
Metamodeling: Representing and Modeling
System Knowledge in Design Processes

Massimo Cossentino1 and Valeria Seidita2,1

1 Istituto di Reti e Calcolo ad Alte Prestazioni
Consiglio Nazionale delle Ricerche, Palermo Italy

cossentino@pa.icar.cnr.it
2 Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica

Università degli Studi di Palermo, Italy
valeria.seidita@unipa.it

Abstract. This paper reports the results of the experiences made in
the representation and documentation of design processes. The aim is to
explore and establish ways for managing the knowledge about the sys-
tem solution developed within the processes itself. The work principally
grounds on the concept of metamodel; raising the abstraction level in
modeling languages during the development of software systems enables
to tackle the problems complexity in a more efficient way. We propose
a metamodeling layered architecture for representing software system
metamodels and the rules for instantiating each layer starting from the
top level one (MOF) downwards the bottom one (the software system).
Besides the rules for relating the system metamodel constructs with the
design process artifacts are also discussed in order to enable a detailed
description of the knowledge the designer produces and manages about
the new software system.

1 Introduction and Motivation

Traditionally, in software engineering, the idea, or the concept, of “model” ad-
dresses an artifact describing a software system. A model can be a set of diagram
types or a single one. Each diagram can be drawn using specific modeling lan-
guage, for instance UML or others.

To date it is recognized that models may be used in place of the software
systems (from now on we will refer to system or to software as synonyms of
software system) they represent. Models are less costly to develop than the whole
system. It is furthermore recognized and accepted that constructing a model
requires abstractions.

Let us, now, look at Figure 1 and consider the right hand part of it; it rep-
resents a portion of the model of a system that can be described through one
use case diagram and one class diagram. Each element in the two diagrams is an
instance of one element represented in the metamodel of the system shown in the
left hand part of the figure. For instance the Requirement, in the metamodel, is re-
alized by Course Subscritpion use case and the Class by the Subscription CTRL

2 Massimo Cossentino and Valeria Seidita

class. Besides, elements of the use case diagram identified during, for instance,
the analysis phase of the hypothetical design process used for developing the
system, can be transformed in classes of the class diagram resulting from the
design phase. The transition from one phase to another in the design process,
and the related relationships among elements in different diagrams, is indicated
by the relationship among elements in the metamodel.

METAMODEL MODEL

Fig. 1. Instantiation Process for System Model

Indeed, the system metamodel presents all the elements that have to be
managed during the design process used for developing systems. In other words,
such a metamodel describes the knowledge about the system the designer needs
for performing her/his design work. The artefacts composing the model (or the
models) of the system are drawn by using a specific modeling language (or a no-
tation) and they are the result of the work done by one (or more) stakeholder(s)
during a portion, phase or activity, of a design process. It is worth noting that
starting from the same metamodel of the system, the artifacts can be drawn in
different notations but the representation the model offers of the system is the
same and it represents one instance of the metamodel.

“Metamodel is a model of models”

We base our work on this definition (by OMG [10]) and, for now, we leave apart
all the problems and debates concerning multi-level metamodeling architecture
like replication of concepts [1] or the difference among ontological and linguistic
metamodel [3][9][7], and for a good understanding of our hypothesis we only
consider what is called the loose metamodeling cited by [2]. Loose metamodeling
implies that every model is an instance of another model in the same way the
traditional modeling infrastructure proposed by OMG does.

Figure 1 sketches a small example of the portion of metamodel adopted in a
generic object oriented design process; any design process one wants to use he
can count on a metamodel containing elements to be managed, and for which
design actions can be identified for producing the artefacts composing the model.

Title Suppressed Due to Excessive Length 3

We believe that the metamodel of the system relates the kind of systems to
be modeled with the adopted design process and we agree with Rolland et al.
[16] on the situatedness of design processes in specific domains.

The presented work deals with developing a meta-modeling layered architec-
ture for representing system metamodels within design processes. The proposed
architecture is complemented by the definition of the relationships among the
different layers, the definition of the constructs needed to properly represent a
system metamodel, the rules for representing the different situations that may
occur, and a specific diagram completed by a proper notation.

