Towards a Design Process for Modeling MAS
Organizations

Massimo Cossentino!, Carmelo Lodato!, Salvatore Lopes', Patrizia Ribino?,
Valeria Seidita? and Antonio Chella?

! Istituto di Reti e Calcolo ad Alte Prestazioni,
Consiglio Nazionale delle Ricerche, Palermo, Italy
{cossentino,c.lodato,lopes,ribino}@pa.icar.cnr.it
2 Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica
Universita degli Studi di Palermo, Italy
{seidita,chella}@dinfo.unipa.it

Abstract. The design of MAS organizations is a complex activity where
a proper methodological approach may offer a significant advantage in
enabling the conception of the best solution. Moreover, the aid provided
by a supporting tool significantly contributes to make the approach tech-
nically sound and it is a fundamental ingredient of a feasible strategy to
the development of large MASs. In this paper, we introduce a portion
of methodological approach devoted to design MAS organizations and a
preliminary version of a specific case tool, named MoT (Moise+ Tool),
for supporting activities from design production to automatic code gener-
ation. MoT provides four kinds of diagrams based on a definite graphical
notation for representing organizational elements. Our process is applied
to a classical write paper simulator example. Results include portion of
the automatically generated code according to Moise+ specifications.

1 Introduction

Distributed and open systems are widely employed in the simulation and man-
agement of highly complex scenarios in dynamic environments. To this end, such
systems should act in quasi-real time to changes occurring in the environment
adopting the most suitable behavior for reacting to the new conditions. Agents
can provide a good way for solving complex problems and they are very useful
to both design and implementation levels [13][14].

The ability of simulating complex hierarchical organization provides further
utility to the design of multi-agent systems (MAS from now on). In other words,
organizations can be seen as a set of constraints [4] that rules the behavior of
every single agent in a multi agent society.

The implementation of an organization in a MAS is normally decided at
design time. The way in which a MAS may re-organize itself has then to be
investigated from two different points of view, i.e. the design (methodological)
and the implementation point of view. A robust approach to agent organizations
comes from the work of Hubner et al. [10] where a definition of an organizational

model (Moise+) is presented. MASs designed in accord with the Moise+ model
are able to re-organize their processes and then react to what occurs in the
environment.

Organizations are described in the Moise+ model by three main views: the
structural, the functional and normative perspectives. In this model an organi-
zation is established a priori (created at design-time) and the agents ought to
follow it. The structural and functional view are considered almost independent
while the normative dimension is used for establishing a link between them. Fur-
thermore, the Moise+ model is complemented with a development tool called
J-Moise+]7], a Jason extension allowing developers to use Jason for program-
ming agents and their organizations [1]. This is nevertheless a powerful tool, but
it is not still adequately supported by a well defined methodological approach.

Some researchers have developed in the past other methodologies for MASs
where some aspects of organization were modeled. In [16] the concepts of envi-
ronment, roles, interactions and organizational rules are considered as organiza-
tional abstractions. Another example has been proposed in [3] where holarchy
represents the organization structure of the MAS made of holons [5], hence the
main element to be developed for building the MAS organization. Despite the
number of methodologies only few of them cover the entire process lifecycle, from
analysis to implementation, and above all very few is aided by tools.

In this paper we introduce a portion of methodological approach devoted
to design MAS organizations and a preliminary version of a specific case tool,
named MoT (Moise+ Tool), for supporting our approach from design production
to automatic code generation.

In particular, MoT is based on a UML compliant graphical notation to rep-
resent the Moise+ specific elements and on a code generator in order to produce
the final XML code containing the Moise+ organizational specification.

MoT has been realized by using a known tool, Metaedit+ by Metacase [12][6],
that offers a valid environment for domain specific modeling. Metaedit+ provides
means for creating an ad-hoc modeling language with concepts and rules from a
well specific problem domain, and notation to be used for drawing diagrams.

