
Partial and Full Goal Satisfaction in the MUSA
Middleware

Massimo Cossentino, Luca Sabatucci, and Salvatore Lopes

National Research Council
Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR-CNR)

Palermo, Italy
{name.surname}@icar.cnr.it

Abstract. Classical goal-based reasoning frameworks for agents sup-
pose goals are either achieved fully or not achieved at all: unless achieved
completely, the agents have failed to address them. This behavior is dif-
ferent from how people do and therefore is far from real-world scenarios:
in every moment a goal has reached a certain level of satisfaction.
This work proposes to extend the classical boolean definition of goal
achievement by adopting a novel approach, the Distance to Goal Satis-
faction, a metric to measure the distance to the full satisfaction of a logic
formula.
In this paper we defined and implemented this metric; subsequently, we
extended MUSA, a self-adaptive middleware used to engineer a heteroge-
neous range of applications. This extension allows solving real situations
in which the full achievement represented a limitation.

Keywords: Partial Goal Satisfaction · Metric · Multi-Agent System.

1 Introduction

Exploring alternative options is at the heart of rational and self-adaptive be-
havior. In our applications, agents always try to find plans to fully achieve their
goals. However, this is different from how people do. A person often adopts plans
for partially achieving her/his goals.

Recently, a research direction claims agents should be able of reaching a bet-
ter approximation of scenarios arising from the real world. Indeed, Zhou and
Chen argue that reasoning with a partial satisfaction of goals is an essential
issue for achieving this result [19]. For instance, GoalMorph [18] is a framework
for context-aware goal transformation to facilitate fault-tolerant service compo-
sition. It achieves planning with partial goal satisfaction by reformulating failed
goals into problems that can be solved by the planner.

Two main trends exist in dealing with partial goal satisfaction. The former
studies partial goal satisfaction by looking at the goal model as a whole (whether
it is a goal hierarchy or a goal graph). Conversely, the second trend focuses on
the single goal entity, by entering into the details of how it is represented.

2 M. Cossentino et al.

Concerning the first direction, Letier and Van Lamsweerde [6] present a tech-
nique for quantifying the impact of alternative system designs on the degree of
goal satisfaction. The approach consists of enriching goal models with a proba-
bilistic layer for reasoning about partial satisfaction. Within such models, non-
functional goals are specified in a precise, probabilistic way; their specification
is interpreted in terms of application-specific measures; the impact of alterna-
tive goal refinements is evaluated in terms of refinement equations over random
variables involved in the system’s functional goals.

This paper focuses on the second research direction, i.e., studying the partial
satisfaction of a single goal.

An interesting contribution comes from Zhou et al. [20]. They define the par-
tial implication to capture partial satisfaction relationship between two propo-
sitional formulas. According to their propositional language, a formula like x∧ z
partially implies x ∧ y. Indeed, x, which can be considered as a part of x ∧ y, is
a logical consequence of x ∧ z.

Van Riemsdijk and Yorke-Smith [17] propose a higher-level framework based
on metric functions that represent the progress towards achieving a goal. Progress
appraisal is the capability of an agent to assess which part of a goal it has already
achieved. However, the framework is abstract: authors do not further detail how
a partial ordering function may be implemented. According to the authors, it
can be based on a wide range of either domain-independent parameters, such as
time, utility, number of subgoals, and domain-dependent metrics.

Thangarajah et al. [15,16] adopt an approach base on resource analysis to
provide a BDI agent with a quantified measure of effort with respect to the
amount of resources consumed in executing a goal with respect to the total
resource required. This kind of approach is strictly domain-dependent, and it
may be applied only when there is a clear link between goals and resources.

This paper presents a novel approach for enabling agents to reason on partial
satisfaction of single goals (where a goal condition is given in predicate logic).
The approach is based on the definition of a Distance to Goal Satisfaction that
measures the distance to the full satisfaction of a logic formula, given the current
state of the world. To practically implement this metric we adopt an analogy
between the logic formulas specifying goal satisfaction and an equivalent electric
circuit.

The approach has been modeled to be consistent with the classical logic
semantics. It is essentially domain-independent but easily extensible for con-
sidering other domain-dependent parameters. An interesting side effect of this
approach is that the metric allows to calculate the ‘cost for the full satisfaction’,
thus providing a powerful tool for selecting among alternative strategies.

We applied this metric in the context of a self-adaptive middleware (MUSA)
in a heterogeneous range of application contexts (from IoT to maritime IT ap-
plications).