To date a lot of work has been done in the context of metamodeling and
several problems and still open issues have been identified. UML [20] itself suf-
fers of problems like for instance “ambiguous classification” and “replication of
concepts” well discussed in [1], and still a lot has to be done for identifying
and fixing complete modeling techniques and rules useful in whatever domain
context.

We claim the system metamodel is one of the most important elements of
the design process and its description should receive a corresponding attention
in the documentation of the design process itself. Moreover, because of the tight
relationships of the system metamodel with the other design process elements
(activity, role and work product [13] [6]), it constitutes a valid mean for aiding
the designer in applying the design process. Besides, such a metamodel is a valid
mean for reasoning about Method Engineering [4][15] implications on developing
techniques for creating design process matching specific design contexts [5][19].

More in details, the contribution presented in this work consists in establish-
ing a metamodeling layered architecture suggested for representing the system
metamodel. We also illustrated all the instance-of relationships of the meta-
model constructs with the MOF metamodel that we assume as a basis in ac-
cordance with OMG’s prescriptions. In order to support the applications of this
approach to the representation of several existing processes and related system
metamodels3, we developed (and here we report) a set of rules useful for man-
aging all the possible instance of relationships among layers. The rule are also
useful for creating the diagram representing the relationships among every design
artifact and the system metamodel constructs it cointains; such a diagram also
reports the particular design actions performed by the designer when introducing
the metamodel construct in the artifact.

The paper is organized as follows: the next section introduces some defini-
tions about metamodeling and layers according to the approach standardized by
OMG; section three reports and extends with novel details some concepts (de-
sign actions and workproduct content diagram) useful for representing system
metamodels; section four presents the proposed metamodeling layered architec-
ture, the instance of relationships and the way for creating the diagram that

3 See http://www.pa.icar.cnr.it/passi/FragmentRepository/
fragmentsIndex.html for a repository of process fragments, see
http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/docs.htm for the documents
describing entire design processes

4 Massimo Cossentino and Valeria Seidita

relates artifact with system metamodel constructs and finally section five pro-
vides concluding remarks and some future works.

2 Basic Concepts and Terminology

Before going on in describing the proposed system metamodel layered archi-
tecture and in order to avoid confusion about the used terminology, it may be
useful to briefly introduce some premises on metamodeling layering in the OMG
fashion and which is the definition, or the concept, we use for design process.

2.1 Metamodel Definition and Structure

What does it mean “metamodel”? A lot of definitions have been provided, from
the simplest “metamodel is a model of models” to the more complex and com-
pleted one [1][3][7][12] also including concepts like ontological metamodeling vs
linguistic metamodeling and so on. What is important for us is the word meta
before the word model, meaning that we have to apply twice the rules used for
modeling. Therefore, like the model, the metamodel is composed of elements
and relationships both sometimes addressed as constructs. Metamodel elements
and relationships provide rules for creating the model of the system in the same
way elements and relationships of the model do for systems thus establishing an
instance of layering structure that will be better illustrated in the following.

2.2 Metamodeling Layers

Figure 2 shows the traditional Object Management Group metamodeling infras-
tructure. It is made by four layers each of which, except the top one, is related
by an instance of relationship with the above one.

The bottom level is the level M0, it contains the user data and is called the
instance model. This represents the system solving a specific problem that runs
on a specific platform. Therefore M0 represents all the elements that exist as the
system runs on the real-world platform and manages the user data. The user data
are instance of the user concepts (level M1), so the level M1 represents the model
of the system/software (as Figure 1 shows in its right hand part;) in the same way
M2 contains information for instantiating the M1 concepts and for this purpose
it is called metamodel layer (as the left hand side of Figure 1). M2 is here called
UML concepts for the reason that Figure 2 deals with OMG metamodeling layers.
Finally the level M3 contains information for creating metamodels; hence the
meta-metamodels that is usually reported as the Meta-Object Facility (MOF)
[11]. MOF is a very diffused language for describing metamodels.

