GoalSPEC: a Goal Specification Language supporting
Adaptivity and Evolution

L. Sabatuccit, P. Ribino!, C. Lodato!, S. Lopes', and M. Cossentino!

ICAR-CNR, Consiglio Nazionale delle Ricerche, Palermo, Italy
{sabatucci, ribino}@pa.icar.cnr.it
{c.lodato, s.lopes, cossentino}@pa.icar.cnr.it

Abstract. The characteristic of being autonomous and proactive makes the agents
able to explore a wide solution space, that dynamically changes or contains un-
certainty. We propose a language for describing system goals that may be injected
at run-time into the system. The novelty of our approach consists in decoupling
the business goals (what is expected) and their implementation (how to address
the desired behavior). Indeed relieving the tension between ’what’ and how’
provides more degrees of freedom to the system. On the occurrence, agents of
our system may exploit their features (mainly autonomy and proactivity, but also
learning and planning) for getting benefits from a wider solution space. The re-
sult is that the system behavior may adapt to the current operating conditions.
Moreover, the injection mechanism contributes to reduce the effort in evolving
the system. This paper focuses on the goal specification language that is the base
for enabling both adaptivity and evolution.

1 Introduction

The current work arises in the context of the project Innovative Document Sharing
(IDS) !, whose aim is the development of an adaptive and autonomous workflow en-
actment engine for improving task coordination and document management in small
and medium local companies. The project exploits the well-known BPMN standard [1],
among its assets, because the system will be used in real business contexts. Indeed the
BPMN is mainly targeted to humans, being very flexible and expressive and it includes
the notation for describing workflows as orchestration of both automatic services and
human tasks. Moreover, the business domain is a highly variable application context.
Business rules could change very frequently due to the evolution of business strategies,
to the change of company short/middle term goals, or due to the dynamic society with
its laws and regulations that must be respected. The BPMN does not support a dynamic
context. Every external change must be implemented into the workflow as a set of mod-
ifications. In other terms, the workflow must be re-designed for implementing any new
requirement, checking inter-dependencies and verifying the validity of the result.

It is a matter of fact that the task of designing and evolving business model is not
trivial: a great number of malfunctions in workflow systems depend on business analysis
errors [2—4]. Adopting a workflow system able to autonomously react to changes of the

! The IDS project is funded by the Autonomous Region of Sicily (POR FESR Sicilia 2007-2013)

context may simplify the work [2]. An adaptive workflow is conceived as a normal
workflow but it is also able to react to some changes in the environment [2]. The need
for self-adaptation is often linked to the need of reacting to exceptions [5]. Whereas
BPMN already provides mechanisms to specify how the system will react to expected
exceptions [1], it is more interesting to define how to react to unexpected exceptions.
Indeed these events can not be handled by traditional workflow engine. For all these
reasons, self-adaptation is particularly desirable for a workflow system.

In last years, self-adaptation has been gaining more and more attention specially
in agent-oriented software systems [6—8]. It is a fact that multi-agent systems encap-
sulate an adequate level of abstraction useful to implement software capable to react
to changes. Agent autonomy makes the system able to modify its behavior without su-
pervision. The agent ability to perceive its environment helps to monitor parameters of
the context that may variate. Finally agent pro-activity and the reasoning ability help to
plan the appropriate reaction strategy according to agent’s goals.

Generally agent goals are an higher level of abstraction with respect to the program-
ming language (for instance in Belief-Desire-Intention systems), so that they disappears
into agents’ code. More recently, an interesting feature of agent is the self-awareness,
that is the ability of agents to know its capacities and its goals. It is the direction of works
like that of Morandini et al. [7], or that of Buhler and Vidal [6], in which the agent se-
lects the most appropriate behavior by reasoning on a goal-model. Goal-models [9-11]
have been a great advance in requirement engineering, because they provide the ad-
equate level of abstraction to reason on the domain, its inhabitants and their needs,
translating all this in a precise set of requirements. It has been proved that self-adaptive
systems may benefits from relaxing the rigid constraints that is typical of traditional
requirement engineering [12—14]. Intuitively a system that must overcome an obsta-
cle must have space to change direction. A rigid set of system requirements could not
provide enough space to move around a possible obstacle.

The proposed approach consists in relaxing the link between what is expected the
system do (system goals) and how the system is expected to do that (system capabilities
and plans). By decoupling these two aspects it is up to the system to know how to
match a specific capability with the desired result. This responsibility may be satisfied
only if 1) the software is aware of its goals and its capabilities, 2) it is able to reason on
how to compose its behavior and 3) it is autonomous to operate without any supervision.
Multi-agent systems naturally offer all these characteristics. Such architecture requires a
specification language that enables this decoupling. To the best of our knowledge, none
of the existing languages for goal specification is completely suitable for our scope. This
paper focuses on GoalSPEC, the proposed language to express system requirements in
a form that supports adaptivity and system evolution.

The remaining of the paper is organized as follows. Section 2 describes the moti-
vation of our work, and Section 3 presents a literature review of a selection of existing
goal-oriented languages. Section 4 describes the characteristic of GoalSPEC and its
application to the IDS project domain. Some discussions and final conclusions are pre-
sented in section 5.

Customer
Service

@
7 §
[]
quotefreq‘uest(Doc) notifyﬁre‘@ult(Doc)
% Iy
Quote b S4Customer
O Request | Notification
.-~ Doc
k,"' [available] apprgve(Doc)
Classify ~———————| Elaborate =~ >~ Approve X reject(Docz o
-7 .7
¥ ¢ N incomplete(Doc)
Dac Attachment Doc " *-“" Correct
[classified]

[available] [refined]

Fig. 1. Example of BPMN diagram from the IDS case study.

2 Motivation

The IDS project aims at developing a workflow enactor system for improving task
coordination and document management in small and medium local companies. The
project is a benchmark for exploring real motivations since a workflow system shall
autonomously configure its behavior. In particular the requirements elicitation phase of
the project highlighted that the business domain is a high dynamic context, in which
company business goals and rules often vary. In addition the workflow engine runs in
a socio-technical context in which human and social factors are relevant. In particular
such systems operate in a society whose laws and regulations are frequently revised and
modified.

