by using method fragments coming from
different methodologies, it may be necessary to elaborate
the work products of phase P; to obtain the information
needed to drive the construction of the work products of
phase P,. In other words, the work products produced
in a given phase might constitute the input for the subse-
quent phase provided that they contain all the information
required for initializing it.

3.1.3 Comparison of the approaches

As it is usual in software engineering, each of the proposed
approaches has advantages and drawbacks; beginning from
the first, the meta-model driven provides flexibility for the
definition of many aspects of the MAS to be developed;
this is probably the most suited one if social rules coming
from a specific domain play a relevant role in the problem
to be solved. Conversely, it is characterized by a difficulty
of integration of different fragments due to the different
semantics of the concepts they can represent in the meta-
models subsumed by the methodologies from which they
have been extracted; further more, the a-priori selection
and/or definition of the meta-model to adopt for the spe-
cific problem and/or application domain is a difficult and
at the same time crucial task.

The development process driven approach is character-
ized by the following advantages: flexibility for the con-
struction of a SEP by means of the instantiation of each
stage of the selected process life-cycle. On the other hand,
the disadvantages are the following: (i) low flexibility of
the MAS meta-model since it results from the sum of ele-
ments defined by the selected method fragments; (i) adap-
tation among the work products which is sometimes dif-
ficult to achieve; (ii7) choice and definition of the process
life-cycle to instantiate for the specific problem and/or ap-
plication context; (iv) low level of help in selecting the
fragments that descend from the process life-cycle choice
(several degrees of freedom still exist and other guidance
are needed to select the proper method fragments).

Each one of above listed points represents an open prob-
lem and a challenge for the agent community (most of these
issues are indeed not specific of agent-related researches);
the first one to be explored consists in some peculiarities
that are related to the agent paradigm, the most important
probably being the role that the agent social organization
plays in the composition of the new process.

The proposed approaches to the integration of meth-
ods fragments (meta-model driven and development pro-
cess driven) are not mutually exclusive; rather, hybrid ap-
proaches containing features of both of them might be de-
fined as well. An example of process composition that
mixed both of the proposed approaches has been used
to create one of the first agile processes for MAS design,
PASSI Agile (Chella et al., 2004); it started from the se-
lection of the life-cycle of an agile process and then a MAS
meta-model has been defined by conveniently reducing the
conventional PASSI one. Different approaches can be con-



SpeC|f|c for
Adopts

Development Context

Process Llfe cycle
Composed_of

Orders

Process View

posed of _

~

Instance of

MAS Meta-Model

/ Fragment
Instantlates

Composed of

Storlng Vlew
Implementation View

MAS Meta-Model
Relationships

Instance of

MAS Meta-Model
Element

/v S

s_a
AN
MAS Meta-Model
Entity

Composed of

MAS Model
Element

Process

Specific_for
De5|gns
Refers_to Problem Type

MAS Model

Supported_by

\jomposedof

() 450~ Gnsr)
/ \ Edits

Involves

Activity
Adopts _—
Instance_of Produces \
l .

erforms
Notation Meta-Model

N
™~

Is_Responsible_for
Process Roles
Represents

—

Work Product

Structured by

Work Product Kind

/

__—

Figure 3: The proposed representation of the Software Engineering Process including the fragment element used to

compose it

sidered as well (for instance some based on the attributes
of the resulting process (Juan et al., 2002)) and their use
is not in contrast with the presented ways.

4 A Refinement of the Proposal

Figure 3 shows the elements a process for an agent-based
development is composed of, it explicates and includes all
the concepts we took into account when we started the re-
finement of the results obtained by the Methodology TC.
At this stage of the work, we prefer to adopt an informal
representation of our (meta-)models in order to achieve
a better readability of images containing a large number
of elements and most of all, to convey attention to the
concepts and their relationships (explicitly named in the
diagrams) like it would happen in an ontological represen-
tation of the interest domain. As we can see in Figure
3 (and as already proposed in (Cernuzzi et al., 2005) we
consider the process as the set of steps to be performed in
order to produce an output, the way of performing some
activities and the resources and constraints this requires.
As we already said it is now well recognized that a stan-
dard process does not exist so each process is specific for a
particular development context, which relates to resources,
peoples and competencies aspects, and for a problem type,
in fact it can solve a specific problem or a family of related

problems; these two elements constitute a precise indica-
tion on the requirements of process.

A process is composed of activities, the single piece of
work to be done in order to produce a specific output (an
activity in fact may produce a work product); each ac-
tivity is performed by a process role that is responsible
for one or more work products that are structured by a
work product kind representing a specific category, for in-
stance text document, code an so on. In the case of text or
structured documents (including texts, diagrams and/or
other elements) the work product kind also specifies the
document template (outline in terms of sections and sub-
sections, position of figures, number of columns in tables,
and so on).

A process can be supported by a design tool for helping
the designer in editing a work product; since each work
product adopts a specific notation, the design tool has to
be aware of this notation also providing some consistency
checks on the work products it produces, during the devel-
opment of the process, and some semantic and syntactic
checks. A process in the agent oriented context aims at
designing a MAS model whose elements (MAS model ele-
ments) are represented in the work products; for instance
enacting an activity of a development process a designer
may specify an agent that encapsulates some specific func-
tionalities or (at a different stage of the design process)
the roles the agent has to play to reach its goals; all these



elements are represented in the work product produced by
the specific activity. A MAS model obviously is an instance
of a MAS Meta-model that gives a structural representa-
tion, in terms of elements and relationships, of the con-
cepts belonging to the system under construction; a MAS
Meta-model is composed of MAS model elements that are
instance of MAS Meta-model elements, this latter elements
can be either a relationship or an entity. A process can be
decomposed in (method) fragments that are self contained
pieces of the whole process with all the elements charac-
terizing (composing) the process itself (activity, process
role, etc.); each fragment instantiates/refines/relates one
or more MAS meta model element(s) that are represented
in the fragment output work product(s) in form of por-
tions of the MAS model that will solve the problem under
study; each method fragment produces one or more work
product(s) (of the same kind, of different kinds or even
structured by composing different elementary documents
like diagrams, tables and text).We understand that defin-
ing our fragment as a method fragment (or even a chunk)
could generate some confusion because of the existence of
previous definitions for these concepts. Probably the name
process fragment would better address our actual point of
view on the matter but we prefer to maintain the old de-
nomination in order to indicate the continuity of our work
with the activities reported in the previous sections.