The remaining of the paper is structured as follows: Section 2 presents the
middleware for self-adaptive systems and how we encountered the need for deal-
ing with different degrees of goal satisfaction. Section 3 provides definitions for

Partial and Full Goal Satisfaction in the MUSA Middleware 3

the core concepts of the proposed approach. Section 4 provides technical details
about how MUSA has been extended for supporting the new metric. Section 5
discusses some of the key aspects of the approach, and finally, Section 6 summa-
rizes the approach and reports some future works.

2 Motivation

MUSA (Middleware for User-driven Self-Adaptation) [11,13] is a middleware
for composing and orchestrating distributed services according to unanticipated
and dynamic user needs. It is a platform in which 1) virtual enterprises can
deploy capabilities that wrap real services, completing them with a semantic
layer for their automatic composition; 2) analysts and users can inject their
goals for requesting a specific outcome. Under the hypothesis that both goals
and capabilities refer to the same ontology, agents of the system can compose
available services into plans for addressing user’s requests.

The enablers of the MUSA core vision are: i) representing what and how as
run-time artifacts the system may reason on (respectively goals and capabilities);
ii) a reasoning system for connecting capabilities to goals; iii) finally a common
grounding semantic, represented with some formalism.

Proactive
Means-End
Reasoning

Context
Monitor

Sensing Devices

Grounding
&

Recruitment

Abstract
Solution

Plans
(n)

Degree of
Goal

Satisfaction
Filter

Abstract
Solution

Plans
(m=<n)

QoS
Filter

Concrete
Solution

Plans
(k)

(Best)
Concrete
Solution

Plan
(1)

Working
Team

(agents/services/…)

Initial
State

of
World

MUSA

Current State
of World

Case
Manager

orchestrate

Service Failure/Adaptation Triggering (inner)

Plan Failure/Adaptation Triggering (outer)

Goal

Capability

NormsProblem
Ontology

Full/Partial
Goal

Satisfaction

Fig. 1. Main components of MUSA.

The main abstractions in MUSA are that of Capability, which represents the
knowledge about what the system can do, and that of Goals, representing the
user’s expectations. In MUSA, a user can describe the desired functionality via
a high-level goal-oriented description language [14]. At run-time, once a goal
model is specified, it may be injected in the system.

The concept of capability comes from the AI (planning actions [3]) and
service-oriented architecture (micro-services [7]). MUSA presents this dual na-
ture by adopting a separation of the abstract capability – a description of the
effect of an action that can be performed – and the concrete capability – a small,

4 M. Cossentino et al.

independent, composable unit of computation that produces some concrete ser-
vice.

Figure 1 illustrates the logical schema of MUSA with its macro components.
The proactive means-end reasoning [11] is the main component, which aggregates
abstract capabilities for deducing possible solutions, each one that can guarantee
the desired goal state. The set of solutions are, at this stage still abstract (i.e.,
not bounded to real services), but this allows evaluating to which extent they
will satisfy the goals. This way, MUSA can apply a filter to the valid solutions
in order to select the best ones of those above a prescribed threshold (according
to the application context in which it operates).

After discarding the non-satisfying solutions, MUSA creates a temporary
link between abstract capabilities and real services via the Grounding and Re-
cruitment module (the link is temporary because it can change at run-time for
self-adaptation purposes), thus generating concrete solutions. These can be fi-
nally evaluated from other (non-functional) perspectives, for instance evaluating
the fitness toward a QoS value.

MUSA has been employed in a heterogeneous set of application contexts. A
selection of these is shortly illustrated in Table 1.

Table 1. Summary of research projects and case studies where the MUSA middleware
has been employed between 2013 and 2018.

Achronym Type App. Name Description
IDS Research

Project
Innovative Doc-
ument Sharing

The aim has been to realize a prototype of a new genera-
tion of a digital document solution that overcomes cur-
rent operating limits of the common market solutions.
MUSA has been adopted for managing and balancing hu-
man operations for enacting a digital document solution
in a SME.

Smart Grid Research
Project

Cloud Mashup MUSA has been adopted as mashup engine, i.e., for self-
configuring ad-hoc orchestration of existing services in or-
der to address run-time business.

Smart Travel Case
Study

Travel Agency
System

MUSA provides the planning engine that creates a travel-
pack as the composition of several heterogeneous travel
services. Traveler’s goals drive the planning activity.