The business process in Fig. 1 models the process for quote request in a generic
company. The customer service receives requests from customers via telephone, fax,
email or traditional mail. The flow starts when the customer service fills a quote request
form. This generates a virtual document to be processed to satisfy the request. The
automatic task Classify tries to identify the input request type, when possible, by using
image processing techniques. Therefore, the classified document is manually elaborated
(Elaborate task) by the technical responsible who produces the quote as virtual attach-
ment. It is the commercial manager’s turn to supervise the attachment and to mark it
as approved, incomplete or rejected (Approve task). If the document is marked as in-
complete, a new revision loop is activated (Correct task). Conversely, if the document
is approved then the customer notification is responsible to contact the customer and to
provide the requested information.

The objective of this paper is to discuss how decoupling business goals and their
implementation for self-adaptation purposes. Whereas BPMN is extremely flexible to
define the implementation layer, it lacks of an explicit syntax for defining business
goals. We look at a goal specification language with the following characteristics.

REQ.1 - The language shall be powerful enough to represent requirements and con-
straints for information systems. System requirements describe the expected results
of the system and they can be articulated into functional and non-functional require-
ments. Whereas functional requirements describe the behavior in terms of the ex-
pected functionalities, non functional requirements generally describe the expected
performances of the system. This feature is central for our purposes since we want
to model BPMN goals as expected behavior of the workflow system. An important
aspect to consider is the massive presence of social factors into the system behav-
ior: system constraints are norms that specify what the system is obliged to do and
what is forbidden.

REQ.2 - The goal specification shall be independent on how the software system will
work. It is out of the scope of the language to describe how to address the spec-
ified goals. The focus must be on *what’ is expected, so the language shall be in
a declarative fashion. We work under the hypothesis that the portion of the world
under interest is decomposed and described by a set of states and properties. For
our purposes, describing system goals means to describe the expected result by
grounding it on ontological bases.

REQ.3 - The language shall be context-free. Agents are the main consumers of the goal
specifications, because they are responsible to adapt their behavior to the goals.
Goals are not statically defined at design-time automatically, but can be modeled or
modified after agents’ life begins. Therefore, for our purposes, the goal language
must be interpreted at-run time by system agents, who must acquire the expected
result that is encapsulated in them. Agents that are aware of the expected state of
the world (that is desired by humans) can reason on how to adapt their behavior
according to perceptions and to desired goals.

REQ.4 - The goal specification shall be compatible with the expressiveness of the
BPMN language. The Business Process Model and Notation is a very expressive
graphical language that is able to express almost every process. It includes, among
the others, human and software collaborations, conversations and choreography,
concurrent task execution, task decomposition, persistent data, handling of error/-
compensation/escalation situations. We work under the hypothesis that in a process
every task is done because underlying goal exists, and we want to automatically ex-
tract these goals every time this is possible. The resulting goal must perfectly syn-
thesize its task, so the specification language must be expressive enough to cover
the whole specifications of BPMN.

REQ.5 - The language shall be attractive for a business audience. Goals will be au-
tomatically extracted (when possible) from the BPMN description of the business
process. However analysts want to maintain the control of the workflow execution.
For this reason they will want to verify and manually refine system goals before
these are injected into the system. For our purpose, the language must be simple
to learn, to understand and to use by non-technical people. We consider to use a
specification language that is closer to the natural language a better choice than a
formal language based on mathematics basis.

REQ.6 - The language shall be flexible enough to include points of uncertainty in spec-
ifications. Traditional languages for goals specification generally adopt a strict def-
inition of the functional and non-functional requirements in order to avoid ambi-

guities or uncertainty. Despite this is perfect for traditional system development,
this may represent a limitation for a self-adapting system. Indeed the adaptation
mechanism need wider solution space where to move, in which many alternative
solutions are possible, each with different trade-offs. For our purpose, we want to
increase the degrees of freedom of agents in finding the solution. We want to allow
the presence of points of uncertainty in the goal specification to let agents relax
some constraints on the necessity.

3 Review of Goal Specification Languages

We conducted a systematic literature review, according the principles of Wohlin et
al. [15]. The research question is about the expressiveness of goals in literature. In
particular we check if they match with the characteristics defined in Section 2.

We identified 30 among the most relevant papers in the area, that are distributed
according their topic in informal/semi-formal, formal approaches and implementation.
The table shown in Fig.1 summarizes the results of this comparison.

Totally informal approaches commonly express goal semantics by using natural
language expressions: they are similar (in our classification) to semi-formal represen-
tations that mix graphical and text based notation. These are the most frequently used
techniques for specifying goals because they facilitate the exchange of knowledge with
stakeholders.

Business Motivation Model (BMM) [16] is a meta-model and a standard for captur-
ing semantically rich business requirements, useful for analysis, querying, impact anal-
ysis, change management and business reasoning. It tries to highlight ”why the business
wants to do something, what it is aiming to achieve, how it plans to get there and how
it assesses the result”. Nevertheless, BMM does not come with a standard graphical
notation, it has a broader scope than just goal modeling and therefore it has too many
concepts (some of which are unclear or overlap with each other), it has no strong formal
basis and does not address at all goal analysis and reasoning issues. Finally its goals do
not ground on ontological bases and not support reasoning with uncertainty.

The Goal-Scenario Coupling [17] is a language that expresses a goal by a struc-
tured natural language in which any clause has a main verb and several parameters. For
example Display (the error message)op;(to the customer)pes:, where each parameter
plays a different role with respect to the verb. We note, among parameters, there are
means and manner that define how to address the goal satisfaction.

The i* [18] framework and Tropos [9] are semi-structured language in which goal
statement are free-text but relationships are formalized. In particular And/Or Decompo-
sition relations, means/end relationship (setting means to reach a goal), and contribution
relationships (expressing positive or negative contribution to goal achievement). The
language is perfectly suitable for requirement analysis, but the poor semantics of the
natural language goal definition makes it hard to move towards implementation phases.

To overcame this point the Formal Tropos [19] extension offers all the primitive con-
cepts of i* [18] but more expressive power, and in particular, temporal specifications.
As well as Tropos does, Formal Tropos describes all the relevant objects of the modeled
domains along with their relationships, but it also allows to represent dynamic aspects

of the model by a first order linear-time temporal logic with future and past time oper-
ators. The language offers existential and universal quantifiers for defining Constraints
(which restrict the valid executions of the system), Assertion (which are expected to
hold in all valid executions of the system) and Possibility (which are expected to hold
in at least one valid execution of the system).

Tropos has been also used in the field of self-adaptation [7]. Morandini et al. en-
riched the goal model by specifying achievement conditions in relationship with the
environment, and the possibility to model faults and corresponding recovery activities.
They set system goals as invariants, whereas variation points of the global behavior are
granted by decomposing the main goals into trees of alternative sub-goals. The sys-
tem uses advanced decision techniques to select among many alternative strategies to
address the main goals. Moreover, the defined goals can be directly mapped to Jadex
goals. The technique of designing the expected exceptions was already comprised into
the BPMN specification but the main limitation, for our purposes, is that goals and plans
are paired at design time.