In the figure we also represent the process life cycle ele-
ment; each process adopts the life-cycle that more properly
fit the problem, this will order the activities according to a
well defined structure in order to cope with some philoso-
phy; for instance the iterative/incremental life cycle is well
suited to solve all the problems were requirements are not
stable. Therefore the life cycle is useful to order fragments
when we are assembling them in a new process.

We think that the fragment is such a complex and funda-
mental element of the method engineering approach that
it should be explored from several different points of view
in order to achieve the deepest comprehension of its impli-
cations during design time. More specifically we identified
four different views: process, storing, reuse and implemen-
tation; these views will be described in the following sub-
sections.

4.1 The Fragment Process View

The fragment process view is aimed at representing the
process-related aspects of the fragment. It includes the
elements reported in Figure 4. The most important ones
probably are workflow, activities, and work products. The
workflow that we now introduce in the fragment, struc-
tures the activities; for its definition we refer to the
WIMC (Workflow Management Coalition, 2005) specifica-
tions (Management Coalition, 1999): “The automation of
a business process, in whole or part, during which docu-
ments, information or tasks are passed from one partici-
pant to another for action, according to a set of procedu-
ral rules”, with the obvious assumption that we are not
dealing with business processes but rather software engi-

neering ones. In our approach this workflow is described
using activity diagrams (mostly SPEM activity diagrams)
that also report the produced work products (see section
5. As already reported, each work product belongs to a
work product kind. In (Seidita et al., 2006) we identified
two main sets of work product kinds: graphical and tex-
tual. Graphical work product kinds include behavioural
(describing the dynamic behaviour of the system or one
of its parts/views) and structural artefacts (describing the
structure of the system or one of its parts/views). Textual
work products include: (i) free text documents: here we
mean documents not observing a specific grammar like it
happens for XML documents; they could nonetheless be
organized according to an outline specified in a template
of the work product; (ii) structured documents: they ob-
serve a rigid grammar (like it happens for XML documents
and programming language code), include structured text
(for instance tables) or can be composed of a mixture of
the previous described work product kinds (for instance an
analysis document including diagrams and the related tex-
tual description belongs to this type). In Figure 4 we can
see that an activity has work product as an input and pro-
duces other work products. It is interesting to note that
we explicitly represent fragment preconditions (already in-
troduced by the FIPA Methodology TC) as conditions on
the MAS model elements represented in the fragment in-
put work products. Finally, in this view we can also find
the process roles employed in performing this fragment ac-
tivities and the guidelines that can support their work.

4.2 The Fragment Reuse View

This view is concerned with the reuse features of the frag-
ment and lists the elements that can be helpful in reusing
the fragment in the composition of a new SEP. The el-
ements of the fragment meta-model that belong to this
view are:

e MAS meta-model element: this defines the scope of
the fragment,the elements that it will instantiate in
the produced work products.

e Aspect, Glossary, Composition Guideline, Fragment
Dependency: they have the meaning defined by the
FIPA Methodology TC as reported in section 3.

4.3 The Fragment Storing View

This view regards the storage of the fragment in the
method base and its retrieval. This view includes the fol-
lowing elements:

e Phase: this is seen according to the SPEM defini-
tion as another specialization of the Work Definition
mother class as it is for the already cited Activity ele-
ment. It is regarded as a big composed work definition
usually built up from several finer activities. Exam-
ples of phases can be: Requirements Elicitation and
Requirements Analysis. The need of such a phase, is
evident if we think that a fragment conceived to be



Guideline |«

Supported_by
Describes

Workflow | €— Composed_of ——|  Fragment I
/

Structures /
Composed of
Operates on

as

Instantlates
MAS Model € Argument
Element \

Describes

Act|V|ty

Has_Input

Has Output

Represents

N

Produces Structured by
Responslble for

Work Product Kind

Employes

Process Role

Figure 4: The fragment process view

used in the early stages of the design process, unlikely
will be useful in later phases like coding or testing.

Work Product Kind: the meaning of this element has
been discussed before; its usefulness in this view comes
from the opportunity of retrieving fragments on the
basis of their final outcome. For instance the method
engineer can be interested in a fragment that produces
a structural diagram for reusing it in a specific position
of his new SEP.

Process Role: already introduced before, it is reported
in this view since it could make no sense in some spe-
cific development context to select fragments employ-
ing process roles not available to the intended devel-
oping team of the new SEP.

MAS Meta-Model Element: it is one of the central
points of our approach and appears in this view in or-
der to support the construction of a new SEP starting
from the initial definition of its MAS meta-model. As
a consequence, the method engineer can select all the
fragments who deal with the elements of this meta-
model thus drastically reducing the dimension of the
fragment set he has to choose from.

Finally, it is worth to note that for the purpose of classi-
fication each of these elements is complemented by a well
formalized taxonomy as reported in (Seidita et al., 2006);
we realized our method base according to this view and
the results will be discussed later.

4.4 The Implementation View

This view strictly regards the implementation (with this
term here we address the possibility of putting at work the
designed SEP and supporting it with the necessary CASE
tools) of the main elements we explained in the Process

10

View: workflow, activity and work product, in fact Fig-
ure 5, representing the Implentation View, partly overlaps
Figure 4. The Workflow is implemented by a Workflow Im-
plementation that in our tools (Cossentino et al., 2006) we
realize with a workflow engine that attends to the process
execution and its data interpretation, the surfing into the
flow of activities for scheduling deadlines and organizing
parallel activities, the registration of users and the invo-
cation of specific external applications for supporting the
designer in his work (for instance design tools). The Work-
flow employs a Participant (a specific stakeholder) that is
the implementation counterpart of the process role.