UPA4SAR Research
Project

IoT and robotic
home assistance

MUSA is the core for implementing the behavior of smart
devices deployed in a simulated environment.

SPS Recon-
figuration

Case
Study

Electric Man-
agement

MUSA is the core for the algorithm for run-time recon-
figuration of the shipboard power system in case of mal-
functioning.

During its usage designers and developers have pointed out the need for
extending the flexibility of MUSA goal definition in order to deal with many
degrees of goal satisfaction. To clarify this concept, we report some examples.

Example 1 : in the Smart Travel application [10], the tourist is able to
configure its travel request by injecting a set of user’s goals. For instance (s)he
can desire “to book a 5-star hotel in the center of TownX with a pool”. Sometimes
too constrained goals produced zero results in the travel configuration so that
the tourist has to manually change its goals with no information about what part
of the goal was unsatisfiable. To solve this problem, the system should include a

Partial and Full Goal Satisfaction in the MUSA Middleware 5

mechanism to relax the condition, thus finding solutions that partially solve the
problem (for instance either a hotel with a pool but out of town, or in downtown
with no pool).

Example 2 : the Shipboard Power System (SPS) reconfiguration problem
consists in acting on electric switches for changing power flows and ensuring
ship’s components are powered on when necessary. In the MUSA application [12],
the different ship’s missions are coded by using a set of goals (with different pri-
orities). This proved to be an interesting case study for system self-adaptation[1].
An example of a goal is “the navigation system, the communication system, and
the radar should be powered”. In case of severe malfunctioning, when the main
generators are off, the auxiliary generators are switched on. However, they can
not produce enough power for the three components work properly. For such a
reason MUSA should produce plans for partially restoring the energy on board,
even if not all goals are fully satisfied.

Example 3 : the UPA4SAR project will deliver an IoT based robotic home
assistance to help elderly patients to remain at home, thus avoiding hospitaliza-
tion or admission to long-term care institutions. In MUSA application [8] this
high-level goal is decomposed in a set of subgoals for daily monitoring of patient
activities and providing services for helping individuals to live with greater in-
dependence and promoting the optimal level of well-being. One of the subgoals
of the system is something like “in the afternoon, propose some entertainment
activity, as long as there is time”. Actually, the goal is often unfeasible because
there are (frequent) situations in which an elderly patient changes its mood in
the meanwhile the system is proposing its activities. In these situations, the
system cannot complete its goals, (because the activity does not terminate). In
a boolean goal satisfaction approach, the system will declare a failure, whereas
reasoning with partial satisfaction would be more appropriate.

Currently, the ability of MUSA to deal with goal satisfaction is inspired to
the classical Kripke model, thus allowing associating a logical condition to a
true-false interpretation. If W is the current state of the world and W |= c,
then we can assert c is true; otherwise, it is false. This model is not suitable
for calculating a partial degree of satisfaction when a formula is neither fully
addressed nor totally unachieved. The next section introduces the background
to let agents the ability to evaluate and measure partial goal satisfaction. The
implementation and technical details are provided in Section 4.

3 Full and Partial Goal Satisfaction

In this section, we will provide some definitions of the most relevant concepts
in the proposed approach. Let us draw a border to define our system; this is
one of the most sensitive operations in many different problems. The system
should include all the parts of the world that significantly participate in defining
the behavior of the system itself. In the following, we will refer to discrete-time
systems, and we will address successive time slots as successive steps in time.

6 M. Cossentino et al.

Let be ‘k’ an arbitrary moment in time. Let us suppose our system is con-
trolled by a set of inputs U [k], where U is a vector of n elements, and k defines
the time step where we consider the values of its elements. This system is sup-
posed to be, at k, in a state X[k] where X is a vector of m elements; the output
of the system is designated as Y [k], again a vector, of p elements.

We suppose there is a relationship among these vectors as follows:
Y (k) = f(X(k), U(k))
It is relevant to say we suppose to be able to observe the elements of the

state vector X and the output vector Y (for instance by measuring them). An
interesting consideration comes from M. Jackson, in fact, he studies the impact of
environmental phenomena on the system [4], and he states that “All environment
phenomena mentioned in the requirement are shared with the machine” [5]. For
this reason, we can suppose that the environment is providing a part of the input
vector while the remaining part is the result of some software computation.

Referring to such a model of our system, we can define the concept of goal:
Def. 1 - Goal: A goal specifies a desired condition for the output of the system,
more specifically, a goal is a condition on the values of a subset of the output
vector elements yi.