GRL [20] is also based on i *. It is a language for supporting goal and agent-oriented
modelling and reasoning about requirements, with an emphasis on dealing with non-
functional requirements (NFRs). In GRL, a goal can be either a business goal or a
system goal. A business goal express goals regarding the state of the business affairs
the individual or organization wishes to achieve. System goals describe the functional
requirements of the information system. GRL is a language more suitable for the first
phases of analysis. The goal specifications it provides are not suitable for agents. More-
over it not support adaptation and uncertainty factors.

Differently KAOS [21] is conceived to produce automated specifications of domain
knowledge. The framework grounds on a formal language where goals are defined by
means of real-time linear temporal logic (first-order logic with modalities referring to
time), that semantically captures maximal sets of desired behaviors. Goals are classi-
fied according to some patterns (Achieve, Avoid, Maintain, etc...); these verbs in KAOS
specify a temporal logic pattern for the goal name appearing as parameter. They implic-
itly specify that a corresponding target condition should hold some time in the future,
always in the future unless some other condition holds, or never in the future. This
expressivity makes the language suitable for formal proof of specification correctness.

Winikoff er al. [8] present a way to integrate declarative and procedural views of
goals in agent systems. They propose a plan notation called CAN (Conceptual Agent
Notation) along with a formal semantics expressing both goal aspects. In this paper a
goal is represented by means of two logical formulae about the agent’s beliefs repre-
senting the declarative aspects and a set of plans representing the procedural aspects of
goals. This kind of goal representation allows to capture several goal proprieties (such
as persistence, consistence, achievement etc . ..) but it does not encapsulate uncertainty
factors and it is not thought for adaptation and for BPMN mapping. Moreover, it encap-
sulates procedural aspects that GoalSpec deliberately avoids in order to allow adaptation
in our workflow enactor. Subsequently, the GOAL language [22] incorporates declara-
tive aspects of goals in an agent system in order to allow the agent to decide what to do.
A declarative goal specifies a state of the world that an agent wants to reach. Thus they
do not specify how to achieve such states. A feature of GOAL is that the set of goals is

not required to be consistent because not all goals have to be reached simultaneously.
Goals can be achieved at some moment in the near or distant future. These features
are very close to our needs, anyway whereas the GOAL language grounds on agent
mental states, we need a language to define business goals that are, in fact, humans’
goals. GoalSPEC should be designed to be attractive for business audience as specified
in Section 2. Moreover, our language want to be also a trade off between high-level goal
languages and implementation ones

Finally, there is a lot of work about agent-oriented programming languages (such as
JACK [23], AgentSpeak(L) [24], Jason [25], 3APL [26] [27], Jadex [28], etc...) where
the goals play a central role. Many of them are associated to sophisticated reasoning
engines allowing to develop complex intelligent agents. But in these frameworks goals
are strictly linked to plans to reach them. In our system we do not specify a particular
representation of the plan. A plan could be as usual a simple sequence of agent actions,
a combination of web services, a set of procedures and so on. A strength of our work
lies on decoupling the declarative aspect of a goal from its procedural one allowing thus
a flexible plan composition in order to satisfy a declared goal.

Table 1 summarizes the results of the review. This table provides a kind of matching
between the analyzed goal languages and the requirement we need. At the best of our
knowledge, we have not found one approach that fully meets all our requirements. In
particular, the attempts to use Goal-based modeling for specifying adaptation do not
fully satisfy what we want to realize in our envisioned framework. Therefore, the next
section proposes a new language, named GoalSpec, that incorporates some features of
the reviewed languages but also it introduces new characteristics for our purposes.

KAOS TROPOS| Formal Go:l Scenario| TROPOS for BDI

Legend
1+ | TRoPOS | GRL BMM| | GOAL| 8

X = complete matching

Formal X X
A At A | A A]
e

Requirements/

Constraints X X X X A% X A% A% A\ %
Representation

'V = partial matching
A-= Analysis

I-= Implementation

Oontological

Representation X X
Context-free
(Grammar X X X
@« .
@ |Uncertainty X
B
=4
& Human Oriented X X X

Table 1. Comparison table among goal languages and features we are interested.

4 GoalSPEC: A Language to Specify System Goals

Here, we define a language for specifying system requirements and constraints. It has to
be general enough to cope with several aspects that are key elements in current systems.
To do this, we have incorporated some features of existing languages and we have
introduced new ones in order to address specific adaptation and business issues. For the
sake of clarity we refer to the whole language as an abstract package that contains two
sub-languages: GoalSPEC that focuses on specifying expected results of the system in
terms of functions, and NormSPEC that is a norm-based language for specifying non-
functional requirements and constraints that generate a boundary where the system is
limited to move. This paper focuses on GoalSPEC only, whereas the foundations of
NormSPEC are yet published in [29]. The common characteristics of both GoalSPEC
and NormSPEC are: (i) their grammar is a subset of the natural language; (ii) they
have context-free grammar, thus to be automatically parsed and translated into machine
instructions; (iii) some elements of the specifications can be relaxed by using fuzzy
modifiers. The concept of system goal is central to our language. Aligned with common
definitions we distinguish between business goals and system goals.

Def.1: Business Goals are enterprise strategic interests that motivate the execution
of business processes [11]. They are discovered in phase of analysis and they are useful
to model a strategic view of domain stakeholders and to elicit system requirements.

Def.2: System Goals are described as states of the world that the system desires to
achieve [9]. System goals are generally the subset of business goals that are delegated

to the workflow system in order to implement some kind of automation.
In the following, an extract of the BNF description of the GoalSPEC language is
reported:

goal_type : social_goal | system_goal;

social_goal : SOCIAL GOAL goalname ’:’ trigger_condition actors_list SHALL
ADDRESS final_state;

system_goal
: GOAL goalname ’':’ trigger_condition actor SHALL ADDRESS final_state;

trigger_condition : event
| trigger_condition AND trigger_condition
| trigger_condition OR trigger_condition
| NOT trigger_condition | ' (’ trigger_condition ")’ ;

event : ON date | AFTER delay SINCE trigger_condition
| WHEN state ;

final_state : state
| final_state AND final_state
| final_state OR final_state
| NOT state | ' (’ final_state ")’;
state : predicate
| message_sent_state
| message_received_state ;
message_sent_state : MESSAGE predicate SENT TO actor;

message_received_state : MESSAGE predicate RECEIVED FROM actor;

actors_list : actor AND actors_list | actor;

actor : THE_SYSTEM | THE characters ROLE;

Social goals and agent goals. The productions of the language allow to specify
system goals. The first production of the BNF describes a goal as composed by an
initial triggering condition, a list of actors that are involved and a desired final state of
the world. We consider two categories of system goals:

— agent goals are atomic goal, related to a specific outcome in the workflow instance;
they derive from Tasks in a workflow, and they can not be further decomposed into
sub goals. Addressing an agent goal produces an advancement for the achievement
of the workflow.