Each Activity is implemented by a Workflow Activity
that corresponds to a real piece of work, it can be of three
kinds: GUI_Action, a WP_ Composition and User_Action,
and the first two can be supported by an application that
could be a word processor or a personal production tool,
whereas in our case an agent is always responsible for in-
teractions with the designer (the user), this point will be
better explained later in the paper.

A GUI_Action is an activity performed by the designer
using a GUI, it relates to each work product in fact it is
involved in its composition.

A WP _Composition is an activity performed by the
tool to create a new artifact (for instance it can corre-
spond to the instantiation of a new UML diagram) and/or
its population with elements already defined in previous
steps of the process (this is usually done with the help
of the expert system). The update of a work product in
order to be consistent with other documents is another
kind of possible activities (suppose that a design element
is renamed elsewhere from someone else, it is necessary to
spread the change all over the design process). Obviously
WP _composition activities are related to the WorkProduct
element too.

A User_Action is an activity specified in the workflow
but not supported by a tool (for instance the applica-
tion of a heuristics); the application supporting the work-
flow activity obviously realizes the GUl_action and the
WP _Composition.

As we already discussed, each work product is defined by a
work product kind that generates a set of design rules de-
pending on the kind itself, on some specific constraints and
a set of guidelines, for instance if a designer has to draft a
work product of a structured kind he has to respect and to
constantly check for the notation he is using, the relation-
ships and the constraints among notation elements and he
has to follow guidelines for composing the work product.
Being the GUI_Action and the WP_composition activities
related to the work products production, a rule checker is
invoked by them for verifying the design rules.

In the following section we will detail how we applied this
new method fragment proposal also providing some exam-
ple of its application to a real design process.

5 Applying the New Proposal of Method Fragment




Structu

()

Implemented by

Supported_by

Application Workflow Activity

AN

is_a

\

Realizes s a

/

res

N

_(workflow 4_Composed_off

Implemented by

Composed_of

~—

Workflow Implementation

Employes .
is_

2

[WP?Composition]

[Gui_Actionj

Invokes

—Realizes

Contributes_to

7

Invokes

Contributes_to

/

Work Product

Defined_by

User_Action

Rule_Checker

Participant Process Role

Verifies

Design_Rule

Generates
Generates
Generates

[Work Product Kind]

[Constraint]

Figure 5: The fragment implementation view

In previous sections we initially showed the definition of
fragment proposed by the FIPA Methodology TC and then
a possible extension that is the result of our further work.
We are now going to introduce the documents that actu-
ally represent the documentation in which such a fragment
is described. The documents representing a fragment are
the four following ones: (i) a text document resuming the
process and the reuse view, (ii) an XPDL file representing,
in the implementation view, the “Workflow Implementa-
tion” of the fragment activities, (iii) the design rules that
generate a set of composition rules defined for a specific
work product, and (iv) the Applications realized in form
of Activity Agents (Cossentino et al., 2006); each Activ-
ity Agent interacts with a designer in order to allow him
the realization of the design activities he has been assigned
to do; this includes the interaction with the workflow en-
gine for accepting, starting and committing an activity but
also the use of modeling tools or text/code editors when
necessary.

In the following these documents will be further detailed
and an example of use of this representation introduced.
The example is a fragment extracted from the PASSI de-
sign process (Cossentino, 2005); it is the Domain Ontology
Description (DOD) fragment and in the PASSI process it
is used for defining the system ontology. Finally a descrip-
tion of the method base we realized to store our fragments
is reported in subsection 5.2

11

5.1 Documenting a Fragment
5.1.1 The Text Document

The text document is organized taking into account the
work a method engineer has to do when he is extracting
a method fragment from an existing design process. For
this reason we will now briefly introduce our approach to
the fragments extraction: the first step is to represent the
uppermost activities of the entire process from which the
fragment is extracted; then with a top down approach, the
method engineer details the activities (using SPEM activ-
ity diagrams) until he can identify the work product he
wants to deliver (as we already said we consider a method
fragment positioned at a work product level of granular-
ity); this is the suggested level of detail for extracting the
portion of process that will become the new fragment.

In the following of this subsection we report and com-
ment some excerpts from the text document related to
the Domain Ontology Description (DOD) fragment ex-
tracted from PASSI (Method Fragment Definition, 2003;
Cossentino, 2005).

The process related aspects of the fragment are doc-
umented according to the old definition (the FIPA TC
one), it describes which is the aim of the process in
the fragment, it lists the involved process roles and the
delivered work products. The portion of the process, the
deliverables and the preconditions are described in this
way:

Objective The main objective of this fragment is to design
the ontology. The ontology is composed of concepts and predicates

as it is common in literature. The inclusion of actions in it comes



from the FIPA specifications of the RDF (FIPA RDF).

Process The process that is to be performed in order to obtain
the result is represented in Figure 6. The adopted notation is an
extension of the SPEM activity diagram where we added MAS
Predicate,...) to SPEM

specification (that already includes activities like Define Concepts

meta-model elements (like Concept,

and work products like Domain Ontology Description) in order to
clearly show which work definition produces a specific instance or
refinement of a MAS meta-model element. The first swim lane
clusters the work definitions that are under the responsibility of the
Ontology Expert. He is an expert of the domain who can produce a
formal representation of its categories according to the prescribed
notation. The System Analyst (second swim lane) is an ezpert of
agent-oriented solutions and in this fragment he is responsible for
verifying the quality of the ontology defined by the Ontology Expert

and ensuring its practical feasibility.