The advantages of graphically representing organizations are evident: first of
all, graphical notations are more readable and understandable at a glance than
any coding language, secondly it is usually easier to explain a graphical notation
to stakeholders involved in the design (that are not technical designers) than read
the application code with them. The possibility of involving stakeholders like
system users enables the adoption of agile or extreme development approaches
and improves the flexibility of conventional ones.

The remainder of the paper is organized as follows. In section 2 the Moise+
organizational model and Metaedit+ are introduced. In section 3 we present our
tool with the definite notation. Section 4 shows a portion of the design process
for developing organizational MAS with the related work products. Such pro-
cess is explained applying it to an example inspired by the Moise+ tutorial [8].
Moreover, in this section we address the issues concerning the Moise+ code gen-

eration. Finally some discussions and conclusions are drawn in section 5 together
with a comparison with others MAS modeling proposals.

2 Background and Motivation

Since the beginning of computer science the need for adequately managing con-
cepts related to the applications under development raised with the complexity
of systems. A promising approach to this issue has been the definition of means
for specifying what a system should do instead of how to do something. This ap-
proach led to formulation of the Model driven Engineering [11] (MDE) paradigm
that deeply changed the way of thinking and then working of designers and pro-
grammers.

Designers and developers are no more involved in the specification of each
single detail of the system using a programming language but they can model
the needed functionalities and the architecture of the system. This fact presents
many advantages like the increasing goodness of the softwares produced, the
easiness and the rapidity of conveying information among team members and the
possibility, through the use of model transformation techniques, of automatically
generating code. However this latter issue is not still supported by adequately
technology.

Our work focuses on the creation of a notation and a CASE tool, created as an
instance of a meta-CASE tool (Metaedit+), for supporting the methodological
activities involved in the development of organizational MASs. In so doing we
exploited the Moise+ organizational model and the features of Metaedit+ for
creating a graphical environment allowing the designer to implement concepts
and rules of the Moise+ model in specific design diagrams and to automatically
produce portions of code.

In the next subsections an overview of Moise+ and Metaedit+ is given.

2.1 Moise+

Moise+ [9][10] is an organizational model for MASs based on a few key elements
to characterize an organization. It provides MASs with an explicit definition of
their organizations. The organizational specification is useful both to the agents
to clearly know their organizational structure and their particular purpose and to
the organization framework, to ensure that the agents follow the specifications.
More specifically, Moise+ looks at organization as a three dimensional element
characterized by structural, functional and normative dimension.

Looking only at the structural dimension, an organization can be seen as a set
of Roles linked by Relations and clustered into Groups. The functional dimension
enriches the model showing the global objectives of the organization. It gives
some information about the plans and the way for reaching the organizational
global goals by means of Social Schemes. In these schemes the functionalities of
the organization are represented as Goals grouped into Missions.

Finally, the normative dimension is fundamental into the Moise+ model be-
cause it shows the connecting elements, the Norms, between the functional and
structural dimension of an organization. It defines the behavioral rules to be
observed by Roles in order to reach the organizational global goal. Defining the
norms basing on Moise+ means to create links between Roles and Missions. Ac-
tually, Moise+ supports two kinds of norms: the Permission and the Obligation
norms.

Practically, designing an organization using the Moise4+ model means to de-
fine an Organizational Specification (OS) which is the union of the structural,
functional and normative specification corresponding to each dimension. An OS
is an XML file with a precise structure that defines the features of the previously
mentioned elements. In the following a portion of Moise+ XML code represent-
ing the skeleton of a classical Organizational Specification is reported. This code
shows not only the main elements to be defined inside each specification but also
the order in which the elements have to be defined.

I< organisational — specification >
< structural — specification >
< role — definitions > ...
< group — specification > ...
< formation — constraints > ...
< /structural — specification >

< functional — specification >
< scheme >
< goal > ...
< mission > ...
< /scheme >
< /functional — speci fication >

< normative — specification >
< normtype =7role =?mission =7 > ...
< /mormative — speci fication >
< /organisational — speci fication >

Fig. 1. Moise+ XML code representing an organizational specification

In section 3 we present the proposed CASE tool developed in order to easily
realize organization with Moise+.