— social goals are goals that are decomposable into many sub-goals. These goals
derive from Processes or Subprocess in a workflow. A social goal is not necessary
satisfied when all its sub-goals are satisfied. It has its own final condition to verify
in order to be considered addressed.

For instance, the agent goal, for which the Elaborate task in Fig. 1 must be executed, is
the following:

GOAL doc_management.g2 :

(WHEN classified(Doc) AND WHEN done (classify))

THE worker ROLE SHALL ADDRESS

((refined (Doc) AND available (Attachment)) AND done (elaborate))

The actors section is strictly related to the concept of BPMN participant. It specifies
’who’ is the main responsible to address the given goal. GoalSPEC includes two differ-
ent categories of participant: human roles and the system. When the actor of a goal is the
system then the goal may be automatically addressed. On the other hand, when a human
role is responsible of a goal, the system can only monitor when the goal is successfully
addressed. A social goal, generally contains a list of actors that will collaborate to the
workflow enactment.

Triggering Conditions. Each goal specification starts with a set of conditions that
must hold in order to activate the goal. The BNF specifies that a condition may be a
single event or a composition of multiple events. Basic events may be:

— on < date >, triggers when a given day arrives. The date is a parameter that
follows the ISO 8601 specification [30] (International standard date and time nota-
tion). Examples are "on 1995-02-04", or on 2013-04-01/23:59:59°.

— after < delay > since < event >, triggers after an amount of time since a given
event has occurred. The delay parameter specifies a duration of delay according to
the ISO 8601 standard. For instance *2W’ means 2 weeks.

— when < state >, triggers when a specified state of the world becomes true: an
example is *when rejected(Doc)’. In the following, in this same section, the speci-
fication of state is explained in details.

States of the World. One of the main operative hypothesis of this work is that the
portion of the world under interest is described by using states and predicates. Indeed,
GoalSPEC adopts an ontological description of the world, and logic predicates play
a central role in the specification of elements and their properties. The BNF indicates
that each goal specification includes a final_state that must be true in order to declare

the goal is finally satisfied. A state may range from a single logic predicate ’classi-
fied(Doc)’, to a composition of multiple predicates by and/or operators ’((refined(Doc)
AND available(Attachment)) AND done(elaborate))’. Also a NOT operator is included
to specify the state is true when the predicate is false. Two special occurrences of state
are produced by the MESSAGE keyword. These states occur when workflow messages
are exchanged (incoming or outgoing). Here two examples of message states:

— MESSAGE notify_result(Doc) SENT TO THE customer _service ROLE
— MESSAGE quote_request(Doc) RECEIVED FROM THE customer_service ROLE

We used Prolog as the dialect to define GoalSPEC first-order logic predicates in a
declarative fashion. This decision has been done also to be compliant with some BDI
(belief-desire-intention) frameworks such as the Jason architecture [31]. Prolog predi-
cates use atoms to represent: (i) particular individuals or objects (symbols starting with
lowercase, or numbers); (ii) variables (symbols starting with uppercase) that will as-
sume a value with the mechanism of unification; (iii) facts (functors followed by list
of arguments), used to represent properties or relationships. Let us consider the exam-
ple in Fig. 1. After the Approve task the document may assume three possible states:
approved(Doc), incomplete(Doc) or rejected(Doc). The value unified with the variable
Doc represents the specific instance of the working document. Matching and unifica-
tion are performed along the same set of goals specification, therefore, considering the
following goal:

GOAL doc_management.g5 :
(WHEN approved (Doc) AND WHEN done (approve))

THE SYSTEM SHALL ADDRESS
MESSAGE notify_result (Doc) SENT TO THE customer_service ROLE

It is worth noting that the variable of the predicate ’approved’ will be unified with
the variable of the predicate ’notify_result’: in other worlds the document that will be
sent to the customer service is the same that has been approved and it is the same that
has been previously ’refined’ (see goal doc_management.g2).

Human participants. Business processes describe sequences of operations. The
BPMN standard (in contrast with BPEL) allows to declare a human role as respon-
sible of activities. Manual and user tasks are operations that are executed without (or
with a limited support) of the machine. In our vision all the activities in a workflow, in-
cluding the manual ones, exist in order to pursue a business goal, or in technical terms,
to take the world in a desired state.

GOAL doc_management.g3 :
(((WHEN refined(Doc) AND WHEN available (Attachment)) AND WHEN done (elaborate))
OR ((WHEN refined(Doc) AND WHEN available (Attachment)) AND WHEN done (correct)))

THE manager ROLE SHALL ADDRESS
(done (approve) AND (incomplete (Doc) OR approved(Doc) OR rejected(Doc)))

Whereas goals that derive from service tasks are directly delegated to one or more
agents of the system, goals of manual/user tasks can not be delegated: they must be
addressed by human resources. In these cases system goals differ from business goals,
indeed the role of the system is to monitor that the desired state is correctly addressed,
or when this is not feasible, to generate user interfaces where human operators may
notify their progresses.

Fuzzy modifiers. 1t is very interesting the work by Whittle et al. [13] who defined
RELAX, alanguage for requirement specifications that uses a declarative style for spec-
ifying possible sources of uncertainty. Flexibility is obtained by relaxing the rigid ’shall’
form typical of requirements and by introducing uncertainty factors. RELAX is based
on three types of operators (temporal, ordinal and modal) to address uncertainty. The
semantics of RELAX expressions (AFTER, AS EARLY AS POSSIBLE, and so on...)
is formalized in terms of fuzzy branching temporal logic. The authors suggest that re-
quirements languages for self-adaptive systems should include explicit constructs for
specifying and dealing with the uncertainty inherent in self-adaptive systems.