Each activity of the diagram is detailed in a specific
section of the document in order to describe the work to
be done. It is frequent that this description includes its
decomposition in lower grained activities by using other
activity diagrams. The diagram reported in the previous
cited figure is divided in two swimlanes delimiting the
responsibility of the involved process roles. It is to be
noted that SPEM also permits that the responsible pro-
cess role is assisted by another in performing the activity;
this cannot be reported in the activity diagram. The
diagram is essentially composed of three different elements
(leaving apart traditional well known UML elements like
join, fork, swimlanes and so on): the activity (represented
by a kind of arrow directed to the right), each activity
may produce a result in terms of refinement of the MAS
meta-model or production of a work product. Elements of
the MAS meta-model are represented by an icon that is
similar to the class icon used in UML class diagram (this
is not part of the SPEM notation, we introduced it for
our own purposes), work products can be diagram (like
the one reported in Figure 6 with the Domain Ontology
Description label) or text documents.

This section is completed by a description of the suggested
notation that is particularly useful when this does not refer
to a well known modeling notation (several methodologies
like Tropos and Prometheus adopt proprietary notations).

Deliverables This fragment produces a structured text document
(called “DOD document”) including a class diagram whose classes
represent concepts, actions and predicates with the following details:

o (Concepts are described in terms of their attributes.

e Predicates report the value of an attribute of a concept or of a
relationship between two concepts.

e Actions have an Actor (that is responsible to do the work), a
ResultRecetver (that is to be notified of the action results) and
an Act that describes the action to be done with the required
input and prescribed outcome.

The document includes tables for introducing the (textual) descrip-
tion of each of the elements of the class diagram.
Preconditions Inputs, outputs and elements to be designed in

the fragment are detailed in the following table.

12

Input To Be Designed Output

Svstem Requirements Concepts Ontclogy (MAS meta-
docum ent Imodel component)

Gl ossary Actions Ontology (MAS meta-

Imodel component)
Ontclogy (MAS meta-
Inodel component)
ID.OD. diagram

[Predicates

Ontology elements
[R.elationships

Input column: as it is obvious, in order to design
an ontology we need to read the application domain de-
scription reported in the System Requirements document
and we need a glossary of terms.

Output Column: the fragment produces the DOD
Document composed as described in the Deliverables
paragraph.

To Be Designed Column: the elements of the MAS
meta-model that are defined or refined in this fragment
are here listed. This is reported in Figure 7 where we
specify the work that is to be done on the element thus
declaring if the element is to be newly defined or just
refined. We also list here the elements that are just quoted
in the fragment but no refinement work is done on them.
For instance in a diagram where already defined agents
are enriched with new roles, the Agent element is reported
in the table with the quote label while Role is reported
with the define label.

Relationships with the MAS meta-model

reports the complete MAS meta-model of the design process from

This section usually

which this fragment has been extracted. This helps in understanding
the role of this process component in the original approach and

minimizes the risk of reusing it in an inappropriate context.

The

are the system requirement descriptions (text document) and the

Composition guidelines only inputs for this fragment
glossary of terms; as a consequence, this fragment could be reused
in almost all the stages of a design methodology, its aim is providing

a description of knowledge related issues.

Aspects of fragment This fragment is conceived to produce
(possibly with the support of an automatic code gemeration tool)
an RDF description of ontology categories. This makes it general
enough but it could not be appropriate in some conditions. Ontology
designed with this fragment is supposed to be ’static’. It supports
some kind of a-priori (design-time) ontology and no type of dynamic
discovery (at run-time) of new categories/relationships.

This fragment is suitable for describing ontology in an RDF-like

way as specified in (WSC; FIPA RDF).

A great portion of the document is dedicated to the
description of fragment’s work products in their principal
aspects: notation and guidelines on how to compose them,
relationships with MAS meta model elements, precondi-
tions (that principally relate to specific constraints for



putting on work the fragment but that can obviously
influence the produced work products), and suggested
template if needed.

Ontology Expert System Analyst
x X

Define Define Define f\ctions
Co nfepls Predjcales |
| | I
| | |
Concepts Predicate _Actions
N
N I e
N : e

————— B
Ont Elem Ontology Onlqlqu Domain
Relationships Revision DOnthotg_ly
escription

Figure 6: DOD fragment-Procedural aspect

The description of the fragment in the document is com-
pleted with a SPEM activity diagram (see Figure 6) repre-
senting the fragment as a workflow so it shows the procedu-
ral rules allowing the sequence of activities among process
role and the input/output work products needed. In Fig-
ure 6 we can see the flow of work in the activity diagram
that points out (with the presence of the swimlines) which
process roles perform a specific activity; in this diagram we
can also see the flow of data, the work product delivered
after each phase and in this specific fragment also the MAS
meta model elements related to each activity that design
them (for instance the Define Concept activity defines the
Concept element of the MAS meta-model). This latter link
is not necessarily shown in the activity diagram, since its
main aim is to present the flow of events and products,
and a more detailed diagram is provided to show the re-
lationships between work product and MAS meta model
elements (Figure 7).

Concept

1

Define

o o 0——@
/ | .
>} 1 . ; Predicate
Domain Ontology
Ontology Define
Description

Action

Figure 7: Relationships of the Domain Ontology Descrip-
tion work product with MAS Metamodel elements

5.1.2 The Workflow Implementation Document

In the previous section we discussed that we look at the
fragment as composed of four views, in particular we made

distinction between the definition of the process inside the
fragment and its implementation; a direct consequence
of it is that we represent the workflow of a fragment
using the XPDL language (a standard from Workflow
Management Coalition, WIMC (WfMC Groups, 1994)).

XPDL provides a rigorous definition of the activities,
their transitions, their properties and their interfaces and
it allows separating the process definition from its imple-
mentation; besides the definition of a process is based on
four main groups we show in the XPDL file (see below),
they are: (i) a group containing all the elements and their
most important attributes, (i) all the specific properties
of main elements, (ii7) elements referring to other elements
and (iv) documentation and icons for activity representa-
tion.

