

Abstract - An approach to the design and implementation of a

robotics vision system based on agent inserted in a generic multi-
level architectures for mobile robotics is presented, that is based
on the Unified Modelling Language. The main goal of the work is
to provide a framework to perform a rigorous agent-based design
process for cognitive architectures both in the case of a single
robot, and in a multi-robot scenario. Details of the methodology,
system implementation using FIPA-OS environment, along with
real experiments are reported.

Index Terms: Vision agents, distributed architecture, mobile
robotics, cognitive architectures, agent-based software engineering.

I. INTRODUCTION

N recent years, mobile robots have been involved in more
and more complex tasks often requiring the collaboration

among several individuals that in general differ in their skills,
and in the way they perceive the external environment. In such
a context, the research activity in the field of robotics has been
mainly focused on the development of complex algorithms to
accomplish the specific robotic tasks like path-planning,
vision, localization, and so on. From the architectural point of
view, two different philosophies have been carried on: the
reactive and the behaviour-based paradigms. We think that
these approaches don't allow to manage very large problems
like the case in which a single robot has to solve a very
complex task, or when a fleet of robots cooperates to achieve a
common goal. Nowadays, agent-based architectures are
increasingly used to model more and more complex systems.
This induces the designers to the introduction of software
engineering principles in developing such systems. Starting
from the previous considerations, our work aims to propose a
novel methodology for the design of multi-agent robotic
architectures using the Unified Modeling Language. The
methodology has been applied to the cognitive architecture
previously developed by some of the authors, that could be
viewed as an extension of the behaviour-based approach.
Particularly, the proposed methodology uses behaviour-based
philosophy as a part of a wider process which begins with the
requirements analysis for the whole system, identifies agents,
and defines behaviours [2]. The agents defined in such a way
are deployed on the required hardware platforms, thus
allowing both single robot and multi-robot scenarios. The

I. Infantino and M. Cossentino are with the CERE-CNR, c/o CUC, Viale
delle Scienze, 90128, Palermo, Italy (e-mail: [infantino,cossentino]@
cere.pa.cnr.it).

A. Chella is with DINFO, University of Palermo, Viale delle Scienze,
90128, Palermo, Italy. (e-mail: chella@unipa.it).

paper is arranged as follows. Section 2 deals with the overall
description of the agent based architecture; section 3 explains
the design methodology; section 4 reports experimental
results, while in section 5 some conclusions are drawn.

II. DESCRIPTION OF THE ARCHITECTURE

From the cognitive point of view, in our approach we refer
to the architecture of fig. 1. In this structure it’s possible to
devise three main components: the perception, which is
responsible to map the stream of raw data in a symbolic form,
that in turn is provided to the cognitive component where the
symbolic data computation and, in general, deliberative
behaviors of the system are located. The cognitive part can
also support perception with some hints aimed to refine the
perceptive process, and focus the attention on those external
stimuli that are judged to be more useful for the current task
completion. The third component is the actuation one, which
communicates with the other two, in order to drive the robot
hardware during perception tasks, and in attention focusing.
The perception-action link allows also reactive behaviors.
Some of the authors already presented this architectural
structure [3,7,10]. Its main goal is to go beyond the classical
behavior-based model, and to provide the robot with true
“symbol grounding” capabilities due to the intermediate
representation of sensory data, that is used to instantiate pieces
of knowledge at the symbolic component. Through this
mechanism the robot is able to act in a deliberative fashion
more effectively. The aim of this work is to provide a
framework for our architecture allowing us to define a rigorous
design methodology relying on the agent-based software
paradigm. In particular, the scheme reported in figure 1 can be
regarded as a categorization of the possible agents typologies
both if we look at the single robot architecture and if we
consider a multi-robot scenario. In the second case we address
the interaction between the external actors, and the whole team
in order to perform cooperative tasks. In other words figure 1
is the highest level of abstraction in the system design, without
taking into consideration the implementation details. Our
approach suggests a possible abstraction from the single robot
architecture to a multi robot team: the robot that is itself a
multi-agent system, can be viewed as a single agent in the
multi robot context in which it cooperates with the others in
order to reach the goals of the entire system. Each robot can be
thought as containing several agents; some of them interact
with the external environment, some others process the
knowledge to plan a strategy of reaching the goal, and at the