Likewise in RELAX [13], the expressiveness of GoalSPEC language is extendable
to let the designer relax some constraints. This is possible by using *fuzzy modifiers’
to increase the flexibility of the rigid unification operator. For instance, it is possible to
relax time constraints by specifying that a goal shall be addressed AS SOON AS POS-
SIBLE, or AS LATE AS POSSIBLE. This is particularly useful when the system deals
with many parallel goals and must optimize the global behavior by selecting the one
with highest priority. It is also possible to relax measures with the following modifiers:
AS CLOSE AS POSSIBLE, AS MANY AS POSSIBLE, AS FEW AS POSSIBLE. For
instance it is possible specifying the number of items in a list must be as close as pos-
sible to a given threshold. A value that is close to the threshold (but not equal) will not
raise an exception, as a traditional workflow engine would do, thus allowing the work-
flow to continue normally. The implementation of these modifiers is a work in progress
and is out the scope of this paper.

4.1 Translating BPMN into System Goals

Many times in this paper we mentioned BPMN [1] and BPEL [32] as the most common
specification languages for workflow. In the IDS project we adopted BPMN because
of its capability to describe human tasks whereas BPEL does not support. BPMN and
GoalSPEC are not in competition, but rather are complementary. Each of them has
a different role in the whole architecture. BPMN is the main interface for business
analysts to model their business processes. GoalSPEC is intended to model the business
goals that are not explicitly expressed in the BPMN process.

An important requirement gathered in the IDS project is avoiding additional burden
to the business analyst. For this reason we elaborated an algorithm that automatically
extracts goals from a BPMN specification of a business process. BPMN2GoalSPEC is
a Java component that translates the BPMN specification (XML) into a set of goals
according to the GoalSPEC grammar. This set of goals could be then manually revised
if necessary, however it represents a good starting point for the analyst.

In order to explain what is the idea underlying the extraction of goals, we can ob-
serve that a BPMN process can be seen as a graph, where nodes are Tasks, Events or
Gateways, and arcs are sequenceFlows. Sub-processes are special kind of Tasks that act
as container for other Tasks, Events and Gateways. We already discussed that a process
generates a social goal, since it describes a protocol of collaboration among many parts.
On the other hand every Task generates an agent goal that encapsulate the business ob-
jective to execute it. As a consequence a Sub-process generates both an agent goal and
a social goal.

In order to generate a social goal or an agent goal we have to extract both the trig-
gering condition and the final state for the specific goal. The triggering condition is the
condition needed for activating a specific goal and the final state is the state of the world
the goal indicates to be addressed. Working under the condition that both the triggering
condition and the final state could be expresses by considering the states of the world,
we want to measure the state at input and output of Task nodes.

We preliminary observed that:

— Gateways do not alter the state of the world. This means the input state of a gateway
is equal to the output state;

— Events can be distinguished in catching and throwing. Catching events block the
execution waiting that the desired input state triggers. On the contrary, throwing
events proactively generate the desired state as output;

— Tasks encapsulate both the waiting/generating behaviors. Indeed a task activates
when a given input condition (we call it the waiting condition) is true, whereas it
generates a given state as output (we call it the generated condition).

We easily measure the waiting/generated condition by observing at dataObjects,
inputSets, outputSets, dataStores and Messages that are consumed as input of a task,
or that are produced as output by the task. For instance, the Classify task shown in
Fig. 1 waits for the Doc dataObjects assumes the state ’available’ therefore the waiting
condition is WHEN available(Doc). Conversely the same task produces a new state for
the Doc dataObjects (’classified’), so the generated condition is classified(Doc).

Anyway waiting/generated conditions are different from triggering condition and
final state because we must also consider that a Task is immersed in a context with
predecessor and successor nodes that modify its state at input and output. In general
we can say that the triggering condition can be elaborated as the waiting condition
plus the backward condition, whereas the final state may be elaborated as the generated
condition plus the forward condition.

The backward condition is measured by looking backward at the target node fol-
lowing the incoming sequenceFlow arcs, whereas the forward condition is measured by
looking forward at the target node following the outgoing sequenceFlow arcs. In this
analysis:

Gateways propagate the state in both backward and forward directions;

— Throwing Events block the backward analysis, whereas Catching Events block the
forward analysis;

Tasks block the propagation in both directions;

eventual Conditional sequenceFlows also provide additional useful information
that have to be composed with backward/forward conditions.

Finally, the Algorithm 1 describes the goal generation technique. As an example of
goal generation, let us take in consideration the Approve task in Fig. 1.

Inferring the triggering events of a goal. The waiting condition for the goal is re-
lated to the presence of the refined(Doc), where the generated condition is the predicate
done(approve) (this is generated by default for each task to highlight the correct exe-
cution of an activity). To build the backward condition the algorithm selects the two

Data: the BPMN workflow graph

Result: set of GoalSPEC goals

forall the x, Task and Throwing Event in the workflow do

let be waiting(x) the waiting event;

let be generated(x) the generated state;

generate a new agent goal G;

add waiting(x) to triggering_condition(G);

add generated(x) to final _state(G);

forall the i, incoming SequenceFlow(x) do

let be cond(i) the sequence flow condition of i (when it exists);
calculate backward(i,source(i));

add cond(i) AND backward(i,source(i)) to triggering_condition(G);
end

orall the j, outgoing SequenceFlow(x) do

let be cond(j) the sequence flow condition of j (when it exists);
calculate forward(j,target(j));

add cond(j) AND forward(j,source(j)) to final_state(G);

)

end

end

orall the p, Process and SubProcess in the workflow do

generate a new social goal S;

forall the z, starting event and starting task of the workflow do
forall the i, outgoing SequenceFlow(z) do

calculate forward(i,target(i));

add forward(i,target(i)) to triggering_condition(S);

by

end

end

forall the ¢, ending event and ending task of the workflow do
forall the j, incoming SequenceFlow(t) do

calculate backward(j,source(j));

add backward(j,source(j) to final_state(S);

end
end

end
Algorithm 1: Extracting Goals from the Workflow

incoming sequenceFlows and, follows them back until reaching the source nodes: 1)
Elaborate and 2) Correct. Because of both are Tasks, the condition is equal to the gen-
erated condition. Therefore they are:

backward(1,Elaborate)=done(elaborate) AND refined(Doc) AND availabe(Attachment),
and

backward(2,Correct)=done(correct) AND refined(Doc) AND availabe(Attachment).
The whole triggering condition of the goal is the OR combination of these two results.