This means a goal may aggregate values from different elements of the output
vector by means of logic operators or mathematical formulas in order to specify
the desired condition on the output of the system.

In order to better clarify that we will refer to two examples related to different
systems:

1. An electric system composed of 3 loads (bulb lights), two generators provid-
ing input power to the system and three on/off switches to control the flow
of power reaching the loads. In this case, the input vector is composed of
the two values of voltage for the generators, the state vector of the on/off
condition of each switch and the output vector of the current values in the
three loads.

2. A production plant composed of two buildings: workshop and office. This
plant operates 24/24 hours all days of the week (except for holidays) for
the workshop part while the office is open only on working days (Monday
to Friday). The system is an advanced ambient intelligence system that can
control (and personalize by specific needs and preferences) ambient temper-
ature, humidity, light level (illumination) in the different places of the plant
also according to some specific tasks the painting room requires higher tem-
peratures to dry painting quickly. The system can control air conditioning,
artificial light and rolling shutters in a continuous (analog) way.

Referring to the first example, goals may specify conditions like:

– g1 = [I1>0] that means the first load is powered;
– g2 = [I1 > 0 AND I2 = 0] that means the first load is powered while the

second one is not;
– g3 = [I3=4 Ampere] that is a more detailed specification of the expected

outcome allowing for the detection of anomalies in the system such as fail-

Partial and Full Goal Satisfaction in the MUSA Middleware 7

ures or unexpected negative influences by the environment (such as a flood
causing current dispersion);

Looking at the second example, some goals may be:

– g4 = [LWRoom01= 0] meaning that light in the workshop room 01 has to be
switched off;

– g5 = [LOffice101=500] meaning that illumination in the office 101 has to be
500 Lux;

– g7 = [LWRoom01 = 0 AND LOffice101=0] meaning that office 101 and work-
shop room 01 lights are switched off.

Being goals applied to the values of the output vector elements, it is inter-
esting to note that more than one instances of this vector (i.e., the combination
of different values of the output elements) may verify the same goal. Such a
situation is represented in Figure 2 where three different value instances of the
output vector are shown (instance values of the vector are represented as upper-
signed). We can suppose some goal of our system may be verified by the first two
instances (Ȳ ′, Ȳ ′′). This may happen for instance because the goal requires the
element y1 be greater than zero and the element y2 be lesser than zero. Now let
us suppose for the instance vector ¯Y ′′′ only the first one of these two conditions
is verified. The goal is not satisfied by this set of output values but it is also
obvious that the system is some way near to the desired condition.

															" = 	

⎝

⎜⎜
⎛
'(
').
.
.
'+⎠

⎟⎟
⎞

"/0 =

⎝

⎜⎜
⎛
'(/0
')/0.
.
.
'+/111⎠

⎟⎟
⎞

 "//1111 =

⎝

⎜⎜
⎛
'(//1111
')//1111.
.
.
'+//1111⎠

⎟⎟
⎞

 "///11111 =

⎝

⎜⎜
⎛
'(///1111
')///1111
.
.
.
'+///1111⎠

⎟⎟
⎞

Fig. 2. Instances of the output vector with different element values.

In order to support the evaluation of such situations, we introduce the concept
of distance to goal satisfaction as reported in the definition below.

Def. 2 - Distance to Goal Satisfaction: The Distance to Goal Satisfaction
(DGS) is the distance of the current output vector Ȳ from the nearest one that
satisfies goal conditions.

Many different ways may be conceived to measure this distance, we decided
to measure that by considering an electric analogy, and we introduced the mea-
sure of Resistance to Satisfaction (R2S) as a metric for DGS. We consider each

8 M. Cossentino et al.

condition specified in the goal as a piece of an electric circuit, more specifically
as a resistor. The value of this resistor will be 0 (short circuit) if the condition
is true (it means the corresponding value of the output vector verifies one of the
goal conditions) while the value will be Rmax if the condition is false where is
a great value of resistance representing the open circuit condition. Let us con-
sider the ¯Y ′′′ vector that does not verify goal conditions. For instance, let us
suppose the goal specifies one unique condition: y1 >0. If the value of ȳ′′′1 > 0
then the value of the corresponding R2S (ȳ′′′1) = 0 otherwise it will be R2S (ȳ′′′1)
= Rmax If the goal condition implies the evaluation of more than one element of
the output vector we compose them as a growing complexity circuit where the
AND condition is represented as a series of the resistors representing the two
AND variables and the OR condition is represented as a parallel of the resistors
representing the two OR variables. The NOT operator is simply dealt by invert-
ing the measure values: if the result is true, R2S=Rmax, otherwise R2S=0. A
description of the formulas and equivalent circuits is reported in Figure 3.