An Agent Based Multilevel Architecture for
robotics vision systems

Ignazio INFANTINO, Massimo COSSENTINO, Antonio CHELLA

I

end, other agents issue commands to the robot’s hardware. At
the same time it is also possible to zoom in the single robot
representation and to see it as composed of several agents
logically classifiable in the same three types (Perception,
Cognitive and Actuator). Furthermore we can zoom in each
single agent and find a perception capability (necessary to be
aware of the external environment), a cognitive part (where the
knowledge is processed) and some actuator features (to realize
the decisions taken in order to reach the goal). It is simple to
identify these elements in a vision agent. It accesses to an
image using the driver of an hardware or through some kind
of interaction with another agent (for example a message
exchange), it processes the image accordingly to its objective
and at the end it communicates the result to one or more agents
interested in further steps. In our experiments we refer to the
FIPA (Foundation for Intelligent Physical Agents) architecture
[1]. In this approach, each agent is composed by a colony of
tasks as described in fig. 2 and can play different roles that can
be put into relation with one of the three areas reported in the
general architecture of fig. 1. We suppose that there is a one-
to-many relation between each one of these three areas and the
agents of the system as depicted in fig. 2.

Environment

Target

Cognitive Components

Hardware Actuators

User Perception

Fig. 1 The architecture of a single robot from the cognitive point of view.

Agent i

agent i-1
Task 2Task1

<<communicate>>

Task3

agent i+1Task i

<<communicate>>

Fig. 2 The internal structure of the agent.

III. THE DESIGN METHODOLOGY

If. As will be discussed in the following sections, our
approach to the vision subsystem (that is only one of the
subsystems that can be identified in a robot) generates a
relevant number of agents. It is flexible, scalable and versatile
but the number of agents requires a strong commitment to the
management of this complexity.

For this reason, we consider necessary the use of a design
methodology coming from the agent-based software
engineering. Our

Our methodology, called PASSI (Process for Agent
Societies Specification and Implementation) is a step-by-step
requirement-to-code method for developing multi-agent
software that integrates design models and philosophies from
both object-oriented software engineering and MAS using
UML notation. It has evolved from a long period of theory
construction and experiments in the development of embedded
robotics applications (see [3, 6, 7]). Its precursor, AODPU has
been applied in the synthesis of embedded robotics software
and is the basis of teaching materials in agent-based software
engineering [4,6].

Depl. Model

Syst. Req. Model

T.Sp.R.Id.

Ag. Impl. Model

A.S.D.

A.B.D.

Code Model

C.R.

C.C.

O.D. R.D. P.D.

Agent Society Model

Initial
Requirements New Requirements

A.Id.

D.D.

D.C.

Key:
D.D. – Domain Description
A.ID. – Agents Identification
R.Id.– Roles Identification
T.Sp. – Task Specification
A.S.D. – Agents Structure Definition
A.B.D. –Agents Behavior Description

O.D. – Ontology Description
R.D. – Roles Description
P.D. – Protocols Description
C.R. – Code Reuse
C.C. – Code Completion
D.C. – Deployment Configuration

Fig. 3 The models and phases of the PASSI methodology.

It is composed of five models (System Requirements, Agent
Society, Agent Implementation, Code Model and Deployment
Model) which include several distinct phases (Fig. 3). The
code production phase is also strongly supported by the
automatic generation of a great amount of code thanks to a
library of reusable patterns of code and pieces of design.

The models and phases of PASSI are:
1. System Requirements Model. A model of the system

requirements in terms of agency and purpose. It is composed
of four phases: (a) Domain Description (D.D.): A functional
description of the system using conventional use-case
diagrams. (b) Agent Identification (A.Id.): The phase of
attribution of responsibility to agents, represented as
stereotyped UML packages. (c) Role Identification (R.Id.): A
series of sequence diagrams exploring the responsibilities of
each agent through role-specific scenarios. (d) Task
Specification (T.Sp.): Specification of the capabilities of each
agent with activity diagrams.

2. Agent Society Model. A model of the social interactions
and dependencies among the agents involved in the solution.
Developing this model involves three steps in addition to part

of the previous model: (a) Role Identification (R.Id.): See the
System Requirements Model. (b) Ontology Description
(O.D.): Use of class diagrams and OCL constraints to describe
the knowledge ascribed to individual agents and the
pragmatics of their interactions. (c) Role Description (R.D.).
Class diagrams are used to show the roles played by agents,
the tasks involved, communication capabilities and inter-agent
dependencies. (d) Protocol Description (P.D.). Use of
sequence diagrams to specify the grammar of each pragmatic
communication protocol in terms of speech-act performatives.