Inferring the resulting state of a goal. The generated condition of the goal is
done(approve) by default, since there is no explicitly produced output. For building the
forward condition the algorithm follows forward any outgoing sequenceFlow from the
task. In this case there is only one outgoing sequenceFlow that arrives to the exclusive
gateway. The gateway node does not alter the state, but it propagates in input the state
that is in output. Because it is an inclusive gateway the three outgoing sequenceFlows
will be in OR. The first flow is conditional (approved(Doc)) and arrives to a task that
blocks the forward analysis. The second flow is also conditional (rejected(Doc)) and
terminates to an end event. Finally the third flow is conditional (incomplete(Doc)) and
arrives to a task that again blocks the forward analysis. As a consequence the forward
condition is incomplete(Doc) OR approved(Doc) OR rejected(Doc).

GOAL doc_management.g3

(((WHEN refined(Doc) AND WHEN available (Attachment)) AND WHEN done (elaborate))
OR ((WHEN refined(Doc) AND WHEN available (Attachment)) AND WHEN done (correct)))
THE manager ROLE SHALL ADDRESS

(done (approve) AND (incomplete (Doc) OR approved(Doc) OR rejected(Doc)))

The complete goals set for the book management example (Fig. 1) is the following:

SOCIAL GOAL doc_management

WHEN MESSAGE quote_request (Doc) RECEIVED FROM THE customer_service ROLE

THE worker ROLE AND THE manager ROLE AND THE customer_service ROLE AND THE SYSTEM
SHALL ADDRESS ((rejected(Doc) AND (done (approve) AND NOT done (costumer_notification)))
OR MESSAGE notify_result (Doc) SENT TO THE customer_service ROLE)

GOAL doc_management.g0

WHEN MESSAGE quote_request (Doc) RECEIVED FROM THE customer_service ROLE
THE SYSTEM SHALL ADDRESS

(available (Doc) AND done (quote_request))

GOAL doc_management.gl

(WHEN available (Doc) AND WHEN done (quote_request))
THE SYSTEM SHALL ADDRESS

(classified(Doc) AND done (classify))

GOAL doc_management.g2

(WHEN classified(Doc) AND WHEN done (classify))

THE worker ROLE SHALL ADDRESS

((refined (Doc) AND available (Attachment)) AND done (elaborate))

GOAL doc_management.g3

(((WHEN refined(Doc) AND WHEN available (Attachment)) AND WHEN done (elaborate))
OR ((WHEN refined(Doc) AND WHEN available (Attachment)) AND WHEN done (correct)))
THE manager ROLE SHALL ADDRESS

(done (approve) AND (incomplete (Doc) OR approved(Doc) OR rejected(Doc)))

GOAL doc_management.g4

((WHEN refined(Doc) AND WHEN available (Attachment)) AND (WHEN incomplete (Doc)
AND (WHEN done (approve) AND NOT WHEN done (costumer_notification))))

THE worker ROLE SHALL ADDRESS

((refined (Doc) AND available (Attachment)) AND done (correct))

GOAL doc_management.g5

(WHEN approved (Doc) AND WHEN done (approve))

THE SYSTEM SHALL ADDRESS

MESSAGE notify_result (Doc) SENT TO THE customer_service ROLE

4.2 The Proposed Architecture

We have anticipated that social and system goals are injected into the system at run-
time. This subsection provides a brief description of the architecture of the workflow

) models .
3

s = el automatic revises
Business - _translates into <::::::“
Analyst] o N
R = Business
: Expert

/
) / GoalSPEC|
w / |

/ " | .
worker / injection | injection
A |
inteﬂir‘\acts / \&
commits © analyzemmns tOO analyzes

analyzes analyzes

Running MAS

Fig. 2. Overview of the proposed system for enacting the workflow.

engine. This overview is short because of space concerns, but it helps to provide a justi-
fication to the presented language and to answer the challenge introduced in Section 2.
The work assumes that, in a real working environment, BPMN is the main interface for
business analysts. We decided to accept BPMN as it is prescribed by the OMG group
and we avoid to create yet another extension or variation to its metamodel. Indeed, Fig-
ure 2 shows that a business analysts uses a BPMN 2.0 tool to edit the workflow. In the
meanwhile, a multi-agent system is already running and its members are greedy to use
their capabilities. Every agent in the system owns some specific capabilities and it is
aware of them. For instance, considering the IDS project, an agent is able to classify
documents, whereas a set of agents are able to communicate with the range of human
roles (’customer’, *worker’, 'manager’). When a business process is ready, it is auto-
matically translated into a set of goals in GoalSPEC and then these goals are inserted
into a database. The agents of the system detect when new goals are in the database and
verify whether their capabilities are suitable to commit to one ore more goals. This trig-
gers a social auction for assigning goals to agents. When all the agent goals are assigned
to some agent, the relative social goal is activated and the workflow can be executed.
This architecture decouples the goals (the what’) from the capabilities (the how’)
and it lets the agents to autonomously decide if and how to employ their capabilities to
address them. The advantages are: (i) Exploration of alternatives - when more agents
have different implementations of the same ability (for example different classification
algorithms) they are in competition to get a goal assigned. Therefore, if the workflow
fails, for some reason, the commitment is retreated and re-assigned, thus to explore
different alternative tasks to the same objective. (ii) Learning - during their execution
agents learn from the result of their actions (by associating the success or failure to the
execution context). In this way, the social auction is won by the most capable agent
according to the current execution context. (iii) Evolution - new goals can be injected
into the database or existing goals can be retreated from it. Given that the commitment
is dynamic, it is not a big deal to reorganize the agents thus to make new goals satisfied.

