Designing JADE systemswith the support of CASE tools

and patterns

Massimo CossentifipLuca Sabatucti Antonio Chell&?

YICAR/CNR - Istituto di Calcolo e Reti ad Alte Praaibni/Consiglio Nazionale delle Ricerche c/o
CUC, Viale delle Scienze, 90128 Palermo, Italy
cossenti no@ere.pa.cnr.it

DINFO - Dipartimento di Ingegneria Informatica, Wersita degli Studi di Palermo
Viale delle Scienze, 90128 Palermo, Italy
sabat ucci @sai . unipa.it, chella@nipa.it

Abstract

In the last years, multi-agent systems (MAS) have provex rand more successful.
The need of a quality software engineering approach to theigrdarises together
with the request of new tools that could support a quick, affordablecastd
profitably development process.

In this work we describe two different aspects of these tofies:support that a
CASE tool specifically conceived for MASs can provide to the desigmd the
impact that patterns of agents can have in the systems production.

Both of these issues have, in our approach, a common denominator theRAsSthke
(Process for Agent Societies Specification and Implementadiesipn methodology
since the CASE tool we will describe has been built to wotk wiand our patterns
are totally integrate with this process. We will complete discussion with some
examples of the functionalities offered by these tools.

1 Introduction

Several proposals exist for methods and representations of agedtsyatems [3][4]
[5][6]. Because research about agency is still an open topic, swoposed
representations involve abstractions of social phenomena and knowledigle [3]
Others address implementation issues and have higher fidelity models (&}y. [4][
One response to these developments is to treat agent-based sibiéwsame as other
types. That is, there is no need for methods or representationscgiligcior agent-
based software. We reject this view because it is more natudiscribe agents in
psychological and social language.

As a consequence, we think that design methodologies and even detsghdbowe
commonly use to design object-oriented systems are not the &gsbwork on the
agent-oriented software. Many aspects of the OO world can b&aphpfreused but a
proper support of the agents peculiarities is necessary and thisl shigihate new
methodologies and specifically conceived design tools.

We propose PASSI (Process for Agent Societies Specificatidrimaplementation)
[8] and the tools that support IPTK and AgentFactory) as a solution to the above
arguments. This methodology is the result of a long period of study a
experimentation mainly in robotics [6]. It is composed of five mod&lgstem
Requirements, Agent Society, Agent Implementation, Code Model and Degidy
Model) which include several distinct phases. The advantagesngf RASSI rather
than other methodologies, derive from the complete support that isohaBTK and
AgentFactory. PTK is an add-in for a diffused commercial UML-based CASE tool

(Rational Rose) that can enhance the design robustness and colaéseriogering
the designer effort. It provides a strong support for the code giodyphase with the
automatic generation of a great amount of colMgentFactory is a pattern reuse
application that allows the rapid prototyping of great parts of cexnpADE systems
with a few mouse clicks.

The following sections are organized as follows: in section twdiseuss, with some
examples, the support that tA€K tool provides to the designer during his/hers work
with PASSI. In section three we illustrate our approach t@pettreuse and how it is
supported by thégentFactory application. Finally, in section four some conclusions
are drawn.

2 Designing agentswith a specific CASE tool

In the following sections, we will provide a short description of toatribution
offered by thePTK (PASSI Toolkit) tool in designing a Jade system using the PASS
[8] methodology. PASSI is composed of five models (see Figure 1)attdiess
different design concerns and twelve steps in the process ofrgu#dimodel. In
PASSI we refer to the most common standards in software engmeed agents
(UML, AUML, FIPA, XML, RDF). PASSI is the unique methodology tladters a
specific support for robotics with a consistent number of pat@resdy present in
our repository together with a complete design process from eagemts elicitation

to coding and deployment.

R

Next Iteration

3 uirements Model Agent Implementation Model Code Model
I Sinel
2
Structure Structt
Defi | Definit
Behavior Behavior
| Descript Description
Ontology Roles Protocols ¥
Deseription Description Description “onfiguration
Agent Society Model Deployment Model

Figure 1. The models and phases of the PASSI methodology

Our work abouPTK, starts from the consideration that most commercial CASE tools
are only object-oriented. We believe that the support of an agenteati€ASE tool
can simplify the MAS designer’s work, increase the reuse of ¢bdsugh a database
of agents/tasks patterns), and permit the automatic productiocafsederable part

of the code. Moreover, our tool helps untrained users to follow a properasef
engineering approach.