3. Agent Implementation Model. A classical model of the
solution architecture in terms of classes and methods, the most
important difference with common Object-oriented approach
is that we have two different levels of abstraction, the social
(multi-agent) level and the single-agent level. This model is
composed of the following steps: (a) Agent Structure
Definition (A.S.D.): Conventional class diagrams describe the
structure of solution agent classes. (b) Agent Behavior
Description (A.B.D.): Activity diagrams or state-charts
describe the behavior of individual agents.

4. Code Model. A model of the solution at the code level
requiring the following steps to produce: (a) Generation of
code from the model using one of the functionalities of the
PASSI add-in. It is possible to generate not only the skeletons
but also largely reusable parts of the methods implementation
based on a library of code and associated design descriptions.
(b) Manual completion of the source code.

5. Deployment Model. A model of the distribution of the
parts of the system across hardware processing units, and their
migration between processing units. It involves one step:
Deployment Configuration (D.C.): deployment diagrams
describe the allocation of agents to the available processing
units and any constraints on migration and mobility.

Testing: the testing activity has been divided into two
different steps: the single-agent test is devoted to verifying the
behavior of each agent regarding the original requirements for
the system solved by the specific agent. During the society test
an integration verification is carried on together with the
validation of the overall results of this iteration. The Agent
Test is performed on the single agent before of the deployment
phase while the society test is carried on the complete system
after its deployment.

IV. EXPERIMENTATION

Experimental phase has been performed using a real robot
equipment in an unstructured environment. Robot was
provided with obstacle avoidance capabilities in order to reach
a static target. The implemented behaviour is quite simple
because our study was mainly focused on testing architecture
implementation rather than developing high quality solutions
to accomplish the robot's tasks. We were particularly
interested to stress multi platform communication features of
the FIPA-OS environment, and to cope with its lack of real-
time control capabilities. Our robot was a K-Team Koala
equipped with IR sensors, and controlled by a PC through a

radio link. Vision was provided by a calibrated camera
looking at the action field, and reporting localization
information to the rest of the system. In order to test
distribution of agents across multiple platforms, the camera
was connected to a separate PC running part of the vision
system code. Obstacle avoidance was simply implemented by
processing IR sensors readings in order to detect obstacle
proximity. Then the robot follows obstacle's contour until it
has free path to reach the goal. Path planning consists of a
series of “turn” and “go straight” movements that are
computed starting from vision data. In what follows, a typical
experiment as long as the implementation of the multilevel
vision system will be reported in detail.

HW agents

Procedures agents

Symbolic agents

Services agents

HW agents

Procedures agents

Symbolic agents

Services agents

Fig. 4. The proposed multilevel architecture is based on various agents
grouped in classes which have different level of knowledge: low level (HW
agents), sub-symbolic level (Procedure agents and Services agents), high level
(Symbolic agent).

A. Distribution of agents across multiple platforms
The proposed multilevel architecture (see fig. 4) is based on

various agents grouped in classes which have different level of
knowledge: low sensorial level (HW agents), sub-symbolic
level (Procedure agents and Services agents), high level
(Symbolic agent). All the agents can be located on different
platforms and the system provides them of the communications
capabilities. In fig. 7 it is depicted an example of the agent
activations during a generic planning task:

1. The Planner Agent is part of the symbolic agent level
and it plays the fundamental role of activation and
coordination of the several agents involved. The most
important knowledge of this agent is the map of the scene in
which new data are added to the a-priori data (see fig. 7.d).
The Planner Agent uses two Procedures Agents: Tracking
Agent and 3D Reconstruction Agent.

2. A Procedures Agent can receive collaboration from
several Services Agents in order to process its knowledge. For
example the 3D Reconstruction Agent (see fig 7.c) owns
images acquired by visual sensors on which it requested to

perform filtering, edge extraction, camera calibration and so
on.

3. The level of Services Agents is a extensible collection
of simple low-processing agents (see fig. 7.b) useful to
perform various calculations requested by one or more
Procedure Agent.

