
A Proposal of Process Fragment Definition and
Documentation

Valeria Seidita1, Massimo Cossentino2 and Antonio Chella1

1 Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica
Università degli Studi di Palermo, Italy
{seidita,chella}@dinfo.unipa.it

2 Istituto di Reti e Calcolo ad Alte Prestazioni, Consiglio Nazionale delle Ricerche -
ICAR/CNR Palermo, Italy
cossentino@pa.icar.cnr.it

Abstract. This paper focuses on the field of Situational Method Engi-
neering for the construction of agent-oriented design processes. What-
ever SME approach a method designer wants to use, he has to manage
two main elements: the (method or process) fragment and the repository
where it is stored. Specific fragment definition and documentation are
fundamental during those activities, for new process composition, and
for the consequent system design activities. This paper aims at illustrat-
ing a proposal of fragment definition and documentation. This proposal is
aimed to be an input for the IEEE FIPA Design Process Documentation
and Fragmentation working group and, as regards our own research work,
this is the ideal completion of the methodological practices prescribed in
the PRoDe approach for new processes composition.

1 Introduction

The work presented in this paper starts and is based on what done during the
latest years towards the definition of the best way to create ad-hoc agent ori-
ented design processes. The development of a multi agent system always requires
great efforts in learning and using an existing design process. It has been said
and heard several times that it does not exist one design process (or also a
methodology or a method) to develop systems able to solve every kind of prob-
lems and there is the need for creating techniques and tools for a designer to
develop an ad-hoc design process prior to use it on the base of his own needs.
In order to solve this problem and to give means for one to develop an agent
system using the “right” design process, we adopted the (Situational) Method
Engineering approach and started from pointing out what we intend for design
process. (Situational) Method Engineering [8][2][11][16] provides tools and tech-
niques for creating design processes by reusing portion of existing ones, called
method fragment, stored in a repository, the method base.

In [4] the main elements of an agent-oriented design process have been identi-
fied, they fundamentally ground on three of the main elements a designer would

2 Seidita et al.

always meet during design, they refer to the stakeholders that perform activities
in order to produce design results (also labelled work products or artefacts).

The key idea of our approach is that this core triad has to be augmented by
another important element: the system metamodel. This concern, also deduced
from the MDE [17] approach, led to the consideration that producing design
results, is nothing else but instantiating elements from a (meta-)model.

The system metamodel is the fundamental element to be defined when fol-
lowing the (Situational) Method Engineering approach, PRoDe (the Process for
designing Design Processes), we recently created [19]. Here we assimilated the
process of constructing a new design process to the process for developing soft-
wares [14]; software requirements have to be adequately analysed and used for
defining the design process requirements that in turn are used to define the sys-
tem metamodel that will allow the realization of a software architecture and
the related set of components that will satisfy the system requirements. It can
be said that the creation of design processes can be done by following specific
phases from analysis to implementation; a lot of existing (Situational) Method
Engineering approaches there exist [7][15][12][9][1], they are developed around
three main phases: the process requirements analysis, the process fragments se-
lection and the process fragment assembly and their principal aim is to manage
the main element: the method fragment.

Different definition of method fragment there exist in the nowadays research
on (Situational) Method Engineering, we claim that none of them can be univer-
sally applied. Mainly, differences are due to the different (Situational) Method
Engineering approaches owning different notion/definition of method fragment
leading to proprietary repositories which availability is limited and to the lack
of a unique interface for connecting fragments.

In this paper we focus on the process fragment definition and documentation
by identifying its main elements and following a twofold aim: reuse, in terms of
providing all the information supporting the selection and assembly phases, and
reuse in a general design point of view, hence providing the information for a
designer to follow the guidelines for carrying out the portion of work described
in the fragment and how to produce the related artefacts. The main notion is
that of System Metamodel and it represents the major improvement to the work
proposed in [19].

Our aim is to give a process fragment definition aiming at well documenting it
in order to be used both at system design time and for being reused in storage and
assembly hence the main contribution is to lay the foundations for establishing
a standard definition of fragment and the related standard documentation also
by continuing the work done in the IEEE FIPA Design Process Documentation
and Fragmentation working group that already resulted in the standard way of
documenting design processes [10].

