
From PASSI to Agile PASSI: tailoring a design process to meet new needs

Antonio Chella
University of Palermo

Dipartimento di
Ingegneria Informatica (DINFO)

Viale delle Scienze, 90128 -Palermo- Italy
chella@unipa.it

Massimo Cossentino, Luca Sabatucci, Valeria Seidita
Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)

Consiglio Nazionale delle Ricerche(CNR)
Viale delle Scienze, 90128 -Palermo- Italy

cossentino@pa.icar.cnr.it,
sabatucci@csai.unipa.it
seidita@csai.unipa.it

Abstract

From several years we are developing robotic multi-
agent systems according to well defined design methodolo-
gies. These methodologies evolved over time because of the
changes in the operating environments (robotic hardware
and software platforms) and specific missions accomplished
by our robots. In the last four years we used PASSI (Pro-
cess for Agent Societies Specification and Implementation)
obtaining good results but, the growing experience and day
by day accelerating changes in requirements suggested us
to find a new and more versatile approach. In this context
we developed the Agile PASSI methodology discussed in this
paper; it is an agile process built up capitalizing all the ex-
periences done with PASSI and its supporting tools some of
which have been adapted and reused in the new process.

1 Introduction

Robotic applications require a great attention toward do-
main specific problems like knowledge representation, envi-
ronment exploration (with cameras, laser beams or other de-
vices), actions planning, and coordination with other robots;
the complexity of these issues often brings researchers in
the field to devote a limited amount of time and effort to
following a rigorous design process also if they are aware
that it could produce an efficient documentation for further
maintenance and better the quality of the result. Looking
at most recent experiences in software engineering (agile
processes [9][1] and extreme programming [6]) we could
remark that some of the motivations of the above discussed
situation can be found in the limits imposed by traditional
software engineering design process. They are usually time
consuming and the amount of produced documentation al-
though useful is probably too large and detailed for the

needs of several developers. In the past, we developed
some robotic systems by using PASSI [4]; results were
interesting[5] and the quality of design-related softwareat-
tributes was remarkably high but the paradigm was not so
fast and flexible as developers would like to. One of the
main critics we registered was related to some kind of anx-
iety that was induced in stakeholders involved in the pro-
cess while producing the diagrams of the first iteration; they
rather would like to have a more direct way to experiment
some code-level aspects of the application (for example
they usually aimed at soon implementing new algorithms
characterizing their application).

In order to encompass these limits, we decided to
produce an agile version of PASSI. In so doing we
took advantage of studies about agent-oriented meta-
methodologies[11][10][7] that starting from the method
engineering approach born in the object-oriented context
[2][8][12], allow the composition of a new methodology by
reusing fragments of existing ones and, when necessary, in-
troducing new, specifically created, parts in the process.

2 The Agile PASSI Skeleton

The needs that arose from our experience in designing
systems that are deployed on mobile robots lead us to the
strategic choices that defines the skeleton (main aspects) of
Agile PASSI. Our primary requirement is related to not dis-
tracting developers from their main goal (tuning some kind
of new algorithm) with a long design process. This does not
mean that we could accept a straight coding approach since:
(i) our applications rapidly grow up in dimension and (ii)
we have a specific concern about documenting the know-
how reached in our laboratory in order to deliver it to new
students that will collaborate in our future researches. An-
other wish is related to the possibility of quickly reusing
contributions coming from other projects in order to restrict

1



the effort related to the development of a new application
to the solution of its novelty aspects. Dealing specifically
with robotics, this problem is less complex than it could
seem since great parts of the system could be reused both
from the algorithmic (general navigation solutions like path
planning and obstacle avoidance) and structural (communi-
cations, resource sharing and data caching) points of view.
We think that all of these issues could be satisfied by using
an agile process that supports a light (manual) design phase
while encourages the reuse of existing contributions in form
of patterns and (automatically) produces a consistent docu-
mentation at different level of abstractions. We decided to
take advantage of our experiences with PASSI by reusing
a couple of its features that we consider very successful:
(i) the identification of agents as a set of functionalities ex-
pressed in form of use cases, and (ii) the central role of
ontology description in describing and analyzing the agent
solution. Our attempt is, now, to reexamine PASSI, using
principles and techniques of Agile Methodologies [9][1], in
order to create a lightweight methodology, simple, easy to
use and principally based on code production rather than on
documentation (that is still requested, but when it can be au-
tomatically produced). In our work we followed the funda-
mental strategies of the Agile Manifesto: (i) Individuals and
interactions over processes and tools, (ii) Working software
over comprehensive documentation, (iii) Customer collabo-
ration over contract negotiation, (iv) Responding to change
over following a plan. We also considered the sequence of
activities defined in one of the most used agile methodolo-
gies, Extreme Programming[6]: (i) Planning, (ii) Design-
ing, (iii) Coding, and (iv) Testing. As it will be presented
later, this sequence will constitute the center of the proposed
methodology. All of these arguments brought us to iden-
tify the parts of PASSI (method fragments) that could be
reused (or even adapted for the new methodology); after a
detailed analysis we concluded that mainly five PASSI ac-
tivities should be selected: Domain Requirements Descrip-
tion (DRD), Agent Identification (AId), Domain Ontology
Description (DOD), Code Reuse (CR), Testing. In order to
accept the principles of the Agile Manifesto, theCode Im-
plementation is the most important phase. This, in contrast
with the original PASSI methodology, arrives quite soon in
the process, and it is largely supported by a tool (Agent Fac-
tory) for automatic compilation of agent structures, patterns
reused and automatic code generation. The main features of
this tool are:

• Automatic completion from diagrams: the tool ana-
lyzes the Agent Identification and Domain Ontology
diagram and generates a first skeleton of the agent
classes required for the implementation.

• Pattern Reuse: patterns may be introduced in the cur-
rent project from a repository so enhancing the func-

tionalities of one or more agents in a very low time
and obtaining very affordable solutions.

• Automatic code generation: the results of the previous
steps are weaved and the tool generates the code for the
multi-agent system. This code consists in a skeleton
of the agent and its task classes; this skeleton is com-
pleted by methods body coming from the reused pat-
terns. Some experiments have shown a percentage of
code reuse that is about 50-60%[5]. Remaining parts
of the code have to be added manually by the program-
mer.

TheTesting phase plays a fundamental role in all the ag-
ile processes because it represents the only way of control-
ling the correctness of the system and its adherence to requi-
sites. A test suite developed specifically for agent verifica-
tion completes our development scenario[3]. Test plans are
prepared before the coding phase in according with specifi-
cations and the AgentFactory tool is also able of generating
driver and stub agents for speeding up the test of a specific
agent.

3 Agile PASSI description

Starting from the method fragments identified in the pre-
vious subsection and considering the requirements for the
new methodology, we assembled the new Agile PASSI pro-
cess described in Figure 1 with a UML activity diagram.
There we can distinguish four models:

• Requirements, a model of the system requirements that
is composed of two steps (Planning and Sub-Domain
Requirement Description),

• Agent Society, a view of the agents involved in the so-
lution, their interactions and their knowledge about the
world. It is composed of two steps (Domain Ontology
Description and Agent Identification).

• Code, a solution domain model at code level

• Testing, planned before the code phase and performed
soon after it

3.1 Requirements model

It is composed of two activities: planning and sub-
domain requirements description. During this phase the de-
velopment team decides which parts of the problem should
be faced with in that iteration and lists the work to be
done; the result is a division of the problem in several sub-
problems faced in sequential iterations (as prescribed to be
in agile methodologies). The resulting iterativity and in-
crementality are represented in the model by the two main

2



Requirements


Code


Testing


Agent

Society
 MABD


diagr.


SASD


diagr.


MASD


diagr.


COD


diagr.


Code


A.Id.


diagr.


DOD


diagr.


Domain


Ontology


Description


S.D.R.

diagr.


Test Plan


Coding

Code


Reuse


Test


Sub Domain

Requirements


Description

Planning


Agent


Identification


Figure 1. The Agile PASSI process

cycles. In the second, common UML use case diagram(s)
are used to represent a functional description of the system.
The termsub refers, as previously said, to the chance of
dividing the whole problem in sub-problems.

3.2 Agent Society Model

Developing this model involves two activities: Agent
Identification and Domain Ontology description. The first
starts from the already produced use case diagrams; accord-
ing to our definition of agent, it is possible to see an agent
as a use case or a package of use cases and starting from
a sufficiently detailed diagram of the system functionali-
ties, we group one or more use cases intoagentstereotyped
packages so as to form a new diagram, in so doing, each
package defines the functionalities that will be under the re-
sponsibility of a specific agent. Domain ontology descrip-
tion aims to capture the ontology of the system in terms of
concepts, predicates and actions, here involved entities are
represented through classes.