The philosophy underling the work wilfiTK is that designing a MAS corresponds to
instantiate a meta-model of the multi-agent system thalifulfie requirements of the
specific problem. For this reason, specific choices (for exarhplddsignation of the
agents and their functionalities) have a direct consequence on thestaipe of the
process. The result of this approach is that the differentaireggthat constitute the
final result of designing with the PASSI methodology are gradyleaimposed by the
author and theéPTK tool in their interaction. Some of these diagrams are totally
dependent by the designer, some are automatically built by theardobthers are
partially composed by the tool and then completed by the designeadbhi& can

also produce a report of the entire design in a Microsoft Word foifogether with
the diagrams, the document will contain textual descriptions and dabies
summarizing the agents, their behaviors, roles, communication, ontology, etc.

In the following we will report some examples that briéflystrate the main features
of PTK (the PASSI ToolKit). We do not intend to provide an unique completgrdesi
case study but just some scenarios describing how the desmméeake advantage
from the use of a design methodology and a CASE tool specifically ivedcto
support it.

The discussion is therefore articulated into a series of sutnsealealing with the
main PASSI phases and describing in each of them, both the desykeand the
tool contribute.

2.1 Domain Description and Agent Identification phases

We describe requirements in terms of use case diagrams, angsdt, the Domain
Description phase is a functional description of the system compbseldierarchical
series of use case diagrams. Stereotypes used here coméhérdsL standard.
Suppose that our system is very simple and it is representée liyrée use cases of
Figure 2.

S - “ginclude=>
—~ <<inc|uici>/>>g) {—\
N _ Open Specification...

Ve ’7">——/—— -
S Catalog - Sub Diagrams 4

Simp
. User
User Simple Shop “2xjncludes> Select In Browser
Stereotype Display)

Format 4

atalog

<\7,> Identify new Agent

Payment System Edit [l Add to an Agent
Remove from agent

<<Agent>>

Cashier <<Agent>>
- ____ Showcase
<7>i ommunicate>> ~_____—<<include>> 7>
Payment System Simple Shop Catalog

x

User

Figure 2. Threedifferent phases of a toy system design. Up on the left the Domain Description
with three use cases, on the right the agent identification phase with the PTK context menu and
finally down theresulting A.ld. diagram

Looking at the specific functionalities we can decide how to Higti them into
several different agents (Agent Identification phase). For examplcan decide to
group use caseSimpleshop and Catalog in the same agentSfowcase) and
implement the functionality described by use cBRagmentSystem in another agent
(Cashier). Each agent will be responsible to provide the system with the
functionalities described in its use cases.

PTK helps us in performing this agent identification operation using axbontenu
(see Figure 2). In the resulting diagram (Agent ldentificatitim®, two identified
agents are represented as packages containing the assignesessd ltis diagram
has been automatically composed BVK using the information provided in the
previous steps.

2.2 Rolesldentification phase

This phase occurs early in the requirements analysis since weam@&rn more with

an agent’s externally visible behavior rather than its struetwely approximate at
this step. Roles identification is based on exploring scenariosgafiem the Agents

Identification diagram. Scenarios are depicted using UML sequdingeams where
each object represents a role; an agent may participate enediffscenarios playing
distinct roles in each of them. It may also play distinct radlethe same scenario.
Roles described in this phase contribute to build the model of trensgstd the tool

being aware of them (and of their belonging to some agents)seilthis information

to build part of the following diagrams (for example these roidgo@ reported in the

Roles Description diagram).

2.3 Task Specification phase

At this step, for each agent we focus on its behavior in order mgExse it into
simpler tasks. Tasks generally encapsulate some functiorlitjorms a logical unit
of work.

A Task Specification diagram summarizes what the agent can gihoring
information about roles that an agent plays when carrying out particular tasks.
For every agent in the model, we draw an UML activity diagraamh isimade up of
two swim-lanes. The one from the right-hand side contains actiolieof activities
symbolizing the agent’s tasks, whereas the left-hand side one, cauairsactivities
representing the other interacting agents.