In the following sections the definition and a template for documentation of
process fragment will be shown together with an example of documentation.

A Proposal of Process Fragment Definition and Documentation 3

2 Background and Motivation

During the latest years the fact that the projects’ features and organization
specificities greatly influence the software development methods has become ev-
ident. Besides the more the software systems become complex the more this fact
becomes urgent. The consequence is that there not exist a unique development
method that could fit every kind of needs organizations could present and that
can be used for engineering every kind of software systems.

In this scenario it is increasing the need for techniques allowing organizations
to create and then to use their own development method able to take into account
the kind of problems the organization is devoted to solve and the characteristics
they present in terms of designers/developers skills, known and used tools and
so on.

The discipline of Method Engineering has faced this problem and some im-
portant results has been reached. The Method Engineering has been defined by
Brinkkemper et al. [2] as “the engineering discipline to design, construct and
adapt methods, techniques and tools for the development of information sys-
tems ”. Method engineering aims to accomplish two different scopes: the first
is to create situation specific methods for meeting organizational features and
represent a sort of choice list, the second is to produce the so called method “on
the fly” hence the system development implies and starts with the definition of
development methods that fit specific project situations (this is the matter of
a sub-area of Method Engineering (ME), the Situational Method Engineering
(SME) [11]).

The best and quickest way to develop situation specific methods is reusing
existing ones. For these purposes ME prescribes to break down existing methods
in “components” that may be stored in a repository from which they have to be
retrieved (analyzed and then selected) in order to be composed/assembled in a
new method fitting project/organization needs. These components can be used
as they are or adapted in order to best fit specific needs or in order to facilitate
the composition process.

Still open issues are the definition of these components and their granularity,
how they have to be selected from the repository and how they can be assembled.

In the past the authors developed an approach for new design processes
composition (PRoDe [19]) that entails the aforementioned “component” namely
the Process Fragment and the System Metamodel.

The Process Fragment is a portion of design process adequately
created and structured for being reused during the composition and en-
actment of new design processes both in the field of agent oriented soft-
ware engineering and in other ones (model driven engineering-based ap-
proaches are preferred fields of application for the proposed definition).

The System Metamodel is the definition of constructs needed for
creating system models.

4 Seidita et al.

It is our belief that during the activities of development methods one (or
more) process role refers to the metamodel in order to produce work products
where instances of a set of metamodel constructs are managed (more details
about this argument can be found in [10]).

Managing process fragments is the main aim of PRoDe, it covers the three
main phases of ME, the process requirement analysis and the definition of process
fragment, the selection and then the assembly. Because of our conviction about
the importance of the system metamodel in all the design activities it has a
central role in PRoDe.

The first activity in the PRoDe approach entails a set of steps that, starting
from the process requirements, are able to produce the system metamodel or in
any case a first draft of it. PRoDe, in fact, is iterative and after a first enactment
of the new design process this might be modified/enhanced due to test results and
new requirements identification. As regard selection and assembly the PRoDe
approach provides a well defined set of activities for identifying and retrieving
fragments from repository basing on some considerations made on the system
metamodel [19].

The PRoDe activities, as well as other SME approach activities, are also
highly grounded on the SME fundamental element, the Process Fragment (or
method fragment or chunk or simply fragment - however it is named by different
researchers), and obviously on the repository aimed at storing it. In order to
apply a SME approach in the most fruitful way, a well done definition and
documentation of process fragment is useful for properly storing, selecting and
assembly new design processes whatever SME approach one wants to follow.

Two things to be noted at this point: the process fragment definition to-
gether with the specific SME process (see for instance [19]) used for retrieving
and composing fragments notably influence how the repository is conceived and
constructed. Conversely, constructing from scratch a process fragment can be
done in the same way a design process is composed using the SME approach.

3 The Process Fragment Definition

Figure 1 represents all the elements composing a Process Fragment. It contains
all the elements useful for representing and documenting the fragment under the
process, product and reuse point of view; the proposed fragment documentation
template, that will be presented in the following section, slavishly follows the
proposed representation, its elements and their definitions.