Goal	 R2S	 Equivalent	
circuit	

	g	=	j	(yi)	 If		!j	($%) = ()*+	 ⟹ -2/	(j	($%)) = 	0									
j	($%) = 1234+	 ⟹ -2/	(j	($%)) = 	-567 	

	
g	=	yi	∧	yj	 -2/ = -% + -: 	

where:	

If	!$; = ()*+ ⟹ -; = 0									
$; = 1234+ ⟹ -; = -567 	

	with	k=i,j	

	

g	=	yi	∨	yj	 1
-2/ =

1
-%
+ 1
-:
	

where:	

If	!$; = ()*+ ⟹ -; = 0									
$; = 1234+ ⟹ -; = -567 	

	with	k=i,j	

	

g	=	!yi	 If		!j	($%) = ()*+	 ⟹ -2/	(j	($%)) = 	-567									
j	($%) = 1234+	 ⟹ -2/	(j	($%)) = 	0																 	

Rmax

Ri Rj

Ri

Rj

Rmax

Fig. 3. Measures of the distance to goal satisfaction for logic formulas.

Of course, if the distance to goal satisfaction for a specific situation is 0, then
the goal is fully satisfied.

4 The Agent and Artifact Architecture

This section presents the current MUSA architecture derived by that illustrated
in [13] in 2017. It has been realized as a multi-agent system implemented in the
Jason language [2] where the environment is modeled by an independent compu-
tation layer that encapsulates functionalities the agents can access and manipu-
late. These entities are called artifacts and are programmed via CArtAgO [9] as
Java classes.

Partial and Full Goal Satisfaction in the MUSA Middleware 9

(broker workspaces)(core workspace) (orchestration workspace)

(configuration workspace)
Solution
Graph

Configuration
Selector

Access
Manager

Problem
Exploration

Active
CaseContext

Domain
Directory

Capability
Instance

Marketplace R2S
Evaluator

ORGANIZATION
LAYER

AGENT
LAYER

ENVIRONMENT
LAYER

REAL WORLD
LAYER CREWSWITCHER

SENSOR
DEVICE

Sensor
Model

specification
manager

explorer
agent

grounding
manager

case
managerworker supervisorcontext

manager

SELF-CONFIGURE
GROUP

<<Goal>>
Find Solutions

ORCHESTRATOR
GROUP

<<Goal>>
Execute
Solutions

Fig. 4. The Agents and Artifacts view of the MUSA architecture.

The new architecture is shown in Figure 4 and it is decomposed in three
layers (organization, agent and environment) whereas the main functionalities
are organized in four workspaces: i) core, ii) configuration, iii) broker and iv)
orchestration. The core workspace provides general facilities for the registra-
tion of agents and services. The configuration workspace is responsible for the
self-configuration ability, providing a distributed algorithm for the discovery of
solutions. The broker workspace is responsible for interfacing the real services
available for creating and executing solutions. The orchestration workspace is
responsible for granting the self-adaptive orchestration of the services that are
contained in a solution. For more details about all the agents and artifacts of
the solution, please refer to [13].

In the following, we provide more details about the supervisor agent of the
orchestration workspace, who is responsible for checking at run-time the degree
of satisfaction of goals.

4.1 Implementing the Metric for Partial Satisfaction

In order to provide MUSA with this feature, we will refer to the definitions
provided in Section 3 where the ResistanceToFullSatisfaction (R2S) metric has
been introduced.

Given the current state, R2S is calculated as a real number in the range
[0 −∞], with the following interpretation: the lower the value of this variable,
the closer the goal is to full satisfaction. Indeed, each variable in a goal condition
produces something similar to a resistor for the full goal satisfaction.

The class diagram for implementing this metric is shown in Figure 5 where
R2S is the main abstract class that contains RMax and a reference to the current
Context object, and two public methods for calculating series and parallel of
resistances.