The same layered architecture may be used for representing development
processes, it is worth noting that with this term we mean both the design process
and its result. In so doing the M0 and M1 layers respectively contain the system
model and the system metamodel elements seen in Figure 1. Layer M3 is the

Title Suppressed Due to Excessive Length 5

MOF level and what we need is to define the M2 layer by instantiating it from
MOF in order to create the system meta-metamodel.

By using a multi-level modeling structure in the same OMG way we can
exploit all the advantages of the MOF standard and the MDD technologies and
theories. Above all it is very important the fact that by instantiating M2 from
the MOF there is the possibility of using/developing MOF based tools in order
to manage new modeling infrastructures and/or standards. Besides we can use
the same instance of rules for creating domain specific system metamodels.

Meta-Object Facility

UML Concepts

User Concepts

User Data

instance_of

instance_of

instance_of

M3

M2

M1

M0

Fig. 2. The OMG Modeling Architecture

2.3 Design Process Definiton

Almost all the work done by the authors in the latest years in the field of agent
oriented software engineering is centered on the following definition, by Fuggetta
in [6], of the software development design process

”the coherent set of policies, organizational structures, technologies,
procedures, and artifacts that are needed to conceive, develop, deploy and
mantain (evolve) a software product”

6 Massimo Cossentino and Valeria Seidita

This definition was also addressed during the work done within the IEEE
FIPA standardization committee4 that resulted in the standard definition [8]
where it is argued that the main composing concepts of design process are:
activity, process role and work product, hence enacting a design process implies
a set of activities performed by process roles (the designer) for obtaining work
products (artefact); moreover an important extension has been introduced by
considering the metamodel as the fourth main composing element of design
process.

It is our belief that the development of software following one specific design
process means that during each activity one (or more) process role refer to
the metamodel in order to produce work products where instances of a set of
metamodel elements are managed (in order to understand this discussion keep
in mind the example provided in Figure 1).

Depending on the activity the process role is performing, he manages the
metamodel in different ways, namely while he is drawing a work product nor-
mally he instantiates system metamodel elements and in doing this he should
need to consider or analyze another element as input that then he could report
in the work product or not. All the possible actions a process role can do on a
metamodel element are detailed in the following section.

3 Managing and Representing System Metamodel

In this section we highlight how we manage the knowledge about the system
metamodel constructs in the process description by means of the design actions
to be done for producing the process work product. For representing that, a
novel kind of diagram has been created, the Workproduct content (WP content)
diagram, an initial version of it has been already presented in [17] and it is now
refined.

3.1 Design Actions

While composing a work product three different kinds of action can be made on
each metamodel construct. Let us refer again to Figure 1 and suppose that pro-
cess roles are using a design process composing of only two activities respectively
aiming at producing one UML use case diagram and one UML class diagram.

During the first activity the Requirement element of the metamodel (the left
part) is instantiated in the use case Course Subscription hence the designer, by
analyzing the problem context, is able to define this specific requirement and to
draw it in the form of a use case in the diagram. Suppose that a list of actors has
been already provided, then the designer is able to report on the diagram the
actor Student by simply quoting this element coming from another workproduct
and finally he may define a communication between the two, hence he defines a
relationship between two instances of two metamodel elements.

4 IEEE FIPA is a standardization committee of the IEEE Standards Society. See
http://www.fipa.org

Title Suppressed Due to Excessive Length 7

During the second activity, in order to produce the class diagram, the de-
signer uses, as an input for his reasoning, the Course Subscription use case and
(s)he defines the Subscription Form entity class that is an instance of the Class
metamodel element then (s)he defines the control class and the relationship be-
tween the two classes. Besides, after having defined the classes, the designer can
also refine them by adding attributes and operation; this action results in the
definition of the attribute and operation as a special kind of element.

Therefore the possible actions the designer may operate on metamodel con-
structs are:

1. instantiate an element so (s)he defines that element,

2. instantiate a relationship so (s)he relates two elements,

3. use an already defined construct so he quotes an element, a relationship, an
attribute or an operation,

4. instantiate an attribute or an operation so he refines an already defined ele-
ment or relationship obviously refining an element includes also the quotation
of that element.

3.2 The Workproduct Content Diagram

Among the others, an important use of the metamodel is with the Workproduct
Content Diagram. We created it because it is our belief that it is an important
part of the design process description and serves for representing the relation-
ships between each work product produced during the design process and all the
elements of the metamodel that are here drawn.