5 Discussion and Conclusions

GoalSPEC has been developed to cover the requirements described in Section 2, in or-
der to implement the adaptive system shown in Fig.2. None of the existing languages
meet all those requirements. In the following we make some considerations on Goal-
SPEC and on other works close to our approach.
GoalSPEC supports Adaptivity. GoalSPEC is intended to be used within the lifecycle
of a business process from creation to maintenance. The scenario starts when business
analysts generate a preliminary version of business process by employing a BPMN vi-
sual tool. The tool generates a XML file that adopts the standard schema defined by
OMG. The BPMN2GoalSPEC component receives this file and it is able to automati-
cally generate a set of GoalSPEC social and system goals. GoalSPEC is created in the
context of adaptive workflow and it completely covers the whole BPMN expressivity
(REQ. 6), hence whatever process defined with BPMN, its business goals (functional
and non-functional) can be modelled with GoalSPEC (REQ. 1). Before being executed,
system goals are proposed to analysts in order to be revised. Since GoalSPEC is based
on natural language, and it is specifically been conceived to be attractive for a business
audience (REQ. 4), analysts can easily understand and modify the results. This is useful
since analysts may include other business goals missing in the BPMN specification.
Several time in this paper we have mentioned that social and system goals are in-
jected into the system at run-time. Indeed, the agent system is already running when
business analysts work. Agents are specialized workers (each with their specific skills)
waiting for something to do. When goals are released, agents perceive them into their
environment. They are also able to interpret GoalSPEC (REQ. 3) and to absorb goals
into their knowledge base. Even if the grammar is context-free, goal specification by
GoalSPEC is not rigid for two reasons. Firstly a goal does not specify how to oper-
ate but it rather defines the expected results in ontological terms (REQ. 2), that is the
final state of the world that is desired. In addition, some elements of the behavior spec-
ifications may be relaxed by using fuzzy modifiers (REQ. 5). In practice, agents can
potentially plan and propose more alternatives for addressing a goal. Social interactions
and individual planning capability are out the scope of this paper.
GoalSPEC supports Evolution. Agents are allowed to commit to the achievement of
injected goals as long as they are perceived into the environment. Certainly current
business process will change in the future, maybe as a cause of new business goals, new
laws and so on. In a traditional approach, analysts would revision their BPMN models
in accordance to changes. Any revision includes to check possible inter-dependencies
among related (sub)processes with a consequent hard work to ensure coherence. The
GoalSPEC approach is that the system intelligence will support this activity. Agents
ability to reason on the injected goals may also highlight possible incoherence or con-
flicts among them. Warning of conflicts are useful for the analysts to improve the pro-
cess. The workflow system will be always running, but the consequence of a goals revi-
sion is that agents will reorganize their behavior to address the new objectives. Probably
programmers will also introduce new agents into the system to cover the need for new
skills.
Considerations on the Expressiveness. GoalSPEC adopts an ontological description
of the business process. Logic predicates play a central role for the decomposition of

the domain in a set of possible states of the world. Comparing GoalSPEC to Tropos,
it appears that the second proposes a definitively richer semantics for the relationships
between goals. GoalSPEC does not include operators for and/or decomposition, contri-
butions and means/end. This choice has been deliberately done in order to make agents
able to automatically discover these relationships. Any Tropos relationship adds a con-
straint for the system working. Otherwise, system intelligence must search for alterna-
tive solutions that were not designed by analysts. Comparing GoalSPEC to KAOS, it
appears that the second uses a temporal logic, definitively more expressive than first
order logic. Temporal propositions, in fact, contain some references to time conditions
that GoalSPEC does not support. For example, we can’t specify that in the time between
the event E'1 and the event E2 the action A can be executed at most twice. We accept
this limitation because our language needs to be more human oriented and feasible for
complex systems. Indeed, systems based on temporal logic are difficultly scalable up
and require formal verification. But, in order to further increase the goal expressiveness
GoalSpec also supports some fuzzy modifiers that may introduce uncertainty with the
aim to increase the agent degree of freedom in pursuing their goals.

Considerations on the Generality. The proposed language, although developed for a
specific project, can also be used in more general information systems. We assert this
because, it owns features that make it reusable in the general context in which workflows
have to be managed. As it is well known, any information system embeds some kind of
workflow even if sometimes that is not explicitly specified.

Considerations on other related approaches. Some proposals on the idea to link busi-
ness processes to goal models exist in literature. To the best of our knowledge, among
them those closest to our approach are presented in [33] and in [34].

G.Koliadis and A.Ghose [33] propose an approach, named GoalBPM, to relate
BPMN business process to KAOS goal models. In particular, they introduce informal
and manual techniques for establishing relations among high-level stakeholder goals
and business processes. These relationships are established through two steps that allow
to define traceability links between goals and activities and satisfaction links between
goals and processes. This method is used to support the evolution of business processes
and their consistency respect to the goal models. But the purpose of this approach is
quite different from our. In fact, GoalBPM can be used for verify the satisfaction of a
process model against a goal model when goal changes occurs. Whilst, our approach
based on GoalSpec transforms a BPMN process model into goals that can be easily in-
terpreted by a workflow engine able to satisfy these goals. The evolution of the business
processes results on new goals to be managed by the systems.

In [34], the authors propose an approach to business process management based on
BDI agent technology to realize agile processes (i.e. flexible and able to proactively
adapt themselves). They start with business processes expressed using GO-BPMN [35]
modeling language. Differently from BPMN, in GO-BPMN workflows are attached
to a goal they fulfill. Thus, this model is directly mapped into BDI agent with goals,
plans and beliefs. Similarly to our idea, the authors think that the agent technology can
provide an agile process execution. But what we want to realize is a workflow engine, in
which agents are aware of what they can do, but it is not established in any way how to
do it. They are able to find out how to complete their business process activities adapting

to the available resources. We do not create a static link between the declarative level
and the procedural one. By decoupling business goals and their implementation using
Goalspec and adopting the workflow engine architecture shown in Fig.2, we are able to
create a dynamic binding between goals and plans to reach them which are composed
at run-time. Moreover, this allow us to inject new goals in the system without changing
the implementation level. In addition, our approach based on a standard notation (i.e.
BPMN) to model business processes does not require furthers expertise to be owned by
business analysts.

Many other recent works [4,6,36,37] face with self-adaptive workflow engines. The
objective of self-adaptive workflows is to make the enactment engine able to recognize
anomalous situation that are not included in the specification. A promising approach
in literature is to incorporate multiple strategies into the system design and to let the
system to select the appropriate one that address the desired goal [7,38]. Indeed, a goal
may be generally addressed in many alternative ways, each with different trade-offs. A
representative approach [38] is that of modeling goals in a hierarchy that describes the
expected outcome of the system.This goal model is created at design time and then each
goal is instructed with the necessary implementing code which execution addresses the
target goal.

Surely, these approaches should obtain more precise results but they are less flexible

than our. Thus, we accept a small loss of precision in order to achieve greater flexibility
and dynamism.
Final Remarks. GoalSpec wants to be a step toward the definition of an agent frame-
work able to implement an adaptive workflow enactor in which goals may evolve be-
cause the user requirements are changed. Self-awareness is another important issue we
are addressing. We are working to realize a kind of agent that is able to decide its own
behavior with respect to evolving goals.

6 Acknowledgements

This work has been partially funded by the Innovative Document Sharing (IDS) Project
funded by the Autonomous Region of Sicily (PO FESR Sicilia 2007-2013).