2.2 Metaedit+

Recently designers manifested the need for changing CASE tools in order to
customize them for their demands and to meet the features of different applica-
tion domains. This customization is not possible with every CASE tool because
tools constrain how the designer can do their work, how they can draw dia-
grams/models or manage tool concepts. Generally tools allow to use only fixed
methods and notation.

What Metaedit+ proposes is a way for overcoming this limitation by adding
the notion of meta-CASE tool to that of CASE tool. The meta-CASE tool is

based on a three layered architecture in which the lowest level is the model level,
hence the system design. The middle level contains a model of the bottom level,
the model of a model is called metamodel. Metamodel contains concepts and
rules for creating models. These two levels are already present in a CASE tool
but the metamodel is imposed by the creators of the tool thus implying the
previous said rigidity.

With the introduction of the third layer (the meta-metamodel one) Metaedit+
establishes concepts and rules for creating metamodels, indeed Metaedit+ offers
the possibility of modifying the metamodel by following the rules established in
the meta-metamodel, thus overcoming the constraints of CASE tools and having
the possibility of specifying modeling languages that can then be used with the
right tool. Metaedit+ is at the same time a CASE tool and a meta-CASE tool;
by using the meta-CASE tool the designer may specify her/his own modeling
language that (s)he can use by instantiating the meta-CASE tool in the CASE
tool.

MetaEdit+ is based on a specific metamodeling language, GOPPRR that
means Graph, Object, Property, Port, Relationship and Role. They are the
metatypes used for defining modeling languages and each of them has its own
semantic. Graph is the individual model, usually a diagram, the object is the
main element of the graph, the relationships connect objects, the role connects
relationships and objects, port gives the possibility to add semantics to the role
and the property. The structure and the semantic of each modeling language can
be described by a metamodel created by using these metatypes.

In addition to the previous features Metaedit+ offers an optimum support to
the UML modeling language on which a lot of design methodologies are based.
Finally Metaedit+ offers some preinstalled reports, or the possibility of cre-
ating new ones by using a specific language, the Metaedit Reporting Language
(MERL). The report is a small program defined and working onto every diagram
and, in addition to other facilities it offers, there is the document generation in
html format or others and the generation of code skeleton in various program-
ming languages (Java, C, C++, ...). The more the description of each single
element of the diagram is precise and detailed the more the produced code is
complete.

This latter functionality has been highly exploited in order to create a report
for each single newly introduced diagram of the proposed work and to generate
the corresponding xml code.

3 An organization design tool: MoT

The Moise+ Tool (MoT?) wants to be a tool supporting all the phases from the
agent organization design to Moise+ code generation. MoT has been realized by
using Metaedit+. It owns a graphical notation to represent the Moise+ specific
elements and a code generator in order to produce the final XML code containing
the Moise+ organizational specification. Fig. 2 shows a screenshot of MoT.

3 MoT is available at http://www.pa.icar.cnr.it /aose/MoT.html

[organizotional Diagram (OD): wp, August 31, 2011, 15:50 =]

Graph Edit View Iypes Fomat Help
IR RN
@3 8B|H[oora b A

=@ Hosion 2 =]

odel_Holp |
e W e (e <= J =

201 Grachrowse | Trpeowse | ObietBrower| Metoradel Bowsr|
P

bligation
e
] !
[Gl Disgram L]
Graphiype | Oig =] Commuricaiion Disgiam Obligation
[off] Cangorent Do =
O Bl |
| [GO GID PED D
(o] coea —
BY Y YT e
mCollaborator mManager monitoring ms
Max=1 Max=5 Max=1 Max= 1
Min=1 Min=1 Min=1 Min=1
i ol 1 o
[[Active: tione [subgraphs} tiare. Grid: 161 P S I show [@ 7007 -] ®