The support provided byPTK in working with these diagrams consists in
automatically synchronizing the diagrams of different agentsaat, if describing
agentA the designer introduces a communication involving the behaviof the
agentB, this behavior will be automatically reported to the agehask Specification
diagram. This ensures an high level of consistency among theedifiéiagrams and
representations of agents.

2.4 Ontology Description phase

An agent-based system may achieve its semantic richness tlexplgiit ontologies,
or domain-specific terminologies and theories. In order to detail theingsoitttology

of the solution we introduce the O.D. (Ontology Description) phaeteis composed
of two sub-phases: in the first, the D.O.D. (Domain Ontology Desuwm) diagram,

we describe the ontology of the domain representing the involved emiit@sgh

classes; in the second, the C.0.D. (Communication Ontology Descriptemgram,

the focus is on the agents’ knowledge and the communicative refaisrsmong
these agents.

2.4.1 The Domain Ontology Description

Our domain ontology is described in terms of concepts (entitiekeotidmain),
predicates (stating the value of properties of domain entitiesa@iuhs (that can be
operated in the domain). We represent these elements and thenssligs using an
UML class diagram (called D.O.D., Domain Ontology Description, in RASSI
methodology). In Figure 3 we can see part of the ontology of a rolsatresillance
application. TheGenericComponent concept (concepts have a yellow fill-color) in
this figure represents an element of the environment that the rabcee during its
exploration. About an instance of this concept (for exampleGerericComponent
identified by the ID = 12) we could express a propositismtfuder predicate, blue
filled) stating if it is an intruder or not. We can similamgroduce actions and relate

them to the concepts they will affect (for example ltbealize action regards the act
of localizing the position of a speciftgéenericComponent in the environment).

Position Point
+Position_time : long X :int

<<predicate>>

Isintruder MarkerPosition

1 h:int

GenericComponent
=1ID :int

Value : Boolean . 0.1 1langle : int y:int
+intruder
7+Targe{ 1 +Target +markerPos/ 1
N " in
<<action>> <<action>> T
Localize StartTracking -
Actor : String Actor : String DM kerEint
ResultReceiver : String ResultReceiver : String
<<Act>> Localize(Target : GenericComponent) <<Act>> Track(Target : GenericComponent)
/-
A ~—
| T~
<<action>> <<action>>
AutoLocalize LocalizeMe

Actor = Self

<<Act>> Localize(Target : GenericComponent = Self)

<<Act>> Localize(Target : GenericComponent = Self)

Figure 3. An example of Domain Ontology Diagram (DOD) representing part of the ontology of
araobotics application

Once the ontology design is completdelTK offers a wizard to generate the
corresponding RDF, and it is also possible to export the diagram in the XMI format.

2.4.2 The Communication Ontology Description

The Communication Ontology Description (COD) phase is the nextSPAp. In
the COD we describe the agents’ knowledge and their commiamisatvith a class
diagram.
Each FIPA communication is characterized by three elemeh}sthé ontology
(portion of knowledge exchanged); (2) the agent interaction protdwl designates
the sequence of communicative acts); and the content languadgn@ibage used to
code the message content).
PTK offers a great support in composing diagrams like these. Agentg¢santb)
communications are automatically introduced by the tool stafomg the results of
the R.Id. (sequence diagrams describing scenarios) and T.Spityadtagrams
describing the behavior of each agent) phases. A class is introdoiceshch
identified agent, and a relationship is drawn among the agents involvéue
exchange. The designer can complete the specification of each coratimmicsing
the form described in Figure 4. There he/she can select:
* aname for the communication;
e an interaction protocol from the list of communication patterns includdte
repository;
» the ontology of the communication from the elements defined in the DOD;
» the content language (if he/she adopts RDF then the automatic genmefa
lot of code will be available);
» the task that in each agent will deal with this communicatiom I(st of tasks
comes from the tasks defined in the T.Sp. phase).
As a consequence of the ontology selected by the designdt,hevpiossible foPTK
to define the proper data structure that in each agent can store it.

w. PASS| Add-In: communication setting g

1- Selecta protocol pattern for this
communication

This form allow you to set this communication. |Sensanmd

2 - Selectthe ontology fram the 'Domain

Ontolagy Diagram'