3.3 Code Model

This model includes two activities: Pattern Reuse and
Coding. In the first we try to reuse patterns of agents and

we obtain pieces of reusable code that is documented with a
structural view and a behavioral one. This is done with aid
of a tool that we already adopted in conventional PASSI:
Agent Factory; Since we need a good documentation of the
design phase, we specifically produced an add-in for the
MetaEdit+ tool that we use to design our systems. This
module, starting from the information stored in the Agent
Identification diagram and in the structural and behavioral
models generated by Agent Factory, automatically produces
four documents:

• COD - a class diagram representing agents, their com-
munications and related parameters (content language,
agent interaction protocol and referred ontology)

• (M)ASD - a class diagram where we represent the
whole system at the social, multi-agent level of ab-
straction. It represents each agent with one class and
agent’s tasks as methods of the class.

• (M)ABD - an activity diagram representing the flow of
control and communications between all the agents[3].

• (S)ASD - a different class diagram for each agent in
order to represent its internal structure and all its task
in the most detailed way.

3



In the coding step we complete the code previously pro-
duced by putting in practice all the rules of extreme pro-
gramming.

3.4 Test

The testing phase, in this process, envelopes the coding
phase, that is it occurs before and after than coding. This
feature came out from the agile manifesto principles. The
agile processes, as the eXtreme Programming (XP), rule
that testing must be a continuous activity during the devel-
oping process. The testing phase has to start before pro-
gramming a component (or an agent in this context); at this
stage the programmer has to prepare one or more tests that
the component must satisfy after the coding phase. This
represents a way to take under control the programming
work, in fact if a test fails the component will be subject
to a refinement and a refactoring; this until all tests are sat-
isfied. When the test phase terminates successfully then a
working version of the agent is released. This may not com-
pletely satisfy (yet) all the requirements under its responsi-
bility (new features could be added in another iteration), but
it is perfectly running, and it may be used as a prototype for
a demonstration to the customer.

4 Conclusions and future works

In this paper we presented a new methodology, Ag-
ile PASSI that we conceived in order to have a new ap-
proach for developing a robotic system. In the last years
we adopted the PASSI design methodology and the results
were good but, we were recently looking for a new, more
versatile and quick process. Agile PASSI is supported by
an add-in that we produced for the design tool we adopted
(MetaEdit+ by Metacase) and a pattern reuse/reverse engi-
neering application that is a new evolution of the already
presented Agent Factory. We already developed a few sys-
tems with Agile PASSI and now we have a reasonable level
of confidence with it. In the future we will try to enhance
the friendliness of the design tools (MetaEdit, our add-in for
it and Agent Factory) because their integration is not very
transparent to the user and little problems exist in the (au-
tomatic) redesign phase of some diagrams whose elements
are not correctly re-positioned.

References

[1] Agile Alliance. http://www.agilealliance.org.

[2] S. Brinkkemper. Method engineering: engineering the
information systems development methods and tools.
Information and Software Technology, 37(11), 1995.

[3] G. Caire, M. Cossentino, A. Negri, A. Poggi, and
P. Turci. Multi-agent systems implementation and
testing. InFourth International Symposium: From
Agent Theory to Agent Implementation, Vienna, Aus-
tria (EU), April 14-16 2004.

[4] M. Cossentino and L. Sabatucci.Agent-Based Man-
ufacturing and Control Systems : New Agile Manu-
facturing Solutions for Achieving Peak Performance,
chapter Agent System Implementation. CRC Press,
2004.

[5] M. Cossentino, L. Sabatucci, and A. Chella. A pos-
sible approach to the development of robotic multi-
agent systems. InIEEE/WIC IAT’03 Conference, Hal-
ifax - Canada, 13-17 October 2003.

[6] Extreme Programming. A gentle introduction.
http://www.extremeprogramming.org.

[7] Zahia Guessom, Massimo Cossentino, and Juan
Pavon. Methodologies and Software Engineering for
Agent Systems, chapter Roadmap of Agent-Oriented
Software Engineering: The European Agentlink Per-
spective. Kluwer, 2004.

[8] K. Kumar and R.J. Welke. Methodology engineer-
ing: a proposal for situation-specific methodology
construction.Challenges and Strategies for Research
in Systems Development, pages 257–269, 1992.

[9] Agile Manifesto.http://http//agilemanifesto.org.

[10] P. O’Brien and R. Nicol. Fipa - towards a standard for
software agents.BT Technology Journal, 16(3):51–59,
1998.

[11] L. Sabatucci and M. Cossentino. A multi-platform ar-
chitecture for agent patterns representation and reuse.
In WOA’03 Workshop, Villasimius (Cagliari) - Italy,
10-11 September 2003.

[12] Motoshi Saeki. Software specification & design meth-
ods and method engineering.International Journal
of Software Engineering and Knowledge Engineering,
1994.

4