10 M. Cossentino et al.

+ series(op : Array[R2S]) : Double
+ parallel(op : Array[R2S]) : Double
+ direct_res() : Double
+ inv_res() : Double

+ RMAX = 100
- w : Context

<<abstract>>
R2S

…
+ models(p : Predicate) : Boolean
+ models(c : Condition) : Boolean
…

…
Context

+ direct_res() = if (w.models(p)) 0 else RMAX
+ inv_res() = if (w.models(p)) RMAX else 0

- p : Predicate
PredR2S

+ direct_res() = series(desc)
+ inv_res() = parallel(dec)

- desc : Array[R2S]
LogicANDR2S

+ direct_res(t) = parallel(desc)
+ inv_res() = series(dec)

- desc : Array[R2S]
LogicORR2S

+ direct_res() = desc. inv_res(w)
+ inv_res() = = desc. direct_res(w)

- desc : R2S
LogicNOTR2S

Fig. 5. Class Diagram for implementing the ResistanceToFullSatisfaction metric. For
reasons of conciseness we revealed the body of some of the methods with an inline
notation (example: direct_res(w) = parallel(desc)).

To describe the algorithm, we start focusing on the NOT operator that is
not directly translated into a formula. Indeed it changes the way how R2S is
calculated for its operand:

– the negation of a predicate condition p implies, R2S!p = RMax when W |= p
otherwise it is 0;

– the negation of an AND condition between a couple of predicates is calcu-
lated as a parallel of resistances: R2S!AND = 1∑

1
R2Si

;

– whereas the negation of a OR condition is a series of resistances: R2S!OR =∑
R2Si.

In other words, these formulas are the opposite of those described in Figure 3.
To generalize this behavior, we define two modalities for calculating R2S: direct
(the normal way - Figure 3), and inverse (the negated way). We extend the
notation with R2S! for indicating the latter modality.

Consequently, we can set: R2S!φ = R2S!
φ

For coherence, the abstract class (and all its descendants) have a couple of
public methods: direct_res uses the direct modality, whereas inv_red uses the
inverse modality.

The whole procedure for calculating R2S is recursive, and it is summarized
in the following schema:

Partial and Full Goal Satisfaction in the MUSA Middleware 11

formula class R2S(φ) R2S!(φ)

φ = p (a predicate) PredR2S 0 | RMax RMax | 0
φ = ψ1 ∧ ψ2 LogicANDR2S R2Sψ1 +R2Sψ2

1
1

R2Sψ1
+ 1
R2Sψ2

φ = ψ1 ∨ ψ2 LogicORR2S 1
1

R2Sψ1
+ 1
R2Sψ2

R2Sψ1 +R2Sψ2

φ =!ψ LogicNOTR2S R2S!(ψ) R2S(ψ)

5 Discussion

To discuss the introduced metrics, we will now propose a few examples. Let us
consider the following goals:
g1 = (A ∨B) ∧ C
g2 = A ∨ (B ∧ C)
and their corresponding equivalent circuits and resistances to satisfaction as
reported in Figure 6.

Goal !" = (% ∨ ') ∧ * !+ = % ∨ (' ∧ *)
Equivalent
circuit

Resistance to
satisfaction

,2." =
,/ ∙ ,1
,/ + ,1

+ ,3 ,2.+ =
,/ ∙ (,1 + ,3)
,/ + ,1 + ,3

A B C R2S1

0 0 0 0
3
2,567

1 0 0 1 ,567
2

2 0 1 0 ,567
3 0 1 1 0
4 1 0 0 ,567
5 1 0 1 0
6 1 1 0 ,567
7 1 1 1 0

A B C R2S2

0 0 0 0
2
3,567

1 0 0 1
,567
2

2 0 1 0 ,567
2

3 0 1 1 0
4 1 0 0 0
5 1 0 1 0
6 1 1 0 0
7 1 1 1 0

RC
RA

RB RC

RA

RB

Fig. 6. Examples of goals with related equivalent circuits and distance to satisfaction
metrics.

Considering the different combinations of true/false values for the three vari-
ables, we can calculate the results as reported in Figure 7 under the hypothesis:
RA = RB = RC = Rmax. As it can be seen, regarding goal g1, we can note three
different conditions for full goal satisfaction (combinations # 3,5,7) and five dif-
ferent partial satisfaction conditions (combinations # 0,1,2,4,6). This situations
are worth some considerations:

1. The first consideration is straightforward: if we associate some kind of cost
evaluation to the satisfaction of each of the logical variables in the goal for-
mula, and we assume each of them has the same cost, we can see that dealing
with full goal satisfaction, conditions # 3,5 are less costly than condition #
7. Of course, this could not be the case if the satisfaction of each variable is
assumed to have a different cost. This allows for the selection of the most
economical plan if more than one is available for goal satisfaction.