FIPARequest

Description of the protocal

~ | [Getwrid

Description of the ontalogy

[~ |

Standard FIFA Request Interaction Protocal

3-Ingertthe language

4-Selectthe Initiator task

5-Selectthe Participant task

0K

[rOF

|MyGr\dIninatnr

[~ |

|RespnnderGr\d

Cancel ‘

[~ |

Figure4. Thisform isused to set the communication properties (interaction protocol, ontology,
content language and involved tasks)

When the Communication Ontology Description phase is completed, tigaelesan
export the RDF code of each message and mordeVKrwill generate the necessary
JADE code to deal with the communication (this also includes the onelAVA
data structure/RDF/JAVA data structure, of information exchanged by agents

2.5 RolesDescription and Protocols Definition phases

The Roles Description (RD) phase models the lifecycle of amntatpking into
account its roles, the collaborations it needs and the conversatignsvblved in.
The RD phase yields a collection of class diagrams in whie$ses are used to
represent roles. Each agent is symbolized by a package contail@isigclasses. Role
are obtained composing several tasks in the resulting complex behavithis
diagram we also report change of roles, communications and dep&sdanong
agents. Many of these elements are again automatically ineddog PTK and
usually the designer has only to introduce a few of them.

Commonly, we only use standard FIPA interaction protocols. In thestbasdesigner
does not need to perform the Protocols Definition phase (done witlILAIf
necessary).

2.6 Agents Structure and Behavior Definition

The Agent Structure Definition phase produces several class misdga@gically
subdivided into two views: the multi-agents and the single-agent Wethie former,
we call attention to the general architecture of the systemnso we can find agents
and their tasks in it. In the latter, we focus on each agen&€mal structure, revealing
all the attributes and methods of the agent class together with its innéclasgss.

It is interesting to note that both of these diagrams are atittatly built by thePTK
using the information coming from the previous steps (and some knowledgethe
classical structure of a JADE agent); this ensures anléwghof coherence between
the implementation level of abstraction and the previous stages of the design.
The next phase is the Agent Behavior Description that producesakeNagrams
subdivided into the multi-agent and the single-agent views. In the former, weldra

flow of events by methods invocation and the messages exchange.lattehewe
feature the agent behaviors’ methods.

2.7 Code Generation and Reuse

The PTK add-in can generate the code for all the skeletons of the JAPESsa
behaviors and other classes included in the project. It does not ustarbard
Rational Rose functionality since we also want to allow the retipatterns coming
from our repository.

The pattern repository consists of a series of reusable portiah&DiE agents and
behaviors. For example the designer can take from this arclysmeac agent (that
has the capability of registering itself to the basic platfsarvices) and he/she can
introduce it in the actual project.

The repository also includes a list of behaviors that can be appledsting agents.
For example we have behaviors dedicated to deal with the initiatasijpant roles in
the most common communications. When a pattern is introduced in the,destign
only some diagrams (like the structural and behavioral one of theenmeptation
level) are updated but the resulting code also contains large parfionser parts of
methods; the result is an highly affordable and quick development produciiesgr
More functionalities are provided by tiAgentFactory application (see next section)
that will be integrated with the future release® oK.

3 Theuseof patternsin the design

Many researchers have proposed to expand the traditional patterntowaels the
agent paradigm [1][2][9].
In our approach, we aim to largely apply a properly defined comdeggent pattern
and we built an applicatiomA@entFactory) that supports itAgentFactory can, very
quickly, create complex multi-agent systems using a large iteposnd can also
provide the design documentation of the composed agents. The tool can woek onli
as a web-based applicatfobut can also be used as a stand alone application.
Our patterns result from the composition of three different aspéasmulti-agent
system:
1) the static structure of one or more agent(s) or parts of them (i.e. behaviors),
2) the description of the dynamic behavior expressed by the previmas ci
elements
3) the programming code that realizes both the static structulet(shs and
the dynamic behavior (inner parts of methods) in a specific gdgifdrm
context (for example JADE).
In the following sub-section we will report a pattern of agent aadw¥ use it to
demonstrate the functionalities of cdgentFactory tool.