In the following we show a portion of the XPDL file of the
studied fragment:

<?xml version="1.0" encoding="UTF-8"7>

<Package xmlns="http://www.wfmc.org/2002/XPDL1.0

" xmlns:xsi="http://wuw.w3.org/2001/XMLSchema-instance

" Id="D.0.D.Fragment_ID" Name="D.0.D.Fragment"
xsi:schemalocation="http://www.wfmc.org/2002/XPDL1.0
http://wimc.org/standards/docs/TC-1025_schema_10_xpdl.xsd">
<PackageHeader>

<XPDLVersion>1.0</XPDLVersion>

<Created>2006-07-31 10:23:38</Created>

</PackageHeader>
<ConformanceClass GraphConformance="NON_BLOCKED"/>
<Applications>

<Application Id="Eclipse_ID" Name="Eclipse"/>
</Applications>

<WorkflowProcesses>

<WorkflowProcess Id="D.0.D.Fragment_ID

" Name="D.0.D.Fragment">
<RedefinableHeader PublicationStatus="UNDER_TEST"/>
<Participants>

<Participant Id="Ontology_Expert_ID

" Name="Ontology_Expert">

<ParticipantType Type="ROLE"/>

</Participant>

<Participant Id="System_Analyst_ID

" Name="System_Analyst">

<ParticipantType Type="ROLE"/>

</Participant>
</Participants>
<Applications>

<Application Id="Eclipse_ID" Name="Eclipse"/>
</Applications>
<Activities>

<Activity Id="Define_Concepts_ID

" Name="Define_Concepts_">
<Implementation>

<Tool Id="Eclipse_ID" Type="PROCEDURE"/>
</Implementation>
<Performer>0Ontology_Expert_ID</Performer>
<ExtendedAttributes>

<ExtendedAttribute Name="Concepts"/>
</ExtendedAttributes>
</Activity>

<Activity Id="Define_Predicates_ID

" Name="Define_Predicates">
<Implementation>

<Tool Id="Eclipse_ID" Type="PROCEDURE"/>
</Implementation>
<Performer>Ontology_Expert_ID</Performer>

13



5.1.3 The Activity Agents

As the WIMC specification suggests, using XPDL for the
process definition we can associate a development tool to
each activity giving its name as an attribute of a worklist
(WEMC Groups, 1994).

In our work the result of this association is a multi-agent
system whose components (Activity Agents) can be in-
voked by the workflow engine during the execution of the
design process defined in XPDL. These Activity Agents are
devoted to interact with the designer in order to control
the design applications (UML design modules built as a
plug-in of IBM Eclipse), to collect new data (through the
necessary forms) and to request syntax/semantic checks
(from the expert system) (Cossentino et al., 2006). They
also provide to the user the necessary graphical interface
to interact with the workflow engine and perform routine
operations like: accepting an activity, starting it and com-
municating the completion of the activity (this is an im-
portant event since it usually triggers further activities).
Referring to the previously discussed elements of our frag-
ment, we can say that these agents are responsible for the
implementation of the GUI_Action and WP_Composition
activities presented in sub-section 4.4.

5.1.4 The Design Rules Document

The multi-agent system is integrated with an expert
system (realised in Jess) whose rules are written in a
first order logic; its primary aim is reasoning on the
composition of work products and verifying the abidance
to the Design Rules we discussed in subsection 4.4; the
expert system operates on a knowledge base maintaining
an ontological representation of the designed system
model. More specifically we identified four kind of rules:
(1) syntactic validation for checking the constraints im-
posed by a specific work product notation; (i7) semantic
validation for verifying the abidance to the structure
imposed by the MAS meta-model (this means for instance
that an agent can be related to roles only if this structure
is permitted in the MAS meta-model), (iii) semantic
interpretation for allowing the system to construct the
MAS model starting from the analysis of an artefact
(this in practice means that the expert system can parse
the work product, for instance an XMI representation of
an UML diagram, and introduce in the knowledge base
the information reported in it); (iv) autocomposition for
totally or partially composing a new work product starting
form the information retrieved from the knowledge base.
In the following an example of a syntactic validation rule
regarding the use of a not allowed notation element is
presented:

(defrule SYNTACTIC-VALIDATION::not-allowed-notation-element
(MAIN::object (is-a WorkProduct)

(Name ?WP-NAME) (Kind ?WPK)

(NotationElementList $7 ?NE $7))
(MAIN::object (OBJECT ?7WPK)

(DomainNamespace ?WPK-DN) (Name ?WPK-Name))

14

(MAIN: :object
(OBJECT ?WPK-DN) (Name ?WPK-DN-Name))
(MAIN::object (is-a-name ?NE-T) (OBJECT ?NE))
(not (MAIN::object (
is-a MMM-ElementNotationElementLink)
(NE-Type ?NE-T) (
MappingRuleOf $? ?WPK $7)
)
)

(printout t "<Error>" crlf) (printout t "<![CDATA[")
(printout t "Syntax error, ")

(printout t "the work product " ?WP-NAME " is of kind "
(slot-get (slot-get 7WPK DomainNamespace) Name) "::"

(slot-get ?WPK Name))

t " so it can’t contains " ?NE-T "::
(slot-get ?NE Name)"]11>" crlf)

t "</Error>" crlf))

(printout "

(printout

5.2 The Method Base

After refining the definition of method fragment we created
the method base with a twofold aim: storing the fragments
and providing an easy way for their retrieval.

Our method base is a data base where method fragments
are stored following a categorization based on the main
elements composing a SEP (activity, process role, work
product and MAS Metamodel element); since we consider
the MAS meta-model element a key element of the agent-
system design, we regard the lack of an unified MAS meta-
model as an important issue for the implications it has on
the classification of the fragments. This was a great prob-
lem for us when constructing our method base because we
wanted to conceive it in such a way that fragments could
be easily retrieved.