An example is given in Figure 3; the notation of this diagram implies classes
for representing metamodel elements, arrowed lines for representing relationships
among elements and labels for representing the kinds of action made on each
element. Moreover packages with an icon on the left uppermost corner points out
the work product and its kind (see [18] for the complete list and an explanation
on work product kinds).

The aim of this diagram is to collect all the metamodel elements that are
managed during the design process enactment and are also reported in the work
product (as said before there can be elements of the metamodel that are not
reported in the work product but used only as inputs for the work to be done).

Labels are: D for indicating the defined actions, R for defining a relationship,
Q, QR, QA and QO for quoting respectively elements, relationships, attributes
and operations.

From the Figure it can be seen that the work product represented by this
content diagram aims at defining, the Actor, the Functional Requirements and
the Non Functional Requirements that are related through one relationship.

This representation is useful for having an immediate panoramic on the ac-
tions to be done (and on system metamodel constructs) and it is a valid comple-
ment of the textual guidelines for producing the work product. Besides if needed
it can be easily processed by a tool.

8 Massimo Cossentino and Valeria Seidita

Domain Requirements
Description

c

Actor

D

Functional
Requirements

D

Non Functional
Requirements

D

R

R

3xR

Keys

SMM Element Structural
WPKind

Behavioral
WPKind Structured

WPKind
Free

WPKind

a

Composite
WPKind

c

D=Define, R=Relate, Q=Quote, QR=Quote Relationship,
QA=Quote Attribute, QO=Quote Operationrelationship relationship

SMM
Operation

 O
SMM Attribute

 A

Fig. 3. An Example of the Workproduct Content Diagram

4 The Proposed System Metamodel Layered Architecture

In this section we illustrate the M2 level we defined together with all the possible
constructs there can be and how each of them is an instance of MOF.

Some definition may help in the comprehension of our approach: in the do-
main of design processes, we consider System Metamodel the set of con-
structs (and their definitions) used by designers for creating system models.
During our experience in metamodeling and process definition we identified four
kinds of construct: elements, relationships, attributes and operations.

– A System Metamodel Element (SMME) is the construct of the metamodel
that can be instantiated into elements of the system model. Refer to the
example given by Figure 1.

– A System Metamodel Relationship (SMMR) is the construct used for rep-
resenting the existence of a relationship between two (or more) instances of
SMMEs. For instance, the aggregation relationship among two instances of
the SMME class is an instance of the SMMR association.

– A System Metamodel Attribute (SMMA) is a particular kind of element
used for adding properties to SMMEs. The attribute’s type is a SMME

– An operation (SMMO) is a particular kind of SMME using for describing
the SMME.

They are instance of the more general M2 layer (the System meta-metamodel)
constructs, shown in Figure 4, that we identified together with all the relation-
ships with MOF elements.

In addition to the four main elements of the previous description we identified
one important construct to be managed during design process enactment, the

Title Suppressed Due to Excessive Length 9

Diagram Design-Time Instances
(M0-System Model)

Diagram model (M1-System
Metamodel)

<<SMME>>
ImplAgent

SMME

Property

Operation

SMMR

SMMR
Association

Diagram Meta-Meta-model
(M3-MOF)

Diagram Meta-model
(M2-System MetaMetamodel)

Association
Class

<<instanceOf>>

Element

Association

Relationship

Class

Type

NamedElement

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

SMMA

SMMO

<<instanceOf>>

<<instanceOf>>

<<SMMA>>
ImplAttribute

<<instanceOf>>

<<SMME>>
Type

<<SMME>>
Java Type

<<SMME>>
Concept

<<instanceOf>>

<<SMME>>
ImplTask

<<SMMA>>
ImplTaskAttribute

<<instanceOf>> <<SMMO>>
TaskAction

Course
setup
autentication

agent_type: String
teacher: Professor

Course

logIn
db_Agent: Agent

Autentication

<<instanceOf>>

<<instanceOf>>

TypedElement

<<instanceOf>>

Fig. 4. The System Metamodeling Layered Architecture

Association Class. Association Class is at the same time an element (SMME)
and a relationship association (SMMR Association), the presence of this con-
struct comes from analyzing a lot of design processes and it was realized by
extending the concept of UML association class [20]:

“...an association class. It will be both an association, connecting a
set of classifiers and a class, and as such have features and be included
in other associations. The semantics of an association class is a com-
bination of the semantics of an ordinary association and of a class. An
association class is both a kind of association and kind of a class... ”.