Fig. 2. A Screenshot of MoT

MoT is based on the metamodel shown in Fig. 3, it describes an organi-
zational structure for MASs adapted from Moise+. The core element of the
metamodel is the Organization that pursues some objectives (Goals), each of
them reachable executing a particular Plan. A Group is usually responsible of at
least a Scheme and a Scheme can be adopted to monitor the execution of another
Scheme. A Scheme contains several Missions composed of a set of Goals. In addi-
tion, an Organization is composed of several Roles. When an agent adopts a Role
it is committed to a Mission that is regulated by means of Norms. The Orga-
nizational Link and the Compatibility Link respectively define social exchanges
and compatibility relations among agent roles.

pursues

Responsibility

Role is committed to ~~_

— P ~==~~[com
Organizational
ink

Fig. 3. Metamodel adopted in the MoT

In the following subsections we present the adopted notation.

© 8

Communication 4@-’
= [aoal
mission _ﬁ: _o [Achievement — O
x=0" =0

Max =0

Min=0 Mn=0 Obligation —————(W)—»
group lscheme
m @

Fig. 4. The Notation for MoT

3.1 Notation

MoT provides four kinds of diagrams: the Organizational Diagram - OD, the
Scheme Structural Diagram - SSD, the Goal Structural Diagram - GSD and the
Goal Functional Diagram - GFD that we will detail in the following.

These diagrams can be composed using the notation we present in this paper.
Such notation allows to represent all the concepts involved in modeling and
designing organizational MASs according to the metamodel shown in Fig. 3.
This notation has been created as a UML profile. It allows to represent the
following concepts (graphically shown in Fig. 4).

Roles - A Role is a UML class depicted as a sticky man. Its properties are
represented in the form of class attributes. The main features of a MoiseRole
are: a RoleName, a MaxAscribe and a MinAscribe representing the cardinality
of the role in the organization. An abstract role, as usual, is identified using an
italic font.

Groups - A Group is represented by means of a package with a sticky men
icon. It may contain several structural elements (Roles) and other grouping ele-
ments (sub-groups). According to the Moise+ definition, the membership of an
agent to a group constrains the agents that can cooperate with it.

Goals - In order to represent a goal in MoT we have used a UML class
graphically depicted as circle with a check. Each goal element is characterized by
a name and by a collection of attributes. Each attribute corresponds to a specific
feature of the Moise+ concept of goal. As regard the attribute compartment, it
basically contains the GoalType propriety that represents the two kinds of goal
namely achievement and maintenance and the ¢tf attribute value prescribing
the time requested for fulfilling the goal. The default type for every goal is
achievement.

Missions - In the Moise4+ model, a Mission is defined as a coherent set of
authorized goals to achieve. In order to represent a mission in MoT we have
used a UML class graphically depicted as a dartboard. Here the attributes’
compartment contains values for the minimum and the maximum commitments
to the mission.

Social Schemes - A Social Scheme or simply Scheme in Moise+ is composed
of a functional goal decomposition tree (where the root is the objective of the
Scheme and the goals are decomposed within global plan) and a set of missions
(where the responsibilities for the sub-goals are grouped to be distributed among
Roles). In our tool, we prefer split its structural aspect (described in the SSD
and represented by means of a UML package) from the functional one (described
as a plan in the GFD). Thus, the schemes in the SSD are represented only as a
set of associated missions while the GFD shows further features.

Relationships - The elements of the model can be logically related one
another using several kinds of relationships. We omit to define the common
UML relations that we use in MoT diagrams. In the following we describe those
specially introduced for specifying Moise+ concepts.

> Organizational Link - It defines the way in which social exchanges be-
tween agent roles occur. Moise4+ model defines three types of Organizational
links: communication representing exchange of information; authority defin-
ing control power; acquaintance representing knowledge about other agents.
In MoT these relations are graphically represented by the first relation shown
in Fig. 4 and can be characterized by means of a label showing the type.