2. We may have three different levels of partial satisfaction for goal g1 according
to the different values of R2S. The smallest one (condition #1, value: Rmax2)
represents the situation where there are two alternative paths towards full

12 M. Cossentino et al.

Goal !" = (% ∨ ') ∧ * !+ = % ∨ (' ∧ *)
Equivalent
circuit

Resistance to
satisfaction

,2." =
,/ ∙ ,1
,/ + ,1

+ ,3 ,2.+ =
,/ ∙ (,1 + ,3)
,/ + ,1 + ,3

A B C R2S1

0 0 0 0
3
2,567

1 0 0 1
,567
2

2 0 1 0 ,567
3 0 1 1 0
4 1 0 0 ,567
5 1 0 1 0
6 1 1 0 ,567
7 1 1 1 0

A B C R2S2

0 0 0 0
2
3,567

1 0 0 1 ,567
2

2 0 1 0 ,567
2

3 0 1 1 0
4 1 0 0 0
5 1 0 1 0
6 1 1 0 0
7 1 1 1 0

RC
RA

RB RC

RA

RB

Fig. 7. Results for the resistance to satisfaction in the two example goals according to
the different combinations true/false (1/0) of the variables (by hypothesis: RA = RB =
RC = Rmax).

goal satisfaction (that is making either A or B true). Conditions #2,4,6
report a higher value for R2S1 = Rmax and this is an intuitive representation
of the fact that there is only one optional path towards full goal satisfaction,
making C true. The highest value of the distance to goal satisfaction is
represented by condition (#0 value: 3

2Rmax) and this correctly represents
the fact that at least two variables are to be made true in order to achieve
the goal.

Similar considerations may be drawn for the second goal of Figure 6 and
corresponding results of Figure 7.

Another advantage of the proposed approach is that it allows the runtime
evaluation of the progression towards goal satisfaction. This feature is relevant
in the solution space exploration performed by MUSA. In fact, by continuously
measuring the distance to goal satisfaction the system can monitor the successful
execution of the selected strategy and to estimate the distance from the optimal
path even if multiple goals are pursued at the same time.

Besides, the approach proves useful in monitoring goals where some proposi-
tion is to be maintained over time (maintenance goals) rather than reached once
(achievement goals). While maintaining a goal, the immediate identification of a
more than zero distance to satisfaction may trigger some corrective action that
could also depend on the measured distance. In fact, in some conditions, this
distance may indicate the system is in a stable or unstable situation, and dif-
ferent actions need to be performed. Maintenance goals rise other issues related
to the role of time in their conditions. These issues may only partially be solved
with the proposed approach: an extension is required, with some temporal logic,
to explicitly manage (and measure) clauses where, for instance, the goal is to be
maintained for (or after/before) a specific amount of time.

Finally, a very interesting improvement to the proposed approach could come
from the introduction of different values of resistance for each of the variables in
the goal proposition. This could represent a finer-grained representation of the

Partial and Full Goal Satisfaction in the MUSA Middleware 13

user preferences in terms of the conditions inside a goal if it could not be fully
satisfied. A clear example of that could be provided by considering the goal of
finding a five-star category hotel, with pool, in the city center (already proposed
in Section 2). Supposing in a specific city there is not such a hotel; the user would
prefer a five-star hotel in the city center without a pool or a five-star hotel with
a pool far from the city center? The proposed approach, theoretically speaking,
fully supports this feature but this is not currently implemented in the MUSA
middleware. We are working to introduce that in the next sub-release.

6 Conclusions

This work proposes to extend the classical definition of goal achievement that
may represent a limit to the way agents reason and adapt themselves. The pre-
sented approach allows reasoning with partial satisfaction of goals. We presented
the Distance to Goal Satisfaction, and a metric to measure the distance to the
full satisfaction of a logic formula representing the goal.

We applied this metric in the context of a self-adaptive middleware (MUSA)
in a heterogeneous range of application contexts (from IoT to maritime IT ap-
plications).

We are now working to extend the MUSA implementation with a specific
support for different degrees of preference in the satisfaction of specific portions
of the goal as discussed in Section 5.

Finally, we are also working on a major improvement of the approach that
includes the adoption of Linear Temporal Logic in order to support temporal
specifications in goals.