Some examples will be provided in the following subsection where all the possible
instance of relationships will be explored.

Besides the identification of design actions, defined in the previous section,
led us to the conclusion that three different kinds of metamodels exist:

– Complete System Metamodel: it includes all the system metamodel con-
structs that are managed by the designer in using a specific design process.
This also includes all the constructs that are accepted as external inputs of
the overall process.

10 Massimo Cossentino and Valeria Seidita

– Definable System Metamodel: it includes all the system metamodel con-
structs that are instantiated in the design process. This is a subset of the
complete system metamodel.

– Workproduct System Metamodel: it includes all the system metamodel con-
structs that are reported in the design process work products. It is differ-
ent from the Definable system metamodel because the Workproduct system
metamodel may also include the quotable elements (like some inputs of the
process)

Each of them supplies a specific view on the design process by specifying what
and how elements are involved in the production of the system models, from now
on in this paper we will use and simply refer to the Complete System Metamodel
as the System Metamodel. For instance, referring to what we said in subsection
3.1, it is worth to note that only classes are drawn in the diagram whereas the
requirement is not reported, hence the Workproduct System metamodel of the
second activity does not contain the Requirement element and in this small case
study the Workproduct System metamodel is equal to the Definable System
metamodel. Of course the Complete System metamodel is larger since it also
includes the input of this activity, the Course Subscription use case.

Basing on our experience the constructs we identified are sufficient for defin-
ing the model of whatever kind of system model.

4.1 Instance of Relationships among Layers

In this subsection we discuss all the possible instance of relationships between
M2 and M1 layers.

The notation used in the M0 level of the examples is the one defined in [14]
but the way in which the system meta-metamodels has been defined guarantees
to use every kind of notation one wants.

Case 1: one relationship connects two different elements. Figure 5 shows
the case in which at level M1 two instances of SMMEs, Agent and Role, are
related by one instance of an SMMR (Play); this configuration of model allows
to represent the system as illustrated in the level M0. The result in the M0 level
depends on the notation one decides to use, in this case the Agent is realized by
mean of a package, the Role by the oval and the relation Play by the mutual
position of the ovals and the packages.

Case 2: one relationship connects two instances of the same element.
Figure 6 shows the second case in which, at level M1, two ImplemAgent are
related through the relation Association, the cardinality is two to one, hence in
the model two instances of the same SMME are related by one instance of the
SMMR. An example of diagram at level M0, regardless of the notation, implies
two instance of Implementation Agent (the TLPlanner and the EngController).

Title Suppressed Due to Excessive Length 11

<<SMME>>
Agent

<<SMMR>>
Play

<<SMME>>
Role

0..1 0..*

Diagram Design-Time Instances
(M0-System Model)

Diagram model (M1-System
Metamodel)

Role 1
Info

MyAgent

Role 2
Info

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

Fig. 5. Instance of Relationships - Case 1

<<SMMME>>
ImplAgent

2 1

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<SMMR>>
Association

-name

TLPlanner EngController

Diagram model (M1-System
Metamodel)

Diagram Design-Time
Instances

(M0-System Model)

Fig. 6. Instance of Relationships - Case 2

Case 3: one relationship among two elements determines the definition
of another element of the metamodel. This is a special case of the previous
one. Two instances of the same SMME are related by one instance of an SMMR,
but the definition of the relationship at M1 level implies the definition of another
SMME.