The root element, the Process Fragment, has been generally extracted from
an existing design process, therefore an important information to be stored in
the repository is the Design Process the fragment refers to, this serves for the
designer to set the application context and the particular features the fragment
would exhibit. The process fragment is composed of activities, each of them is a
portion of work that has to be performed by one or more stakeholders (Process
Roles) and can be decomposable in other activities or can be atomic in the sense
that it can be a single design action performed by only one process role.

A Proposal of Process Fragment Definition and Documentation 5

has terms by

Design
Process

Phase
Fragment

Composed
Fragment

Process
Fragment

Atomic
Fragment

Goal

pursues

Activityprescribes

System
Metamodel
Construct

System
Metamodel

Element

System
Metamodel

Relationship

defines/refines
/quotes

relates

provides
information

Guideline

Dependency
Composition

Guideline

Process
Role

performs/
assists

delivers Work
Product

Notation

Workflow

orders

is input/
output

is input/
output

depicts

Description

Fragment
Overview
Diagram

Diagram
Description

Glossary

Fig. 1. The Process Fragment View

Activity delivers Work Products, where the results of design activities are
drawn by using a specific Notation and each work product is developed under
the responsibility of one process role. The notation to be used greatly influences
the flow of work to be done for producing a work product and for this reason a
fragment has to be supplied with a set of Guidelines. It is not mandatory to fol-
low a specific notation, the same kind of diagram (for instance a structural one)
may be expressed by using different notations without significant differences in
the resulting expressiveness. Moreover, different kinds (WP Kind) of work prod-
ucts can be delivered, we identified two main work product kinds: graphical and
textual, the former when an activity results in a diagram the second when de-
signers produce textual documents. Finally a work product can be of composite
kind if it is a composition of the previous said kinds, for instance a document
with a diagram and the text explaining it (more details can be found in [18].

As well as in the design process definition, one of the most important element
in the fragment definition is the Multi-Agent System Metamodel (Multi-Agent
SMM); each fragment is based on a system metamodel that is obviously part of
the metamodel of the design process it comes from. The metamodel contains the
set of constructs representing the (portion of) system to be designed using a spe-
cific process fragment. In the case of fragment definition we have to consider that
Multi-Agent System Metamodel is composed of constructs that can be elements
(SMME - the concepts to be designed), relationships among them (SMMR),
attributes and operations for respectively representing a particular feature and
the behavioral characteristics of an element (see [6] for further details).

The main aim of process fragment is to instantiate one (or more) system
metamodel construct(s) (SMMC) and in so doing it may be requested to define

6 Seidita et al.

relationships among elements or to quote other elements and/or relationships;
besides the result of defining an element or a relationship might be the refinement
of existing elements or relationships. This fact led to the definition of the kinds of
action to be done on a MAS metamodel construct (see the following section for
details). Finally SMMC has a definition to be listed in a glossary; the definition
is mainly useful during selection when the method designer must know which
kind of metamodel construct better fits with the metamodel construct s/he is
dealing with.

Until now the process and product part of the fragment metamodel has
been explored through a set of elements that has to be necessarily present in
the fragment documentation, now let us quickly focus on the elements that
principally deal with the reuse aspect of the fragment: Goal, and Dependency.
The fragment goal is the objective the process part of the fragment wants to
pursue and it is to be used during fragment selection from the repository. For
this reason it is related to the new design process requirements, in other words,
a goal describes the contribution a fragment may give to the accomplishment of
some design process requirements. The dependency aims at describing specific
constraints, if they exist, for the fragment to be composed with other ones, for
instance, there can be fragments dealing with MAS metamodel elements that are
very specific to particular application domains, in this case it should be possible
that such fragments can be composed with fragments coming from the same
classes of design processes.

It is important noting that the way the work has to be performed inside one
fragment may slightly change depending on the notation of the work product
produced; if the result has to be a graphical work product the activity and
the related guidelines are different if we want to use two different notations.
Since the fragment aims at designing a specific system metamodel construct,
we can consider the fragment itself independent from the specific notation. The
same result can be obtained by producing different work products in different
notations.