Our solution to this problem is based on the categoriza-
tion on the four cited elements of the fragments and above
all on the creation of a taxonomy within each of the four
basic categories (process role, phase/activity, work prod-
uct, MMM element) (Seidita et al., 2006). This solution
together with a web-based interface allows the designer to
retrieve the fragment he really needs when he is trying to
create his own SEP, in fact he can easily find a list of all the
fragments satisfying his searching criteria, for instance he
could need a fragment involving a specific process role and
producing a work product of a specific kind so he can set
all these choices in the application and then he can receive
a list of fragments as output; this list could be exhaustive
in the sense that it gives a precise answer to the designer
needs or could imply a successive skimming, in fact due
to the dimension and the kind of the method base the ap-
plication could provide, for each query, a set of fragments
that the designer has to analyze.

6 Conclusions and Future Works

This paper presents the activity done by the FIPA Method-
ology Technical Committee aimed at adopting the method
engineering approach for the design of MASs and the re-
searches we did in order to refine and apply that proposal.
This approach once moved to the agent-oriented context



presents new research challenges that have been faced; the
concepts of agent and agent societies are to be introduced
and specifically managed in the whole process with the
consequence of changes to the existing state-of-the-art. As
regards the actual results of these studies, they are: (i) an
initial specification (produced by the Methodology TC)
of the method fragment structure (that includes agent-
related aspects and formalizes the reusable part of a design
process), (i) a refinement of this initial proposal in order
to introduce a multi-view approach allowing an easy reuse,
documentation and the introduction of the necessary sup-
porting tools, (i#i) a description of the method base that
could allow an easier interchange of fragments produced
in different contexts. We also discussed a few guidelines
about the assembling of a customized design process.
Some of these issues have not still found a definitive so-
lution (and they are still a work in progress) but inter-
esting papers have been presented that evaluated/adopted
the FIPA Methodology TC results (Chella et al., 2004;
Fortino et al., 2004; Garro and Palopoli, 2003; Garro et
al., 2004a) or follow similar approaches (Henderson-Sellers,
2005; Juan et al., 2002). We already performed some ex-
periments (Cossentino and Seidita, 2004) that where useful
to improve our approach and furtherly refine the definition
of fragment we adopt. Future works include the evalua-
tion of the new release of the SPEM meta-model (SPEM,
2006), the attempt of enabling the interoperability between
the TC specifications and other existing frameworks like
OPEN (Henderson-Sellers, 2003) and FAME (Beydoun et
al., 2006), the realization of further experiments in order
to achieve a deeper understanding of the possibilities of-
fered by our approach and the completion of a versatile
process composition and instantiation tool that is now at
the prototype status.

ACKNOWLEDGMENT

The authors wish to thank all the other members of
the FIPA Methodology Technical Committee for their
precious work and priceless support which made this work
possible.

The authors are also grateful to all the members of the
AgentLink AOSE Technical Forum Group for their valu-
able hints and suggestions.

REFERENCES

B. Bauer, J.P. Muller, and J. Odell. (2001) Agent UML:
A Formalism for Specifying Multiagent Interaction.
In Paolo Ciancarini and Michael Wooldridge, editors,
Agent-Oriented Software Engineering, Springer-Verlag,
Berlin, pp.91-103.

C. Bernon, M. Cossentino, M.P. Gleizes, P. Turci, and
F. Zambonelli. (2004) A Study of some Multi-agent
Meta-Models. In Proc. of the Fifth International Work-

15

shop on Agen-Oriented Software Engineering (AOSE-
2004) at The Third International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS
2004), New York, USA, pp.113-130.

C. Bernon, M. Cossentino, J. Pavon. (2005) Agent Ori-
ented Software Engineering. The Knowledge Engineer-
ing Review, Cambridge University Press, 20: pp.99-116.

C. Bernon, M.P. Gleizes, G. Picard, and P. Glize.
(2002) The Adelfe Methodology For an Intranet Sys-
tem Design. In Proc. of the Fourth International Bi-
Conference Workshop on Agent-Oriented Information
Systems (AOIS), Toronto, Canada.

G. Beydoun, C. Gonzalez-Perez, Brian. Henderson-Sellers
and G. Low. (2006) Developing and evaluating a generic
metamodel for MAS work products. SELMAS 2005:
pp.126-142.

G. Booch. (1994) Object-Oriented Analysis and Design
with Applications. Addison Wesley, 1994.

P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopou-
los, and A. Perini. (2004) TROPOS: An Agent-
Oriented Software Development Methodology, Journal
of Autonomous Agents and Multi-Agent Systems, 8(3):
pp-203-236.

S. Brinkkemper. (1995) Method engineering: engineering
of information systems development methods and tools.
In Information and Software Technology, 38(4): pp. 275-
280.

. Brinkkemper, K. Lyytinen, and R. Welke. (1996)
Method engineering: Principles of method construction
and tool support. International Federation for Informa-
tion Processing, 1996.

Brinkkemper, M. Saeki, and F. Harmsen. (1999)
Meta-modelling based assembly techniques for situa-
tional method engineering. Information Systems, 24(3):
pp.209-228.

G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo,
J. Gomez, J. Pavon, P. Kearney, J. Stark, and P. Mas-
sonet. (2002) Agent Oriented Analysis using MES-
SAGE/UML. In Proc. of the 2nd In-ternational Work-
shop on Agent-Oriented Software Engineering (AOSE),
LNCS 2222. Springer-Verlag, Berlin, pp.119-135.

L. Cernuzzi, M. Cossentino, and F. Zambonelli. (2005)
Process Models for Agent-based Development, Jour-
nal of Engineering Applications of Artificial Intelligence
(EAAI), Elsevier, 18(2): pp.205-222.