In order to understand when this case occurs, let us go from the bottom
and consider the level M0 shown in the Figure 7: suppose to be designing a
system where agents provide services to other agents depending on the role
they are playing. In this case each role is dependent from the other through
the service to be provided. Hence the model of the system (level M1) includes
the SMMEs Service and Role and the SMMR Service Dependency but while
the Role and Service Dependency have their own notational element (level M0)
the service dosn’t need that because its definition is implicit in the definition
of the relationship and it would not be otherwise because if we represented the

12 Massimo Cossentino and Valeria Seidita

<<instanceOf>>

<<instanceOf>>

Role 1
Info

Role 2
Info

<<service>>

<<SMMME>>
Role

2 1 <<SMMMR>>
Service

Dependency

1..n <<SMMME>>
Service

1

Diagram model (M1-System
Metamodel)

Diagram Design-Time
Instances

(M0-System Model)

Fig. 7. Instance of Relationships - Case 3

instance of Service through a specific icon we should connect it to the Role
1 and the Role 2 falling again, in this way, into the previous case and thus
changing the semantic of the level M1 because the element cannot exist with
that relation. The instantiation name of the Service SMME is in the name of
the ServiceDependency instantiation.

Case 4: one metamodel construct is at the same time an SMME and
an SMMR. In the fourth case two instances of the same element are related
through an instance of one SMMR but this time the relationship is also an SMME
and it can exist without the relationship (see Figure 8), it shares features from
both SMME and SMMR hence it is an instance of a SMMR Association Class.

<<SMME>>
Agency_Role 2 1

<<instanceOf>>

<<instanceOf>>

<<instanceOf>>

<<SMMME,SMMMR>>
Communication

Purchaser

Purchase
Manager

StockToPurchase

<<SMME>>
Content

Language

StockInfo
ContLang = RDF

+ContLang

<<SMMR>>
Plays

<<SMME>>
Agency_Agent

Diagram Design-Time Instances
(M0-System Model)

<<instanceOf>>

Diagram model (M1-System
Metamodel)

Fig. 8. Instance of Relationships - Case 4

Title Suppressed Due to Excessive Length 13

Case 5: one metamodel construct generalizes other metamodel con-
structs. This is the case when the system metamodel reports an abstract con-
struct and all its specializations, each of them can be (separately) instantiated
in different workproducts and different design actions can be made on different
constructs, hence each specialized construct has to be treated as it were a single
construct thus being united to all the previous cases.

4.2 Rules for Representing Metamodel Constructs in the WP
Content Diagram

Each case before illustrated follows a different rule for the representation of
metamodel constructs in the workproduct content diagram.

<<MMME>>
Agent

D/Q
R

<<MMMR>>
<<MMME>>
Communicaton

D/Q

<<MMME>>
Agent

D/Q
R

<<MMME>>
Role

<<MMME>>
Service

Q

R

R

<<MMME>>
Agent

<<MMME>>
Role

D/Q

R
D/Q

Case 1 Case 2

Case 3 Case 4

Fig. 9. Rules for WP Content Diagram

Figure 9 shows the rules for the first four cases whereas for the fifth case
we have to consider that the abstract element has not to be labelled because
the design action is done on one of its specialization whereas as regard the
relationships we have to take into account that each construct related to the
abstract one is really related to the corresponding number of specializations.

5 Conclusions

In this work we defined a metamodeling layered architecture meant to fully
support the creation of system metamodel for managing the knowledge of the
system in design process representation and documentation. The metamodeling
layered architecture is based on the OMG modeling infrastructure and a set of

14 Massimo Cossentino and Valeria Seidita

instance of relationships with MOF has been identified. The M2 (system meta-
metamodel) level, we identified contains all the constructs useful for defining
whatever system metamodel providing rules for modeling class of systems. In so
doing we have a mean for defining system metamodels in a common way that,
as our experience highlights, covers a very important role in design process.
Together with the meta-metalevel we illustrated a set of rules for managing all
the different design situations that can occur.

The key idea of this approach is that during the enactment of design process
the designer needs a good formalization of the constructs he can use to repre-
sent the problems he is working on and all the constructs he can instantiate in
the solution system model. Therefore having the rules for defining the system
metamodel allows to describe and document the process, hence the knowledge
on the process, in a quite uniform and consistent way. This are the contributions
proposed in this paper. We are widely using this approach in our work, it has
been shared by a large community of researchers with the result that the way of
describing a design process is now a standard [8].