4. The source of visual data is the level of Hardware
Agents: the Devices Manager Agent is the interface between
video (or image) sources and Procedures Agents that include
this type of data in their knowledge. Every video source has its
specific camera agent to communicate to Device Manager
Agent (see fig. 7.a).

B. The Sensorial Level and the Single Camera Agent
We use a fixed CCD camera, connected to a computer,

viewing the scene (see fig. 5). The single camera agent can
run on a different machine from the one that runs the rest of
the system, communicating to it over the local net. In this way
we have the possibility of performing the vision task in real
time without adding high computational costs to the whole
system.

C. The Sub-symbolic Knowledge by the Service Agents.
This section describes the process of localization of the

Koala robot during its task, in order to give useful feedbacks
to the planning agent [2,3,13]. The position of the robot on
image is calculated by simple low-level image processing
operations performed by the corresponding Services Agents.
The current frame is subtracted to the previous (gray level
images), obtaining the pixels related to moving objects in the
viewed scene. If more objects are moving object, the Koala
shape is selected using color and textural features. Naturally,
some standard filtering operations are performed to reduce
noise. Moreover, a corner detector is applied in the area of
the image representing the Koala shape in order to obtain
feature points to track.

D. The Procedure Agent and its symbolic knowledge
The estimation of the position of the robot on the floor it is

based on this tracked points. The valuable capabilities of the
3d Reconstruction Agent and Tracking Agent in the whole
system are:

- to individuate and segment the Koala robot also in
contrasted and irregular backgrounds;
- to perform an estimation of the position of the robot by
camera images;
- to interpret the sequence of movements of the robot giving
information of the direction followed by it. The
implemented computer vision task can be decomposed in
three main steps:
- localization of the robot on the image by low-level image
processing of the single frame;
- estimation of the 2D location of the robot on the floor;
- reconstruction of the 3D position of the robot.

The position of the robot referred to a reference system is
estimated using the homography between the image plane and
the floor [11].

Fig. 5. Some frames of the experimental sequence: Koala robot avoids the
obstacle (the box) and reaches the target (red toy).

A generic 3D point X generates the point w on image:

[]XtRKPXw ==λ (1)

if the 3D points are on a plane (i.e. Z=0), the transformation is
simplified to a 3x3 matrix H:

[] PP XtrrHXw 21==λ (2)

where H is the homography matrix, decomposable on the
calibration 3x3 matrix K, and 3x3 matrix that has the first two
columns of the rotation matrix R and the translation vector t.
X and w are indicated using homogeneous coordinates. During
a preliminary calibration process, the matrix H is estimated
using detected points belonging to the floor; a grid placed in
front of the camera is used to obtain the calibration matrix K
and fixes the rotation and translation referred to the reference
system. The tracked points on image are translated in 2D
coordinates using estimated homography.

The exact 3D position is recovered using the known real
dimensions of the koala robot and the data coming from
calibration framework [8]. The estimated 2D coordinates of
the robot and the direction of the detected movements are
communicated to the system with messages. The path of Koala
is recorded by the Planner Agent and it is the source of 3D
data for a powerful dynamic visualization using a browser
equipped with the plug-in for standard VRML language (see
fig. 6).

V. CONCLUSION

A novel methodology for the design of multi-agent robot
architectures including also vision agents is presented that
extends the classical behaviour-based approach. It shall be
showed that it can be profitably used both in the case of a

single robot design, and in a multi-robot scenario. The
methodology has been implemented using a FIPA compliant
platform, and the experimental results are been very
encouraging. We are currently extending the methodology
towards automatic code generation for a great part of the
agents' implementation.

Fig. 6. Some frames of the reconstructed scene using a standard VRML
model..

REFERENCES
[1] FIPA Abstract Architecture Spec. (Refinements). FIPA specification

documents (08-10-01). http://www.fipa.org
/specs/fipa00094/PC00094.html.

[2] Arkin R., Behavior Based robotics, The MIT Press, Cambridge,
Massachussets, London, England, 1998.

[3] Chella A., Gaglio S., Pirrone R., Conceptual representations of actions
for autonomous robots, Robotics and Autonomous Systems, 34, (2001),
251-263.

[4] Jennings N.R., On agent-based software engineering, Artificial
Intelligence 117 (2000), 277-296.

[5] Chella, A., Cossentino, M., and Lo Faso, U. Applying UML use case
diagrams to agents representation. Proc. of AI*IA 2000 Conference.
(Milan, Italy, Sept. 2000).

