
 

  
Abstract - An approach to the design and implementation of a 

robotics vision system based on agent inserted in a generic multi-
level architectures   for mobile robotics is presented, that is based 
on the Unified Modelling Language.  The main goal of the work is 
to provide a framework to perform a rigorous agent-based design 
process  for cognitive architectures both in the case of a single 
robot, and in a multi-robot scenario.  Details of the methodology,  
system implementation using FIPA-OS environment,  along with 
real experiments  are reported. 
 

Index Terms: Vision agents, distributed architecture, mobile 
robotics, cognitive architectures, agent-based software engineering.  

I. INTRODUCTION 

N recent years, mobile robots have been involved in more 
and more complex tasks often requiring the collaboration 

among  several individuals that in general differ in their skills, 
and in the way they perceive the external environment. In such 
a context, the research activity in the field of robotics has been 
mainly focused on the development of complex  algorithms to 
accomplish the specific robotic tasks like path-planning, 
vision, localization, and so on.  From the architectural point of 
view, two different philosophies have been carried on: the 
reactive and the behaviour-based paradigms. We think that 
these approaches don't allow to manage very large problems 
like the case in which a single robot has to solve a  very 
complex task, or when a fleet of robots cooperates to achieve a 
common goal. Nowadays, agent-based architectures are 
increasingly used to model more and more complex systems.  
This induces the designers to the introduction of software 
engineering principles in developing such systems. Starting 
from the previous considerations, our work aims to propose a 
novel methodology for the design of multi-agent robotic  
architectures using the Unified Modeling Language. The 
methodology has been applied to the cognitive architecture 
previously developed by some of the authors, that could be 
viewed  as an extension of the behaviour-based approach. 
Particularly, the proposed methodology uses behaviour-based 
philosophy as a part of a wider process which begins with the  
requirements analysis for the whole system, identifies agents, 
and defines behaviours [2]. The agents defined in such a way 
are deployed on the required hardware platforms, thus 
allowing both single robot  and multi-robot scenarios. The 
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paper is arranged as follows. Section 2 deals with the overall 
description of the agent based architecture;  section 3 explains 
the design methodology; section 4 reports experimental 
results, while in section 5 some conclusions are drawn.    

 

II. DESCRIPTION OF THE ARCHITECTURE 

From the cognitive point of view, in our approach we refer 
to the architecture of fig. 1. In this structure it’s possible to 
devise three main components: the perception, which is 
responsible to map the stream of raw data in a symbolic form, 
that in turn is provided to the cognitive component where the 
symbolic data computation and, in general, deliberative 
behaviors of the system are located. The cognitive part can 
also support perception with some hints aimed to refine the 
perceptive process, and focus the attention on those external 
stimuli that are judged to be more useful for the current task 
completion. The third component is the actuation one, which 
communicates with the other two, in order to drive the robot 
hardware during perception tasks, and in attention focusing. 
The perception-action link allows also reactive behaviors. 
Some of the authors already presented this architectural 
structure [3,7,10]. Its main goal is to go beyond the classical 
behavior-based model, and to provide the robot with true 
“symbol grounding” capabilities due to the intermediate 
representation of sensory data, that is used to instantiate pieces 
of knowledge at the symbolic component. Through this 
mechanism the robot is able to act in a deliberative fashion 
more effectively. The aim of this work is to provide a 
framework for our architecture allowing us to define a rigorous 
design methodology relying on the agent-based software 
paradigm.  In particular, the scheme reported in figure 1 can be 
regarded as a categorization of the possible agents typologies 
both if we look at the single robot architecture and if we 
consider a multi-robot scenario. In the second case we address 
the interaction between the external actors, and the whole team 
in order to perform cooperative tasks. In other words figure 1 
is the highest level of abstraction in the system design, without 
taking into consideration the implementation details. Our 
approach suggests a possible abstraction from the single robot 
architecture to a multi robot team: the robot that is itself a 
multi-agent system, can be viewed as a single agent in the 
multi robot context in which it cooperates with the others in 
order to reach the goals of the entire system. Each robot can be 
thought as containing several agents; some of them interact 
with the external environment, some others process the 
knowledge to plan a strategy of reaching the goal, and at the 
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end, other agents issue commands to the robot’s hardware. At 
the same time it is also possible to zoom in the single robot 
representation and to see it as composed of several agents 
logically classifiable in the same three types (Perception, 
Cognitive and Actuator). Furthermore we can zoom in each 
single agent and find a perception capability (necessary to be 
aware of the external environment), a cognitive part (where the 
knowledge is processed) and some actuator features (to realize 
the decisions taken in order to reach the goal). It is simple to 
identify these elements in a vision agent. It accesses to an 
image using  the driver of an hardware or through some kind 
of interaction with another agent (for example a message 
exchange), it processes the image accordingly to its objective 
and at the end it communicates the result to one or more agents 
interested in further steps. In our experiments we refer to the 
FIPA (Foundation for Intelligent Physical Agents) architecture 
[1]. In this approach, each agent is composed by a colony of 
tasks as described in fig. 2 and can play different roles that can 
be put into relation with one of the three areas reported in the 
general architecture of fig. 1. We suppose that there is a one-
to-many relation between each one of these three areas and the 
agents of the system as depicted in fig. 2. 
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Fig. 1  The architecture of a single robot from the cognitive point of view.  
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Fig. 2  The internal structure of the agent. 