A. Chella, M. Cossentino, L. Sabatucci, and V. Sei-
dita. (2004) From PASSI to Agile PASSI: Tailoring
a Design Process to Meet New Needs. In Proc. of
IEEE/WIC/ACM International Joint Conference on In-
telligent Agent Technology, Beijing, China, pp.471-474.



M. Cossentino. (2004) PASSI frag-
ments: All  fragments, draft. rel 0.1
URL:[http://www.pa.icar.cur.it/ cossentino/FIPAmeth
/docs/passi_fragments_0_1.zip].

M. Cossentino. (2005) From Requirements to Code with
the PASSI Methodology. Agent-Oriented Methodologies,
B. Henderson-Sellers and P. Giorgini (Editors). Idea
Group Inc., Hershey, PA, USA, pp.79-106.

M. Cossentino, L. Sabatucci, and V. Seidita. (2004)
Expressing PASST Methodology using SPEM. FIPA
Methodology TC, working draft v. 1.0/04-03-15, URL:
http://fipa.org/activities /methodology. html.

M. Cossentino and V. Seidita. (2004) Composition of a
New Process to Meet Agile Needs Using Method Engi-
neering. In Software Engineering for Large Multi-Agent
Systems vol. I1I, LNCS Series, Elsivier Editor, pp.36-51.

M. Cossentino, L. Sabatucci, V. Seidita, and S. Gaglio.
(2006) An agent oriented tool for method engineering.
The Fourth European Workshop on Multi-Agent Sys-
tems. Lisbon, Portugal.

S. A. DeLoach, M. Wood, and C. Sparkman. (2001) Multi-
agent system engineering. International Journal of Soft-
ware Engineering and Knowledge Engineering, 11(3):
pp-231-258.

J. Ferber, and O. Gutknecht. (1998) A Meta-model for
the Analysis and Design of Organizations in Multi-agent
Systems. In Proc. of the 3rd International Conference
on Multi-Agent Systems (ICMAS’98), pp.128-135.

FIPA RDF Content Language
FIPA document n.00011, available
http://www.fipa.org/specs/fipa00011/.

Specification,
online  at:

G. Fortino, A. Garro, and W. Russo. (2004) From Model-
ing to Simulation of Multi-Agent Systems: an integrated
approach and a case study. In Gabriela Lindemann, Jorg
Denzinger, Ingo J. Timm, Rainer Unland, editors, Mul-
tiagent System Technologies, Lecture Notes in Artificial
Intelligence (LNAI), Springer-Verlag, Berlin Heidelberg,
Germany, Vol. 3187, pp.213-227.

Foundation for Intelligent Physical Agents (FIPA). URL:
[http://www.fipa.org].

S. Franklin, and A. Graesser. (1996) Is it an Agent, or
Just a Program?: A Taxonomy for Autonomous Agents.
In Proc. of the 3rd International Workshop on Agent
Theories, Architectures, and Languages, LNAI Series,
Springer Verlag, Vol. 1193, pp. 21-35.

A. TFuggetta. (2000) Software Process: a Roadmap. In
Proceedings of the Conference on the Future of Software
Engineering, June 4-11, 2000, Limerick (Ireland), ACM
Press, New York (USA), pp. 25-34.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. (1994)
Design Patterns Elements of Reusable Object Oriented
Software, Addison-Wesley.

A. Garro, G. Fortino, W. Russo. (2004) Using Method
Engineering for the Construction of Agent-Oriented
Methodologies. In Proc. of WOA 04 - Dagli Oggetti
agli Agenti, Sistemi Complessi e Agenti razionali, pages
51-54, Torino, Italy.

A. Garro and L. Palopoli. (2003) An XML Multi-Agent
System for E-Learning and Skill Management. In
Ryszard Kowalczyk, Jorg P. Muller, Huaglory Tianfield,
Rainer Unland, editors, it Agent Technologies, Infras-
tructures, Tools, and Applications for E-Services , Lec-
ture Notes in Artificial Intelligence (LNAI), Springer-
Verlag, Berlin Heidelberg, Germany, Vol. 2592, pp. 283-
294.

A. Garro, G. Terracina, and D. Ursino. (2004) A Multi-
Agent System for supporting the prediction of pro-
tein structures. Integrated Computer-Aided Engineer-
ing (ICAE), 10S Press, Amsterdam, The Netherlands,
11(3), pp-259-280.

A. Garro, P. Turci, and M.P. Huget. (2004) Expressing
Gaia Methodology using SPEM. FIPA Methodology TC,
working draft v. 1.0/04-03-15,

URL: [http://www.pa.icar.cnr.it/cossentino/
FIPAmeth/metamodel.htm)].

GAIA
2004

A. Garro, P. Turci. (2004)
Draft rel 0.1, March 15,
[http://www.pa.icar.cnr.it /cossentino
/FIPAmeth/metamodel.htm].

fragments,
URL:

M. P. Gleizes et al. (2004) Adelfe fragments, rel.0, March
2004. URL: [http://www.pa.icar.cnr.it/ cossentino
/FIPAmeth/docs/adelfe_fragments_v0.pdf].

M.P. Gleizes, T. Millan, and G. Picard. (2003)
ADELFE:Using SPEM Notation to Unify Agent Engi-
neering Processes and Methodology. IRIT/2003-10-R,
URL: [http://www.pa.icar.cnr.it/cossentino/
FIPAmeth/metamodel.htm].

F. Harmsen and S. Brinkkemper. (1995) Design and Im-
plementation of a Method BaseManagement System for
a Situational CASE Environment. in Proceedings of
the 2nd Asia-Pacific Software Engineering Conference
(APSEC’95), IEEE CS Press, Brisbane pp. 430-438.

B. Henderson-Sellers. (2002) Process metamodelling and
process construction: Examples using the OPEN Pro-
cess Framework (OPF). In Annals Software Engineering.
14, pp.341362.