4 The Process Fragment Documentation

The document used for the Process Fragment description is made of six main
sections (the template is shown in Figure 2), each of them refers to one (or a
set of) element(s) of the Process Fragment representation (see Figure 1). Three
sections deals with the three main elements a design process is composed of, as
we stated in section 2, they are: Stakeholders, Workflow and Deliverable, hence
the description of who performs the work to be done and how in order to deliver
an artefact of the system model.

The Stakeholders have to be simply described through the name and the
description of the activities (the work) their are responsible for. They are named
Role in compliance with SPEM 2.0 [13].

The Workflow section serves for documenting all that regards the structure
of the portion of work to be done in the process fragment. It covers the set of

A Proposal of Process Fragment Definition and Documentation 7

1. Fragment Description
1.1. Fragment Goal
1.2. Fragment Granularity

1.2.1. Composing fragments
1.3. Fragment Origin

1.3.1. The Process Lifecycle
1.4. Fragment Overview

2. System metamodel
2.1. Definition of System metamodel elements
2.2. Definition of System metamodel relationships
2.3. Definition of System metamodel attributes
2.4. Definition of System metamodel operations

2.4.1. Fragment Input/Output in Terms of System Metamodel Constructs
2.4.2. Definition of input system metamodel constructs

3. Stakeholders
3.1. Role 1

4. Workflow
4.1. Workflow description
4.2. Work Break Down Elements description
4.3. Work Break Down Elements’ input/output in terms of system metamodel constructs
4.4. Fragment’s Input/Output in terms of Work Product

5. Deliverables
5.1. Document name

5.1.1. Deliverable notation
5.1.2. Deliverable content in terms of system metamodel constructs

6. Guidelines
6.1. Enactment Guidelines
6.2. Reuse Guidelines

6.2.1. Composition
6.2.2. Dependency Relationship with other fragments

7. Glossary
8. References

Fig. 2. Process Fragment Document Template

procedural rules for sequencing design activities and documents/artefacts ex-
changed among Roles in order to produce the main output of the fragment. The
concept of workflow we had in mind when we created this document template is
the one introduced by [20] structured by work breakdown elements that give us
the possibility to represent portion of design work at every level of granularity,
hence we can represent phases, activities, tasks. The Workflow description is
made with one SPEM 2.0 activity diagram that represents the portion of work
related to the role performing it and all the needed input and output docu-
ments. Each work breakdown element is completed with a textual description of
information such as the name, the kind e.g. if it is a task, an activity or other
else, the description and the roles involved in the work. Besides the list of all
the input and output system metamodel constructs and the list of all the input
and output work products are needed in order to have means for analyzing the
process fragment, also automatically, during the selection and assembly phase
when a new design process is being creating.
The Deliverable section is made of two main parts, the first deals with the truly
description of the kinds of document to be produced in order to provide guide-
lines for producing them and the second handles the relationships of the work

8 Seidita et al.

product with the constructs of the system metamodel here managed. So in the
first part of the section the description on how to produce the work product and
an example on the specific notation used are given. This part of the document
aims at exhaustively providing all the information for the designer to produce
the deliverables. In the second part of this section the said relationships are rep-
resented in a particular kind of diagram that the authors created by extending
SPEM 2.0 [6], namely the work product content diagram.
The word content let us understand that this diagram aims at having a complete
and detailed view on the elements managed during the production of the work
product. Exactly this diagram collects all the system metamodel constructs that
are managed during the enactment of the process fragment and are also reported
in the work product, hence the design process input constructs that are not re-
ported in the work product are not shown in this diagram. Input constructs
are that used by designer for the analysis and for reasoning about the system
to be produced. Besides information about the type of design actions made on
each construct are reported. Which design action is made on each metamodel
construct is useful for catching various information about the fragment and the
resulting work product. The list of possible design actions has been identified
by analyzing the way of working of designer using a lot of agent oriented design
processes and under the hypothesis that each work product production aims
at instantiating at least one metamodel construct. Instantiating means defining
one or more instances of metamodel construct that have to be represented in the
work product following one specific notation. Often, during the definition of one
construct designer needs to consider other constructs already defined in other
process fragment and/or to report them in the work product he is producing.
Another frequent situation is when designer relates one instance of one construct
to another one, for instance a generalization among classes, in this case he defines
a relationship. Finally designer could need to refine constructs by adding infor-
mation or features to an already defined one, in this case he defines attributes
and/or operations for that construct. Therefore the possible design actions to
be made on system metamodel constructs are:

define , instantiation of construct (element, relationship, attribute and oper-
ation), the label used is D for all construct except for the relationship in which
case it is R,

quote , reporting a construct in the work product, the labels used are Q,
QR, QA and QO respectively for element, relationship, attribute and opera-
tion. Quotation also introduces relationship, hence dependency, with other work
products.

In Figure 3 an example of work product content diagram is given, it rep-
resents the outcome of the Multi Agent Structure Definition process fragment
extracted from PASSI [3]; here we can see that the aim of this process fragment
is to produce a work product where the Implementation Agent, the Implemen-
tation Task and the Artifact have to be defined, for doing this Concept and
Predicate have to be quoted. Then relationship among Implementation Agent
and Implementation Task, and Implementation Agent and Artifact are defined,

A Proposal of Process Fragment Definition and Documentation 9

Multi Agent Structure
Definition Diagram

R

R

R

R

2xR

Artifact

D

Implementation
Agent

D

Ontology
Element

Concept

Q

Predicate

Q

Communication

Q

Implementation
Task

D

c

Keys

SMM Construct Structural
WPKind

Behavioral
WPKind

Structured
WPKind

Free
WPKind

a

Composite WPKind

c

D=Define, R=Relate,
Q=Quote,

QR=Quote Relationship,

Fig. 3. An example of Work Product Content Diagram

finally another relationship between Implementation Agent and itself is defined
by quoting the Communication. It is worth noting that the notational symbol
used for System Metamodel Construct (SMM Construct) is not used for system
metamodel relationship, even if we understand that this is not stylistically cor-
rect from a notational point of view we prefer to maintain that for reducing the
complexity of producing and reading this kind of diagrams. Besides there can
be more than one relationship among instances of the same constructs and this
is shown by the number close to the R label.

Another notational element that can be seen in this diagram and that is
largely used in all the SPEM 2.0 diagrams of the fragment documentation is
the Work Product Kind. Briefly, we needed to represent different kinds of work
product so we extended SPEM in order to include the following kinds 3:

– Behavioural, it is a graphical kind of work product and is used to represent
the dynamic aspect of the system (for instance a sequence diagram repre-
senting the flow of messages among agents along time);

– Structural, it is also a graphical kind of work product and is used for repre-
senting the static aspect of the system, for instance a UML class diagram;

– Structured, it is a text document ruled by a particular template or grammar,
for instance a table or a code document;

– Free, it a document freely written in natural language;
– Composite, this work product can be made by composing the previous work

product kinds, for instance a diagram with a portion of text used for its
description.

3 Definitions reported from our previous work on the matter in [18]

10 Seidita et al.

Fragment Goal
Describing semantic agent communications in terms of exchanged knowledge (referred to an ontology), content
language and interaction protocol.

Fragment Origin.
The presented fragment has been extracted from PASSI (Process for Agent Societies Specification and
Implementation) design process. PASSI (Process for Agent Societies Specification and Implementation) is
a step-by-step requirement-to-code methodology for designing and developing multi-agent societies. The
methodology integrates design models and concepts from both Object-Oriented software engineering and
artificial intelligence approaches. PASSI has been conceived in order to design FIPA-compliant agent-based
systems, initially for robotics and information systems applications. . . .