3.1 Anexampleof pattern: the Explorer agent

The pattern we are going to analyze is a mobility pattern that allows theratiqo of

a remote platform with the intent to search for some informaf\otypical scenario
that illustrates the aim of this pattern is represented lysearching, where an agent
has to recover some data from a remote platform; using thermathe agent does
not move itself into the remote platform but it delegates tlogkvio anexplorer
agent. The pattern (Figure 5) includes two collaborating agentdageand the
explorer agent. Thdvase agent has the ability of creating one or meqaorer agents,

! Available at: http://mozart.csai.unipa.it/af/

giving to each of them the address of a remote platformeXpterer agent can move
to the target platform and eventually perform some kind of sear¢bpeyation not
provided by this pattern). When the explorer has found the informatithre iremote
platform it forwards the data to the base agent and then terminates itself

: Base
: Explorer

create

move to remote platform

p—

u interaction (some protocol)

s

Figureb5. The explorer pattern consistsin a base agent who delegatesto another (called explorer)
thetask of moving to another platform in order to search for some kind of infor mation

Both the explorer agent and theébase agent require the ability to communicate
according to a specific protocol, in order to exchange the colldetiad Because the
protocol is not specified in this pattern, this feature should be obtdgethe
application of a communication pattern.

3.2 TheAgentFactory Tool

The AgentFactory tool allows the automatic generation of the pattern code for both
the JADE and FIPA-OS platforms. This has been obtained using apateten
language description of the elements of our pattern repository.

All of the features of each agent/behavior pattern (that can fferedit from one
platform to the other), are named with a meta-label. For examplagent super-class
that is named AgentShell”, becomes Agent” in the JADE code instantiation and so
on. When the tool generates the code, it applies a pre-transfornmatidrich all the
meta-labels are substituted by the correct names.

As we know, the application of a pattern to an existing sysi@mses a significant
change in its structure, and this often implies other modificatin order to join the
new elements with the existing ones. This is another of the ésatifered by our
tool: patterns are completed by a collectiorcaistraints that describe how the target
system has to be changed in order to correctly accept the new parts.

& L OX

File Edit Pattern Manage repository 7

9 O gystem: Jade static structure || dymamic behaviour | code generation |
? TBase . puhblic class Base extends Agent{ I~
[public void setung; public void setup ()4
@ [ExplorerEngager Behaviour b,
D destination : String b= new ExplarerEngagerithis);

[public ExplorerEngagerAd) EadBehaviour)
03 public void actiong; public class ExplorerEngager extends SimpleBehaviour { L]
©- [Requestinitiator private String destination ;
@ 3 Explarer pubilic ExplorerEngager { Agent awnar) {
D parent : AID super(ay;
[oublic void setund; this.destination_container = destination_container;

§ [TelepartBehaviour }

public vaid action ¢} {
D destination : String try{

D public TeleportBehaviour(Object]] args = new Ohject(2];
[public void actian; args[0]=new Stringidestination_container);
@ [RequestParticipant args[1]=myAgent getAlD(;

D FIPARequestinitiatorTaskD001 71 AgentContainer myContainer =myAgent getContainerController;

AgentController agented! = myContainer.createhewdgent('Sen
agentell start];

Yeatch (Exception 1)
n.printStackTraced;

}
M| [¥] |4 TR B

[4]

| [

Figure 6. The AgentFactory tool during the composition of the code for the Explorer pattern

In Figure 6, we can see tiAgentFactory tool during the code generation phase for
the Explorer pattern. We completed the system using EhBARequest pattern in
order to introduce the communication capability in both the agents.

What should to be considered is that with a few mouse clicks apdtisgl the
Explorer andFIPARequest patterns, in a few seconds we can produce an application
composed of two agents, six classes and about 190 lines of codedifigcl
comments). The documentation of that is provided by an UML clasgadia
(structure of the system) and UML activity diagram (behavior of the system

4 Conclusions

We discussed PASSI, a design methodology for multi-agent sysaechshe support
that it can receive by a specific add-iRTK, PASSI ToolKit) we produced for
Rational Rose and a repository of patterns supported AgdmtFactory application.
The use of UML with minor extensions and the focus on highly structured
implementation platforms like JADE gave us the opportunity of providimg
designer with a very helpful support both in the design activity dred code
production phase.