III. THE DESIGN METHODOLOGY 

If. As will be discussed in the following sections, our 
approach to the vision subsystem (that is only one of the 
subsystems that can be identified in a robot) generates a 
relevant number of agents. It is flexible, scalable and versatile 
but the number of agents requires a strong commitment to the 
management of this complexity.  

For this reason, we consider necessary the use of a design 
methodology coming from the agent-based software 
engineering. Our  

Our methodology, called PASSI (Process for Agent 
Societies Specification and Implementation) is a step-by-step 
requirement-to-code method for developing multi-agent 
software that integrates design models and philosophies from 
both object-oriented software engineering and MAS using 
UML notation. It has evolved from a long period of theory 
construction and experiments in the development of embedded 
robotics applications (see [3, 6, 7]). Its precursor, AODPU has 
been applied in the synthesis of embedded robotics software 
and is the basis of teaching materials in agent-based software 
engineering [4,6]. 
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Key: 
D.D. – Domain Description 
A.ID. – Agents Identification 
R.Id.– Roles Identification  
T.Sp. – Task Specification 
A.S.D. – Agents Structure Definition 
A.B.D. –Agents Behavior Description 

 
O.D. – Ontology Description 
R.D. – Roles Description 
P.D. – Protocols Description 
C.R. – Code Reuse 
C.C. – Code Completion 
D.C. – Deployment Configuration 

 
Fig. 3  The models and phases of the PASSI methodology. 
 

It is composed of five models (System Requirements, Agent 
Society, Agent Implementation, Code Model and Deployment 
Model) which include several distinct phases (Fig. 3). The 
code production phase is also strongly supported by the 
automatic generation of a great amount of code thanks to a 
library of reusable patterns of code and pieces of design.  

The models and phases of PASSI are: 
1. System Requirements Model. A model of the system 

requirements in terms of agency and purpose. It is composed 
of four phases: (a) Domain Description (D.D.): A functional 
description of the system using conventional use-case 
diagrams. (b) Agent Identification (A.Id.): The phase of 
attribution of responsibility to agents, represented as 
stereotyped UML packages. (c) Role Identification (R.Id.): A 
series of sequence diagrams exploring the responsibilities of 
each agent through role-specific scenarios. (d) Task 
Specification (T.Sp.): Specification of the capabilities of each 
agent with activity diagrams. 

2. Agent Society Model. A model of the social interactions 
and dependencies among the agents involved in the solution. 
Developing this model involves three steps in addition to part 



 

of the previous model: (a) Role Identification (R.Id.): See the 
System Requirements Model. (b) Ontology Description 
(O.D.): Use of class diagrams and OCL constraints to describe 
the knowledge ascribed to individual agents and the 
pragmatics of their interactions. (c) Role Description (R.D.). 
Class diagrams are used to show the roles played by agents, 
the tasks involved, communication capabilities and inter-agent 
dependencies. (d) Protocol Description (P.D.). Use of 
sequence diagrams to specify the grammar of each pragmatic 
communication protocol in terms of speech-act performatives. 