Deployment Model

System Requirements Model

Tasks
Specification

Roles
Identification

Agent Implementation Model

Structure
Definition

Behavior
Description

Code Model

Code
Production

Domain
Ontology

Description

Roles
Description

Protocols
Description

Agent Society Model

Initial
Requirements

Agents
Identification

Domain
Description

Deployment
Configuration

Multi-Agent

Structure
Definition

Behavior
Description

Single-Agent

Agent
Test

Society
Test

Next Iteration

Code Reuse

Communication
Ontological
Description

Fig. 4. A Portion of the COD Fragment Document - The Fragment Description

It is clear that the main aim of the section on Deliverables aims at provid-
ing, among the others, some kind of guidelines for producing the work product.
Another kind of guidelines has to be documented in the Guidelines section, here
there are two types of guidelines, the enactment and the reuse. The enactment
guideline provides a textual description on how to carry out the work in the frag-
ment by referring and describing in details how to manage the system metamodel
constructs of the fragment. The aim of the reuse guidelines is very different, they
are directed to the reuse possibility of the fragment thus providing suggestions
for composing the fragment with other ones and the dependencies from other
fragments. Reuse guidelines supplies another view on the dependencies of the
fragment already visible in the workflow description by means of the input work
products and in the content diagram by means of the quoted elements so as in
all the tables describing input and output constructs of the fragment.

What we consider the key concept of our approach to SME for represent-
ing design process in general and process fragment in particular, the System
Metamodel, is documented in the second section on the proposed template. The
attention paid to the System Metamodel, how it is conceived and it is composed
of is the most important improvement the authors give to the previous fragment
definition made in [19]. The section on metamodels includes a class diagram for
representing the Complete System Metamodel of the fragment and the definition
of each SMM Construct together with, when applicable, a statechart describing

A Proposal of Process Fragment Definition and Documentation 11

its different states while managed by the designer during the application of the
fragment. An example reported from the Communication Ontological Descrip-
tion process fragment is shown later in Figure 5. Then all the input/output
system metamodel constructs are listed in a table where a distinction is made
between the constructs to be designed and the ones to be quoted.

The first section regards the Fragment Description that includes: the goal,
the granularity, the origin of the fragment and an overview on the fragment.
The description of the fragment goal aims to provide the reader with a quick
understanding of the goal pursued by the process fragment using a simple sen-
tence like, for instance, “the aim of this fragment is collecting requirements”,
possibly relating the description to common-sense in software engineering. The
goal serves mainly in giving a mean for the method designer to select the right
fragment for his purposes.
As regard the granularity, it establishes the length of the work done in the frag-
ment and in some way the complexity of the fragment in terms of work product.
There can be three kinds of fragment: phase, composed and atomic (see also
Figure 1).

Phase Process fragment. A phase (process) fragment delivers a set of work
products belonging to the same design abstraction level of the design flow.
Such a work product may belong to any of the cited work product types. An
examples of phase-level work product may be a system analysis document;
it is composed of several work products (diagrams, text documents, . . .) all
belonging to the same design abstraction level (system analysis).

Composed Process Fragment. A composed (process) fragment delivers a
work product (or a set of instances of the same work product). Such a work
product may belong to any of the cited work product types.

Atomic fragment. An atomic (process) fragment delivers a portion of a work
product and/or a set of system model constructs (in terms of their instan-
tiation or refinement). A portion of a work product is here intended never
to be a whole work product; in other words, atomic fragments never deliver
entire work products.

Finally Glossary and References completes the documentation by providing
useful description of the most important terms used in the fragment and a list
of references for improving knowledge on the fragment, above all on the origin,
the application context and so on.

5 An Example of Process Fragment Document

In the following an example of fragment documentation is given through a set
of figures that have been extracted from the document related to the Commu-
nication Ontological Descritpion - COD process fragment from PASSI [3]. Each
figure represents a relevant portion of the document, the complete version of this
fragment can be found in the FIPA DPDF working group website4.

4 http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/docs.htm

12 Seidita et al.

System metamodel
The portion of metamodel of this fragment is:

Figure 4. The fragment System metamodel

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define and describe the ele-
ments reported in Figure 4.
Definition of System metamodel elements.
This fragment underpins the following model elements:
Agency_Agent - an autonomous entity capable of pursuing an objective through its autonomous decisions,
actions and social relationships. It is capable of performing actions in the environment it lives; it can communi-
cate directly with other agents, typically using an Agent Communication Language; it possesses resources of
its own; it is capable of perceiving its environment; it has a (partial) representation of this environment in form
of an instantiation of the domain ontology (knowledge); it can offer services; it can play several, different (and
sometimes concurrent or mutually exclusive) agency_roles.
Each agent may be refined by adding knowledge items necessary to store/manage communication contents.
The Agency_agent statechart is:

Description of the Agency_Agent states:
Defined : An Agency_Agent is in this state once it is instantiated in the system model. The agent’s unique name
has to be defined.
Refined : An Agency_Agent moves in this state once its knowledge chunks are defined.