References

1. BPMN, O.: Business process model and notation (bpmn). www.omg.org/spec/BPMN/2.0/
(2009)

2. Van der Aalst, W., Basten, T., Verbeek, H., Verkoulen, P., Voorhoeve, M.: Adaptive workflow.
Enterprise Information Systems. Kluwer Academic Publishers (1999)

3. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data & Knowledge Engi-
neering 24(3) (1998) 211-238

4. Kammer, P, Bolcer, G., Taylor, R., Hitomi, A., Bergman, M.: Techniques for supporting dy-
namic and adaptive workflow. Computer Supported Cooperative Work (CSCW) 9(3) (2000)
269-292

5. Serral, E., Sabatucci, L., Leonardi, C., Valderas, P., Susi, A., Zancanaro, M., Pelechano,
V.: Applying a methodology for developing ami systems: the nursing home case study.
In: Proceedings of the 20th International Conference on Information Systems Development
Cutting edge research on Information Systems. (2011)

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

. Buhler, P, Vidal, J.: Towards adaptive workflow enactment using multiagent systems. Infor-

mation Technology and Management 6(1) (2005) 61-87

. Morandini, M., Penserini, L., Perini, A.: Towards goal-oriented development of self-adaptive

systems. Proceedings of the 2008 international workshop on Software engineering for adap-
tive and self-managing systems (2008) 9—-16

. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declarative and procedural goals

in intelligent agent systems. In: International Conference on Principles of Knowledge Rep-
resentation and Reasoning, Morgan Kaufman (2002)

. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-

oriented software development methodology. Autonomous Agents and Multi-Agent Systems
8(3) (2004) 203-236

Van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: Re-
quirements Engineering, 2001. Proceedings. Fifth IEEE International Symposium on, IEEE
(2001) 249-262

Yu, E., Mylopoulos, J.: Why goal-oriented requirements engineering. In: Proceedings of the
4th International Workshop on Requirements Engineering: Foundations of Software Quality.
(1998) 15-22

Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B., Ben-
como, N., Brun, Y., Cukic, B., et al.: Software engineering for self-adaptive systems: A
research roadmap. Software Engineering for Self-Adaptive Systems (2009) 1-26

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.M.: RELAX: a language to
address uncertainty in self-adaptive systems requirement. Requirements Engineering 15(2)
(March 2010) 177-196

Van Dyke Parunak, H., Brueckner, S.: Entropy and self-organization in multi-agent systems.
In: Proceedings of the fifth international conference on Autonomous agents, ACM (2001)
124-130

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in software engineering: an introduction. Kluwer Academic Publishers (2000)

Team, B.: Business motivation model (bmm) specification. Technical report, Technical
Report dtc/06-08—03, Object Management Group, Needham, Massachusetts, USA (2006)

. Rolland, C., Souveyet, C., Achour, C.: Guiding goal modeling using scenarios. Software

Engineering, IEEE Transactions on 24(12) (1998) 1055-1071

Yu, E.: Modelling strategic relationships for process reengineering. Social Modeling for
Requirements Engineering 11 (2011)

Fuxman, A., Pistore, M., Mylopoulos, J., Traverso, P.: Model checking early requirements
specifications in tropos. In: Requirements Engineering, 2001. Proceedings. Fifth IEEE In-
ternational Symposium on, IEEE (2001) 174-181

Yu, L.: From requirements to architectural design—using goals and scenarios. University of
Toronto. http://www. cs. toronto. edu/km/GRL/fromr2a/fromr2a/straw01. pdf (2001)
Dardenne, A., Van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition.
Science of computer programming 20(1) (1993) 3-50

Hindriks, K. V., De Boer, E.S., Van Der Hoek, W., Meyer, J.J.C.: Agent programming with
declarative goals. In: Intelligent Agents VII Agent Theories Architectures and Languages.
Springer (2001) 228-243

Howden, N., Ronnquist, R., Hodgson, A., Lucas, A.: Jack intelligent agents-summary of an
agent infrastructure. In: 5th International conference on autonomous agents. (2001)

Rao, A.: Agentspeak (I): Bdi agents speak out in a logical computable language. Agents
Breaking Away (1996) 42-55

Bordini, R.H., Hiibner, J.F.: A java-based agentspeak interpreter used with saci for multi-
agent distribution over the net (2004)

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Hindriks, K.V., De Boer, E.S., Van der Hoek, W., Meyer, J.J.C.: Agent programming in 3apl.
Autonomous Agents and Multi-Agent Systems 2(4) (1999) 357-401

Dastani, M., van Riemsdijk, M.B., Dignum, F., Meyer, J.J.C.: A programming language for
cognitive agents goal directed 3apl. In: Programming Multi-Agent Systems. Springer (2004)
111-130

Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal representation for bdi agent
systems. In: Programming multi-agent systems. Springer (2005) 44-65

Ribino, P., Lodato, C., Lopes, S., Seidita, V., Hilaire, V., Cossentino, M.: A norm-governed
holonic multi-agent system metamodel. In: 13th International Workshop on Agent-Oriented
Software Engineering. (2012)

ISO Technical Committee TC 154: Iso 8601 international standard date and time notation.
Available at http://www.iso.org/ (1998)

Bordini, R., Hiibner, J., Wooldridge, M.: Programming multi-agent systems in AgentSpeak
using Jason. Volume 8. Wiley-Interscience (2007)

TC OASIS: WS-BPEL - Web Services Business Process Execution Language. Available at
www.oasis-open.org (2007)

Ghose, A.K., Koliadis, G.: Relating business process models to goal-oriented requirements
models in kaos. Faculty of Informatics-Papers (2007) 573

Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: Bdi-agents for agile goal-oriented
business processes. In: Proceedings of the 7th international joint conference on Autonomous
agents and multiagent systems: industrial track, International Foundation for Autonomous
Agents and Multiagent Systems (2008) 37-44

Greenwood, D., Ghizzioli, R.: Goal-oriented autonomic business process modelling and
execution. Multiagent System (2009)

Chen-Burger, Y., Stader, J.: Formal support for adaptive workflow systems in a distributed
environment. Workflow Handbook 2003 (2003) 93

Cao, J., Yang, J., Chan, W.: Exception handling in distributed workflow systems using mobile
agents. e-Business Engineering (2005)

Liaskos, S., Khan, S.M., Litoiu, M., Daoud Jungblut, M., Rogozhkin, V., Mylopoulos, J.:
Behavioral adaptation of information systems through goal models. Information Systems
(2012)