This approach provides a common base for sharing knowledge about different
design processes in terms of the system metamodel constructs. For instance, by
only using the knowledge provided by the system metamodel, and in some cases
the work product content diagram, we can apply method engineer techniques for
extracting or assembling portions of work; we can establish and apply algorithms
for measuring specific features of the design process in an unbiased fashion;
furthermore we can establish if a specific design process fits the needs of the
designer for solving specific problems and, what is very important, avoiding the
presence of skilled persons that perfectly know that design process.

References

1. C. Atkinson and T. Kuhne. The essence of multilevel metamodeling. Uml 2001:
The Unified Modeling Language: Modeling Languages, Concepts, and Tools: 4th
International Conference, Toronto, Canada, October 1-5, 2001: Proceedings, 2001.

2. C. Atkinson and T. Kuhne. Processes and products in a multi-level metamod-
eling architecture. International Journal of Software Engineering and Knowledge
Engineering., 11(6):761–783, 2001.

3. C. Atkinson and T. Kuhne. Model-driven development: A metamodeling founda-
tion. IEEE Software, 20(5):36–41, September/October 2003.

4. S. Brinkkemper. Method engineering: Engineering the information systems devel-
opment methods and tools. Information and Software Technology, 38(4):275–280,
1996.

5. M. Cossentino, S. Gaglio, A. Garro, and V. Seidita. Method fragments for agent
design methodologies: from standardisation to research. International Journal of
Agent-Oriented Software Engineering (IJAOSE), 1(1):91–121, 2007.

6. A. Fuggetta. Software process: a roadmap. In In Proceedings of the Conference
on the Future of Software Engineering.ACM Press, New York (USA), pages 25–34,
Limerick (Ireland), June 4-11 2000.

7. Wolfgang Hesse. More matters on (meta-)modelling: remarks on thomas kuhnes
matters. Software and Systems Modeling (SoSyM), 5(4):387–394, December 2006.

Title Suppressed Due to Excessive Length 15

8. IEEE Foundation for Intelligent Physical Agents. Design Process Documentation
Template, Document number XC00097A-Experimental, 2011.

9. Thomas Kuhne. Matters of (meta-) modeling. Journal on Software and Systems
Modeling, 5(4):369–385, December 2006.

10. Jishnu Mukerji and Joaquin Miller. MDA guide version 1.0.1. Technical Report
omg/2003-06-01, Object Management Group, 2003.

11. Object Management Group. Meta Object Facility (MOF) Specification.
http://doc.omg.org/formal/02-04-03, 2003.

12. J. Odell. Power types. J. Object-Oriented Programming, 7(2):8–12, 1994.
13. OMG. Object Management Group. Software & Software Process Engineering

Metamodel. version 2.0. Document number: formal/2008-04-01. 2008, 2008.
14. L. Padgham, M. Winikoff, S. DeLoach, and M. Cossentino. A unified graphical

notation for aose. Agent-Oriented Software Engineering IX, pages 116–130, 2009.
15. J. Ralyté. Towards situational methods for information systems development: en-

gineering reusable method chunks. Procs. 13th Int. Conf. on Information Systems
Development. Advances in Theory, Practice and Education, pages 271–282, 2004.

16. C. Rolland, N. Prakash, and A. Benjamen. A multi-model view of process mod-
elling. Requirements Engineering, 4:169–187, 1999. 10.1007/s007660050018.

17. V. Seidita, M. Cossentino, and A. Chella. A Proposal of Process Fragment Def-
inition and Documentation. M. Cossentino, K. Tuyls, M. Kaisers, and G. Weiss
(Editors). Springer-Verlag, in printing.

18. V. Seidita, M. Cossentino, and S. Gaglio. A repository of fragments for agent
systems design. Proc. Of the Workshop on Objects and Agents (WOA06), 2006.

19. V. Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam, and
S. Gaglio. The metamodel: a starting point for design processes construction. Inter-
national Journal of Software Engineering and Knowledge Engineering., 20(4):575–
608, 2010.

20. UML. Object Management Group. OMG UML Specification v. 2.3, 05-05- 2010.