Fig. 5. A Portion of the COD Fragment Document - The System Metamodel

Looking at the fragment outline, it can be seen that first of all we focus on
the fragment presentation through its goal and its origin, in so doing we reach
a twofold objective, letting the designer have a quick idea on the focus and the

A Proposal of Process Fragment Definition and Documentation 13

domain in which the fragment might work and allowing a sort of automatic or
semiautomatic selection of the fragment.

Figure 4 shows the fragment goal, it is described in a very concise textual form
that puts in evidence the main elements the fragment will deal with, for instance
it can be noticed the words agent communication, knowledge and protocol. It is
to be hoped that this part of the document were compiled using

Workflow.
Workflow description.
The process that is to be performed in order to obtain the result is represented in the following as a SPEM 2.0
diagram

Figure 5. The flow of tasks of this fragment

Fig. 6. A Portion of the COD Fragment Document - The Workflow Description

words focussing on the fragment scope. Figure 4 also shows a portion of the
section dedicated to the design process the fragment has been extracted from,
the importance of this early discussion has been already said.

As well as a design process, each process fragment is based on a MAS meta-
model composed of elements and relationships; the fragment document has to
explore this issue and to show all the elements type to be defined/quoted/related
in the fragment. Figure 5 shows the COD portion of System metamodel.

As already said the process fragment description, and documentation, is prin-
cipally aimed at showing the process and product part of the fragment for easily
identifying the way in which it can be reused. Figure 6 refers to the fragment de-
scription section and details the inputs, the outputs and the fragment workflow
through a SPEM 2.0 activity diagram.

14 Seidita et al.

Example.
In Figure 6, the PurchaseManager agent starts a communication (see QueryForAdvice association class) with
the PurchaseAdvisor agent. The communication contains the Course ontology, the Query protocol and the RDF
language. This means that the PurchaseManager wants to perform a speech act based on the FIPA query
protocol in order to ask the PurchaseAdvisor advice on how to purchase (supplier, number of stocks, number of
items per each, purchase-money) provided the Course information.

Figure 6. An example of Communication Ontological Description diagram.

Fig. 7. A Portion of the COD Fragment Document - An Example of the Pro-
duced WP

The fragment document continues with an example and the explanation on
how to produce the work product (see Figure 7) and with a set of composition
guidelines and dependency relationships.

6 Conclusions and Remarks

In this paper we presented the process fragment definition and the documenta-
tion template we use in our work. After a long experience done on the construc-
tion of design processes we realized that this template is an optimum starting
point for the definition of a standard notion of process fragment. The presented
document has been conceived with both a textual and a diagrammatic part in or-
der to provide different views on the fragment and in order to allow the designer
to retrieve the most useful information for his own needs in a quick and also vi-
sual fashion. We created the document for being used for two purposes: reusing
the fragment during the process creation in a (Situational) Method Engineering
fashion and using it during design process enactment.

This work presents a fundamental improvement with respect to the work
done some years ago and illustrated in [19], here the system metamodel was
also considered as a component of the fragment but its importance has been
now enriched by all the notions related to its constructs and how they can be
defined. Moreover the fact that within PRoDe the System Metamodel is the

A Proposal of Process Fragment Definition and Documentation 15

central element for retrieving, selecting and assembling fragments led to the
need for its right and more fruitful representation in the fragment definition and
documentation.

Another important outcome of our work is that since the fragment aims at
designing a specific system metamodel construct, we can consider the fragment
itself independent from the specific notation. The same result can be obtained
by producing different work products in different notations. Such a feature is
one of the strengths of the proposed fragment definition that is highly reusable
and composable being mainly oriented to the metamodel construct it is aimed
to define; for instance a fragment that delivers UML based work products can
be easily composed to another fragment delivering free textual work product, it
is only important that the two have a matching set of input/output metamodel
constructs. This fact overcomes the problem of interfaces among fragment and
the problem, until now present, of having all fragments producing work products
with the same notation; at worst we could create design processes where different
parts have different notations but also this problem can be overcame by using a
CAPE tool able to instantiate the right CASE tool for managing the enactment
of the newly created design process. An example of such CAPE tool is Metameth,
a prototype that we developed in the past in our laboratory [5].