B. Henderson-Sellers. (2003) Method Engineering for OO
Systems Development. Communications of the ACM,
46(10): pp.73-78.

16



B. Henderson-Sellers. (2005) Creating a comprehensive
agent-oriented methodology - using method engineering
and the OPEN metamodel. In B. Henderson-Sellers and
P. Giorgini, editors, Agent-Oriented Methodologies Idea
Group, pp.368-397.

B. Henderson-Sellers. (2006) Method engineering: theory
and practice. In Information Systems Technology and its
Applications. 5th International Conference ISTA 2006.
Klagenfurt, Austria, LNI Proceedings, Volume P-84,
Bonn, pp. 13-23.

A H.M. ter Hofstede and T.F. Verhoef. (1997) On the fea-
sibility of situational method engineering. Information
Systems. 22(6/7), pp.401-422.

N. R. Jennings. (2001) An Agent-Based Approach for
Building Complex Software Systems. Communications
of the ACM, 44(4): pp.35-41.

T. Juan, and L. Sterling, and M. Winikoff. (2002) Assem-
bling Agent Oriented Software Engineering Methodolo-
gies from Features. In Proc. of the Third International
Workshop on Agent-Oriented Software Engineering, at
AAMAS’02, pp.198-209.

K. Kumar and R. Welke. (1992) Methodology engineer-
ing: a proposal for situation-specific methodology con-
struction. In Systems Analysis and Design : A Research
Agenda, Cotterman and Senn (eds), Wiley, pp. 257-269.

J. Lind. (2001) Issues in Agent-Oriented Software Engi-
neering. In Proc. of the First International Workshop on
Agent-Oriented Software Engineering (AOSE), LNCS
1957, Springer-Verlag, Berlin, pp. 45-58.

M. Luck, R. Ashri, and M. D’Inverno. (2004) Agent-Based
Software Development, Artech House Publishers.

Method Fragment Definition. (2003)  FIPA Method-
ology TC, working draft, Nov. 2003, URL:
http://www.pa.icar.cnr.it/cossentino/FIPAmeth.

J. Odell. (2002) Objects and Agents Compared. In Journal
of Object Technology, 1(1): pp.41-53.

J. Odell, M. Nodine, and R. Levy. (2005) A Metamodel for
Agents, Roles, and Groups. In Agent-Oriented Software
Engineering (AOSE) V, 174-185.

OMG. (2002) UML 2.0 Superstructure Specification.

OMG Agent Platform Special Interest Group. (2000)
Agent Technology - Green paper, version 1.0, Septem-
ber, 2000.

L. Padgham and M. Winikoff.(2003) Prometheus: A
methodology for developing intelligent agents. In Proc.
of the Third International Workshop on Agent-Oriented
Software Engineering (AOSE), LNCS 2585, Springer-
Verlag, Berlin, 174-185.

J. Pena, and R. Corchuelo. (2004) MaCMAS/UML: A
Methodology Fragment for the Analysis Stage of Large
Complex/Complicated Multi-Agent Systems. The Dis-
tributed Group, University of Seville.

J. Ralyté and C. Rolland. (2001) An approach for method
reengineering.  Lecture Notes in Computer Science,
pp-27-30.

J. Ralyté, and C. Rolland. (2001) An assembly process
model for method engineering. In Proceedings of the 13th
Conference on Advanced Information Systems Engineer-
ing, CAISEO1, Interlaken, (Switzerland),pp.267-283.

C. Rolland and N. Prakash. (1996) A proposal for context-
specific method engineering. In (Brinkkemper, S.; Lyyti-
nen, K.; Welke, R.J. Eds.) Method Engineering. Prin-
ciples of Method Construction and Too Support. Procs.
IFIP TC8, W(G8.1/8.2 Working Conference on Method
Engineering, Atlanta, USA, Chapman & Hall, pp.191-
208.

S. Russell, and P. Norvig. (1995) Artificial Intelligence; A
Modern Approach. Prentice Hall.

M. Saeki. (1994) Software specification & design methods
and method engineering. In International Journal of
Software Engineering and Knowledge Engineering.

V. Seidita, M. Cossentino and S. Gaglio. (2006) A repos-
itory of fragments for agent systems design. Proc. of
the Workshop on Objects and Agents (WOAO06), Ttaly,
pp-130-137.

Software Process Engineering Metamodel Specification,
Version 1.0, 02-11-14. (2002) Object Management Group
Inc.

Software Process Engineering Metamodel Specification,
Version 2.0, 06-11-03. (2006) Object Management Group
Inc.

J.P. Tolvanen, M. Rossi M. and H. Liu. (1996) Method En-
gineering: current research directions and implications
for future research. In Method Engineering. Principles
of Method Construction and Tool Support. Procs. IFIP
TCS, WGE8.1/8.2 Working Conference on Method Engi-
neering, Chapman & Hall, pp.296-317.

F. Zambonelli, N. R. Jennings, and M. Wooldridge. (2003)
Developing Multiagent Systems: The Gaia Methodol-
ogy. ACM Transactions on Software Engineering and
Methodology, 12(3): pp. 317-370.

W3C Resource Description Framework (RDF) specifica-
tion. Online at: http://www.w3.org/RDF/

Workflow Management Coalition. (2005) Workflow
Standard Process Definition Interface - XML Pro-
cess Definition Language. Version 2.00. Document
Number WFMC-TC-1025. October 3, 2005. URL:
[http://www.wimc.org/standards/docs.htm#Interface_1]

17



WIMC  Group (1994), Document_of Understanding,
Workflow Management Coalition. URL:
[http://www.wimc.org]).

Management  Coalition. Terminology &  Glos-
sary. Document WFMC-TC-1011, 3.0. Feb-1999.
URL: [http://www.wfmc.org/ standards/docs/TC-
1011_term_glossary_v3.pdf].

18