PASSI explicitly pursues the following goals: (i) a grattention for standards (we
used UML, FIPA, XML, RDF); (ii) providing a complete design procé&ssn
requirements elicitation to implementation and deployment; (i8pecialization for
the design of robotic applications with the availability of specific robotiepest

The PTK tool guides the designer throughout all the design work, allowing the
automatic compilation of several diagrams and the generation afotie for the
agent skeletons. The generation of the remaining part of the code farie of
methods) is delegated to a repository including several patterngenftsaand
behaviors. Using a connection with a commercial word-processordsait \Word)

the tool automatically produces the documentation of the design adop#ndics
templates prepared for agent-based systems.

Although this tool offers interesting results our research goesndeyt and we
produced theAgentFactory application that refers to a more complex and complete
concept of pattern. The pattern is seen in the most common sigrafichraesign
pattern but adapted to the specific demands of agents. The use @l $&xals of

meta-representations of these patterns allows the generatitmmefete agents or of
parts of them (also including the behavioral part of the code) foJARE platform
and other ones.

We have completed several projects using the PASSI methodolagypuantools
particularly in robotics and information systems. Experimentalliebave been very
encouraging and we are now working in the direction of extending théearuoi
patterns in order to maximize the possible applications of their repository.

Glossary

Pattern

In software development, a pattern is a document that descigee®ieal solution to a
design problem that recurs repeatedly in many projects.

Design M ethodol ogy

Set of rules, procedures and tools that make it possible to optimeiziesign process.
An effective design methodology involves a number of important phasagnuhey,
prototyping, testing, and iterating.

AUML

Agent UML, proposed modifications to the standard UML notation to addpt it
MAS (see http://www.auml.org).

Task/Behaviour

Sub-functionality of an agent. A task/behaviour is an agent constitunstcapable
to perform a specific activity.

References

[1] Aridor, Y., and Lange, D. B. Agent Design Pattefakements of Agent Application Design. In
Proc. of the Second International Conference omiainous Agents (Minneapolis, May 1998),
108-115.

[2] Kendall, E. A., Krishna, P. V. M., Pathak C. V. addresh C. B. Patterns of intelligent and mobile
agents. In Proc. of the Second International Cemigg on Autonomous Agents, (Minneapolis,
May 1998), 92-99.

[3] Bernon, C., Gleizes, M.P., Peyruqueou, S., and®i¢a., Adelfe, a methodology for Adaptive
Multi-Agent Systems Engineering. Third Internatibéorkshop "Engineering Societies in the
Agents World" (ESAW-2002), 16-17 September 2002dNth

[4] Giunchiglia, F., Mylopoulos, J., and Perini, A. Tinepos software development methodology:
processes, models and diagrams. The First Intem@tdoint Conference on Autonomous Agents
& Multiagent Systems, AAMAS 2002, July 15-19, 20@&dlogna, (Italy)

[5] Wooldridge, M., Jennings, N.R., and Kinny, D. Thai&Methodology for Agent-Oriented
Analysis and Design. Journal of Autonomous Agents lulti-Agent Systems. 3,3 (2000), 285-
312.

[6] DeLoach, S.A., Wood, M.F., and Sparkman, C.H. Mugiéint Systems Engineering. International
Journal on Software Engineering and Knowledge Eewgimg 11, 3, 231-258.

[7] Chella, A., Cossentino, M., Pirrone, R., Ruisi, Modeling Ontologies for Robotic Environments.
Proc. of the Fourteenth International Conferent&oftware Engineering and Knowledge
Engineering. Ischia, Italy, July 2002

10

[8] Cossentino, M., Potts, C.: A CASE tool supportedhméology for the design of multi-agent
systems. Proc. of the 2002 International Conferemc8oftware Engineering Research and
Practice (SERP'02). Las Vegas, NV, USA, June 2002

[9] Cossentino, M., Sabatucci, L., Chella, A.: A Poes#ypproach to the Development of Robotic
Multi-Agent Systems. IEEE/WIC Conf. on Intelligefigent Technology (IAT'03). Halifax
(Canada). October, 2003.

11