3. Agent Implementation Model. A classical model of the 
solution architecture in terms of classes and methods, the most 
important difference with common Object-oriented approach 
is that we have two different levels of abstraction, the social 
(multi-agent) level and the single-agent level. This model is 
composed of the following steps: (a) Agent Structure 
Definition (A.S.D.): Conventional class diagrams describe the 
structure of solution agent classes. (b) Agent Behavior 
Description (A.B.D.): Activity diagrams or state-charts 
describe the behavior of individual agents. 

4. Code Model. A model of the solution at the code level 
requiring the following steps to produce: (a) Generation of 
code from the model using one of the functionalities of the 
PASSI add-in. It is possible to generate not only the skeletons 
but also largely reusable parts of the methods implementation 
based on a library of code and associated design descriptions. 
(b) Manual completion of the source code. 

5. Deployment Model. A model of the distribution of the 
parts of the system across hardware processing units, and their 
migration between processing units. It involves one step: 
Deployment Configuration (D.C.): deployment diagrams 
describe the allocation of agents to the available processing 
units and any constraints on migration and mobility. 

Testing: the testing activity has been divided into two 
different steps: the single-agent test is devoted to verifying the 
behavior of each agent regarding the original requirements for 
the system solved by the specific agent. During the society test 
an integration verification is carried on together with the 
validation of the overall results of this iteration. The Agent 
Test is performed on the single agent before of the deployment 
phase while the society test is carried on the complete system 
after its deployment. 

IV. EXPERIMENTATION 

Experimental phase has been performed using a real robot 
equipment in an unstructured environment. Robot was 
provided with obstacle avoidance capabilities in order to reach 
a static target. The implemented behaviour is quite simple 
because our study was mainly focused on testing architecture 
implementation  rather than developing high quality  solutions  
to  accomplish  the  robot's  tasks. We were particularly 
interested to stress multi platform communication features of 
the FIPA-OS environment, and to cope with its  lack of real-
time control capabilities. Our robot was a K-Team Koala 
equipped with IR sensors, and controlled by a PC through a 

radio link. Vision was provided by a  calibrated camera 
looking at the action field, and reporting localization 
information to the rest of the system. In order to test 
distribution  of agents across multiple platforms, the camera 
was connected to a separate PC running part of the vision 
system code. Obstacle avoidance was simply implemented by 
processing IR sensors readings in order to detect obstacle 
proximity.  Then the robot follows obstacle's contour until it 
has free path to reach the goal. Path planning consists of a 
series of “turn” and “go straight” movements that are 
computed starting from vision data. In what follows, a typical  
experiment as long as the implementation of the multilevel 
vision system will be reported in detail.  
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Fig. 4.  The proposed multilevel architecture is based on various agents 
grouped in classes which have different level of knowledge: low level (HW 
agents), sub-symbolic level (Procedure agents and Services agents), high level 
(Symbolic agent). 
 
 

A. Distribution of  agents across multiple platforms  
The proposed multilevel architecture (see fig. 4) is based on 

various agents grouped in classes which have different level of 
knowledge: low sensorial level (HW agents), sub-symbolic 
level (Procedure agents and Services agents), high level 
(Symbolic agent). All the agents can be located on different 
platforms and the system provides them of the communications 
capabilities. In fig. 7 it is depicted an example of the agent 
activations during a generic planning task: 

1. The Planner Agent is part of the symbolic agent level 
and it plays the fundamental role of activation and 
coordination of the several agents involved. The most 
important knowledge of this agent is the map of the scene in 
which new data are added to the a-priori data (see fig. 7.d). 
The Planner Agent uses  two Procedures Agents: Tracking 
Agent and 3D Reconstruction Agent. 

2. A Procedures Agent can receive collaboration from   
several Services Agents in order to process its knowledge. For 
example the 3D Reconstruction Agent (see fig 7.c) owns 
images acquired by visual sensors on which it requested to 



 

perform filtering, edge extraction, camera calibration and so 
on. 

3. The level of Services Agents is a extensible collection 
of simple low-processing agents (see fig. 7.b) useful to 
perform various calculations requested by one or more  
Procedure Agent. 

4. The source of visual data is the level of Hardware 
Agents: the Devices Manager Agent is the interface between 
video (or image) sources and Procedures Agents that include 
this type of data in their knowledge. Every video source has its 
specific camera agent to communicate to Device Manager 
Agent (see fig. 7.a).   