[6] Chella, A., Cossentino, M., and Lo Faso, U. Designing agent-based
systems with UML in Proc. of ISRA'2000 (Monterrey, Mexico, Nov.
2000).

[7] Chella, A., Cossentino, M., Infantino, I., and Pirrone, R. An agent based
design process for cognitive architectures in robotics in proc. of
WOA’01 (Modena, Italy, Sept. 2001).

[8] I. Infantino, R. Cipolla, A. Chella, "Reconstruction of architectural
scenes from uncalibrated photos and maps", IEICE - Transaction on
Information and System, Special Issue on "Machine Vision
Applications", Vol.E84-D No.12 pp.1620-1625.

[9] Chella, A., Cossentino, M., Tomasino, G. An environment description
language for multirobot simulations in proc. of ISR 2001 (Seoul, Korea,
Apr. 2001)

[10] Chella, A., Guarino, D., Infantino, I., Pirrone, R., A Vision System for
Symbolic Interpretation of Dynamic Scenes Using ARSOM, Applied
Artificial Intelligence Special Issue on "Machine Learning in Computer
Vision", Volume 15 Number 8, Issue Sep 2001,pp.723-734.…

[11] Faugeras, O.: Three-Dimensional Computer Vision. MIT Press,
Cambridge, MA, 1993.

[12] Horn B.P.K., Robot Vision, MIT Press, Cambridge, MA, 1986.
[13] Russel S., Norvig P., Artificial Intelligence: A Modern Approach,

Prentice Hall Int. Ed., 1995.

Procedures agents

Symbolic agents

Services agents

CAM1

HW agents

CAM2

CAM3

DEVICES MANAGER AGENT

Single camera
agents

Procedures agents

Symbolic agents

Services agents

CAM1

HW agents

CAM2

CAM3

DEVICES MANAGER AGENT

Single camera
agents

(a)

HW agents

Procedures agents

Symbolic agents

Services agents

DENOISE FILTER
COLOUR

SEGMENTATION
MOTION

DETECTION

CONTOUR
DETECTOR

ILLUMINATION
RECOVERY

LINE
DETECTOR

BLOB
DETECTOR

ACTIVE
CONTOUR

CAMERA
CALIBRATION

CORNER
DETECTOR

…

…

… … …

HW agents

Procedures agents

Symbolic agents

Services agents

DENOISE FILTER
COLOUR

SEGMENTATION
MOTION

DETECTION

CONTOUR
DETECTOR

ILLUMINATION
RECOVERY

LINE
DETECTOR

BLOB
DETECTOR

ACTIVE
CONTOUR

CAMERA
CALIBRATION

CORNER
DETECTOR

…

…

… … …

(b)

…

…

HW agents

Symbolic agents

Services agents
TRACKING

3D
RECONSTR.

…

…

3D
RECONSTRUCTION

AGENT

IMAGE1
IMAGE2

IMAGE3

POINTS

…

…

HW agents

Symbolic agents

Services agents
TRACKING

3D
RECONSTR.

…

…

3D
RECONSTRUCTION

AGENT
…

…

HW agents

Symbolic agents

Services agents
TRACKING

3D
RECONSTR.

…

…

3D
RECONSTRUCTION

AGENT

3D
RECONSTRUCTION

AGENT

IMAGE1
IMAGE2

IMAGE3

POINTS

IMAGE1
IMAGE2

IMAGE3

POINTS

(c)

HW agents

Procedures agentsServices agents

PLANNING AGENT Symbolic agents

PLANNING …
CLASSIFICA-

TION

… ……

MAP

HW agents

Procedures agentsServices agents

PLANNING AGENT Symbolic agents

PLANNING …
CLASSIFICA-

TION

… ……

MAP

(d)

Fig. 7 The proposed architecture exploited: (a) The source of visual data
is the level of Hardware Agents: the Devices Manager Agent is the
interface between video sources and Procedures Agents; (b) The level of
Services Agents is a extensible collection of simple low-processing
agents useful to perform various calculations; (c) The 3D Reconstruction
Agent owns images acquired by visual sensors on which it requested to
perform filtering, edge extraction, camera calibration and so on using
Process Agents; (d) The Planner Agent is part of the symbolic agent level
and it plays the fundamental role of activation and coordination of the
several agents involved.