References

1. Agnello, L., Cossentino, M., De Simone, G., Sabatucci, L.: Shipboard power sys-
tems reconfiguration: a compared analysis of state-of-the-art approaches. In: Smart
Ships Technology 2017, Royal Institution of Naval Architects (RINA). pp. 1–9
(2017)

2. Bordini, R., Hübner, J., Wooldridge, M.: Programming multi-agent systems in
AgentSpeak using Jason, vol. 8. Wiley-Interscience (2007)

3. Gelfond, M., Lifschitz, V.: Action languages. Computer and Information Science
3(16) (1998)

4. Jackson, M.: Problem Frames: Analysing and Structuring Software Development
Problems. Addison Wisley (2001)

5. Jackson, M., Zave, P.: Deriving specifications from requirements: An ex-
ample. In: Proceedings of the 17th International Conference on Software
Engineering. pp. 15–24. ICSE ’95, ACM, New York, NY, USA (1995).
https://doi.org/10.1145/225014.225016

6. Letier, E., Van Lamsweerde, A.: Reasoning about partial goal satisfaction for
requirements and design engineering. In: ACM SIGSOFT Software Engineering
Notes. vol. 29, pp. 53–62. ACM (2004)

7. Namiot, D., Sneps-Sneppe, M.: On micro-services architecture. International Jour-
nal of Open Information Technologies 2(9) (2014)

https://doi.org/10.1145/225014.225016

14 M. Cossentino et al.

8. Napoli, C.D., Valentino, M., Sabatucci, L., Cossentino, M.: Adaptive workflows
of home-care services. In: In proceedings of 27th IEEE International Conference
on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE-
2018) (2018)

9. Ricci, A., Viroli, M., Omicini, A.: Cartago: A framework for prototyping artifact-
based environments in mas. In: International Workshop on Environments for Multi-
Agent Systems. pp. 67–86. Springer (2006)

10. Sabatucci, L., Cavaleri, A., Cossentino, M.: Adopting a middleware for self-
adaptation in the development of a smart travel system. In: Intelligent Interactive
Multimedia Systems and Services 2016, pp. 671–681. Springer (2016)

11. Sabatucci, L., Cossentino, M.: From means-end analysis to proactive means-end
reasoning. In: Proceedings of the 10th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems. pp. 2–12. IEEE Press (2015)

12. Sabatucci, L., Cossentino, M., Simone, G.D., Lopes, S.: Self-reconfiguration of ship-
board power systems. In: In Proceedings of the 3rd eCASWorkshop on Engineering
Collective Adaptive Systems (2018)

13. Sabatucci, L., Lopes, S., Cossentino, M.: Musa 2.0: A distributed and scalable mid-
dleware for user-driven service adaptation. In: International Conference on Intelli-
gent Interactive Multimedia Systems and Services. pp. 492–501. Springer (2017)

14. Sabatucci, L., Ribino, P., Lodato, C., Lopes, S., Cossentino, M.: Goalspec: A goal
specification language supporting adaptivity and evolution. In: Engineering Multi-
Agent Systems, pp. 235–254. Springer (2013)

15. Thangarajah, J., Harland, J., Morley, D.N., Yorke-Smith, N.: Quantifying the com-
pleteness of goals in bdi agent systems. In: Proceedings of the Twenty-first Euro-
pean Conference on Artificial Intelligence. pp. 879–884. IOS Press (2014)

16. Thangarajah, J., Harland, J., Yorke-Smith, N.: Estimating the progress of mainte-
nance goals. In: Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems. pp. 1645–1646. International Foundation for Au-
tonomous Agents and Multiagent Systems (2015)

17. Van Riemsdijk, M.B., Yorke-Smith, N.: Towards reasoning with partial goal sat-
isfaction in intelligent agents. In: International Workshop on Programming Multi-
Agent Systems. pp. 41–59. Springer (2010)

18. Vukovic, M., Robinson, P.: Goalmorph: Partial goal satisfaction for flexible service
composition. In: Next Generation Web Services Practices, 2005. NWeSP 2005.
International Conference on. pp. 6–pp. IEEE (2005)

19. Zhou, Y., Chen, X.: Partial implication semantics for desirable propositions. In:
KR. pp. 606–612 (2004)

20. Zhou, Y., Van Der Torre, L., Zhang, Y.: Partial goal satisfaction and goal change:
weak and strong partial implication, logical properties, complexity. In: Proceedings
of the 7th international joint conference on Autonomous agents and multiagent
systems-Volume 1. pp. 413–420. International Foundation for Autonomous Agents
and Multiagent Systems (2008)

	Partial and Full Goal Satisfaction in the MUSA Middleware