 
B.  The Sensorial Level and the Single Camera Agent 
We use a fixed CCD camera, connected to a computer, 

viewing the scene (see fig. 5).  The single camera agent can 
run on a different machine from the one that runs the rest of 
the system,  communicating to it over the local net. In this way 
we have the possibility of  performing the vision task in real 
time  without adding high computational costs to the whole 
system.   
 

C. The Sub-symbolic Knowledge by the Service Agents. 
This section describes the process of localization of the 

Koala robot during its task, in order to give  useful feedbacks 
to the planning agent [2,3,13].  The position of the robot on 
image is calculated by simple low-level image processing 
operations performed by the corresponding Services Agents.  
The current frame is subtracted to the previous (gray level 
images), obtaining the pixels related to moving objects in the 
viewed scene.  If more objects are moving object, the Koala 
shape is selected using color and textural features. Naturally, 
some standard filtering operations are performed to reduce 
noise.   Moreover, a corner detector is applied in the area of 
the image representing the Koala shape in order to obtain 
feature points to track.  

 
D. The Procedure Agent and its symbolic knowledge 
The estimation of the position of the robot on the floor  it is 

based on this tracked points. The valuable capabilities of the 
3d Reconstruction Agent and Tracking Agent in the whole 
system are:     

- to individuate and segment the Koala robot also in 
contrasted and irregular backgrounds;  
- to perform an estimation of the position of the robot by 
camera images;  
- to interpret the sequence of movements of the robot giving 
information of the direction followed by it. The 
implemented computer vision task can be decomposed in 
three main steps:    
- localization of the robot on the image by low-level  image  
processing of the single frame;  
- estimation of the 2D location of the robot on the floor;  
- reconstruction of the 3D position of the robot.     

 

The position of the robot referred to a reference system is 
estimated using the homography between  the image plane and 
the floor  [11].  

 

  

  

Fig. 5.  Some frames of the experimental sequence: Koala robot avoids the 
obstacle (the box) and reaches  the target (red toy). 

 
A generic 3D point X generates the point w on image:   

[ ]XtRKPXw ==λ                   (1) 

if the 3D points are on a plane (i.e. Z=0), the transformation is 
simplified  to a 3x3 matrix H:   

[ ] PP XtrrHXw 21==λ                (2) 

where H is the homography matrix, decomposable on the 
calibration 3x3 matrix K, and 3x3 matrix that has the first two 
columns of the rotation matrix R and the translation vector t.  
X and w are indicated using homogeneous coordinates. During 
a preliminary calibration process, the matrix H is estimated 
using detected points  belonging to the floor;  a grid placed in 
front of the camera is used to obtain the calibration matrix K 
and fixes  the rotation and translation referred to the reference 
system.  The tracked points on image are translated in 2D 
coordinates using estimated homography.   

The exact 3D position is recovered using the known real 
dimensions of the koala robot and the  data coming from 
calibration framework [8]. The estimated 2D coordinates of 
the robot and the direction of the detected movements are  
communicated to the system with messages. The path of Koala 
is recorded by the Planner Agent and it is the source of 3D 
data for a powerful dynamic visualization using  a browser 
equipped with the plug-in for standard VRML language (see 
fig. 6).  

V. CONCLUSION 

A novel methodology for the design of multi-agent robot 
architectures including also vision agents  is presented that 
extends the classical behaviour-based approach. It shall be 
showed that it can be  profitably used both in the case of a 



 

single robot design, and in a multi-robot scenario. The 
methodology has been implemented using a FIPA compliant 
platform, and the experimental results are been very  
encouraging. We are currently extending the methodology 
towards automatic code generation for  a great part of the 
agents' implementation.     

 

  

  

Fig. 6.  Some frames of the reconstructed scene using a standard VRML 
model.. 
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Fig. 7 The proposed architecture exploited: (a) The source of visual data 
is the level of Hardware Agents: the Devices Manager Agent is the 
interface between video sources and Procedures Agents; (b) The level of 
Services Agents is a extensible collection of simple low-processing 
agents useful to perform various calculations; (c) The 3D Reconstruction 
Agent  owns images acquired by visual sensors on which it requested to 
perform filtering, edge extraction, camera calibration and so on using 
Process Agents; (d) The Planner Agent is part of the symbolic agent level 
and it plays the fundamental role of activation and coordination of the 
several agents involved. 