Acknowledgment. This work has been partially supported by the EU project
FP7-Humanobs.

References

1. S. Brinkkemper, M. Saeki, and F. Harmsen. Meta-modelling based assembly tech-
niques for situational method engineering. Information Systems, Vol. 24, 24, 1999.

2. S. Brinkkemper, R.J. Welke, and K. Lyytinen. Method Engineering: Principles of
Method Construction and Tool Support. Springer, 1996.

3. M. Cossentino. From requirements to code with the PASSI methodology. In Agent
Oriented Methodologies, chapter IV, pages 79–106. Idea Group Publishing, Hershey,
PA, USA, June 2005.

4. M. Cossentino, S. Gaglio, A. Garro, and V. Seidita. Method fragments for agent
design methodologies: from standardisation to research. International Journal of
Agent-Oriented Software Engineering (IJAOSE), 1(1):91–121, 2007.

5. M. Cossentino, L. Sabatucci, and V. Seidita. A collaborative tool for designing and
enacting design processes. In Proceedings of the 2009 ACM symposium on Applied
Computing, SAC ’09, pages 715–721, New York, NY, USA, 2009. ACM.

6. M. Cossentino and V. Seidita. Metamodeling: Representing and modeling system
knowledge in design processes. Technical Report 11-02, Technical Report ICAR-
CNR, 29 July 2011.

7. D. Gupta and N. Prakash. Engineering Methods from Method Requirements Spec-
ifications. Requirements Engineering, 6(3):135–160, 2001.

8. AF Harmsen, S. Brinkkemper, and H. Oei. Situational method engineering for
information system projects. In Methods and Associated Tools for the Information
Systems Life Cycle, Proceedings of the IFIP WG8. 1 Working Conference CRIŚı94,
pages 169–194, 1994.

16 Seidita et al.

9. B. Henderson-Sellers. Method engineering: Theory and practice. In D. Karagiannis
and editors Mayr, H. C., editors, Information Systems Technology and its Appli-
cations., pages 13–23, 2006.

10. IEEE Foundation for Intelligent Physical Agents. Design Process Documentation
Template, Document number XC00097A-Experimental, 2011.

11. K. Kumar and R.J. Welke. Methodology engineering: a proposal for situation-
specific methodology construction. Challenges and Strategies for Research in Sys-
tems Development, pages 257–269, 1992.

12. I. Mirbel and J. Ralyté. Situational method engineering: combining assembly-based
and roadmap-driven approaches. Requirements Engineering, 11(1):58–78, 2006.

13. OMG. Object Management Group. Software & Software Process Engineering
Metamodel. version 2.0. Document number: formal/2008-04-01. 2008, 2008.

14. L. Osterweil. Software processes are software too. In Proceedings of the 9th inter-
national conference on Software Engineering, pages 2–13, 1987.

15. J. Ralyté. Towards situational methods for information systems development: en-
gineering reusable method chunks. Procs. 13th Int. Conf. on Information Systems
Development. Advances in Theory, Practice and Education, pages 271–282, 2004.

16. M. Saeki. Software specification & design methods and method engineering. In-
ternational Journal of Software Engineering and Knowledge Engineering, 1994.

17. Douglas C. Schmidt. Model-driven engineering. Computer, 39(2):25–31, Feb. 2006.
18. V. Seidita, M. Cossentino, and S Gaglio. Using and extending the spem specifica-

tions to represent agent oriented methodologies. In AOSE, pages 46–59, 2008.
19. V. Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam, and

S. Gaglio. The metamodel: a starting point for design processes construction. Inter-
national Journal of Software Engineering and Knowledge Engineering., 20(4):575–
608, 2010.

20. WfMC. The workflow management coalition. http:/www.wfmc.org., 2005.