> Compatibility Link - It is always plotted between two roles and estab-
lishes the possibility for an agent to simultaneously play the two roles. It is
graphically represented by the second relation shown in Fig. 4. When the
link is oriented, it means that the agent playing the source role can play the
target role but not the vice-versa.

> Norm - In the Moise+ model, a role is usually linked by means of Norms
to one or more missions defined in a particular scheme. In our tool, we have
defined a new link type named MoiseNormLink graphically represented by
the third relation shown in Fig. 4. This link is characterized by the Norm-
LinkType propriety and can take two values: Obligation and Permission. In
MoT this link is a directed arc that starts always from a Role to a Mission.
It expresses that an agent playing the role is obliged/allowed to fulfill the
mission.

In the following section we introduce all phases of our methodological ap-
proach with the related work products (MoT diagrams). Our design process will
be detailed with the aid of the the classical example (“Writing paper”) reported
in the Moise Tutorial [8].

4 Methodological Approach

We aim at defining a complete methodological approach ranging from require-
ments analysis to code production and system deployment. Such a methodology
will include a goal oriented analysis (with some features inspired by the i* [15]
and Tropos [2] approaches), the design of organizations that will be described
below and the design of agents based on the Jason platform. The scope of this
paper is limited to the organizational part of this work and therefore (also for

Plan

Goal Mission
Decomposition Identification

- —>
Description d
Problem
Specification
= E
GSD SsD GFD oD Moise+ Code

Fig. 5. Portion of the Design Process for Organizational Multi-Agent Systems

space concerns) we skip the initial part of the methodology (requirements analy-
sis) and the final one (the agent design and what follows it). In other words, this
section introduces only the portion of our methodological approach devoted to
instantiate the metamodel shown in Fig. 3. The diagrams we illustrated in the
previous section are used for representing the outcome of this portion of design
process, as it is sketched in Fig. 5. Let us assume that the problem specification
document is already existing and it provides a list of system goals obtained for
instance with a Tropos or i* like design process. The aim of our methodology is
to model organizational multi-agent systems principally by means of goals, their
decomposition, missions and roles; in the following table, we highlight the work
product where each metamodel element of Fig. 3 is instantiated.

Table 1. Summary of instantiated element.

’Work Product \Metamodel Element
Goal Structural Diagram Goal

Scheme Structural Diagram Scheme, Mission

Goal Functional Diagram Plan

Role, Group, Monitor, Norm, Organizational

Organizational Diagram Link, Compatibility Link

In the following subsections are detailed all phases of our approach shown in
Fig. 5.

4.1 The Goal Decomposition Phase

The Goal Decomposition phase (see Fig.5) of the proposed design process in-
volves activities for the decomposition of the identified goals and the identifi-
cation of their dependencies. During this phase, goals are refined by means of
an AND/OR decomposition. This allows to determine a hierarchical structure
among goals and to individuate the dependencies between a high level goal and
its subgoals. A dependency among goals implies that a given goal is constrained

by another one for its fulfillment. In particular, an AND dependency means that
all subgoals must be satisfied in order to fulfill the original goal. Vice versa, in
an OR dependency the original goal is satisfied when any one of its children is
fulfilled. This phase results in the Goal Structural Diagram where the goal (see
metamodel Fig. 3) is instantiated.

In MoT, the GSD is an extended UML class diagram where the Goal is the
only Moise+ element permitted.

|Athievement|
=0
{AND}
|Athievement| Achievierner,
Atf=0] N tf = 0 N
’ i .
(Ayglp) (AN}
fititle [wabs [wsectitles wsecs finishy
Achievermnent Achievement Achievemnent Achievemnent Achigverent
ittf = 0 tf=0 Ittf = 0 ittf = 0 =0
;o aoy
wconc fwrefs
Achievement Achievemnent
ttf =0 ittf =0

Fig. 6. Goal Structural Diagram for the Writing Paper example - GSD

In order to add a Goal in an GSD the MoiseGoal object from toolbar of the
GSD must be selected. In this diagram, goals are related to other goals by means
of an AND or OR dependency relation.

Fig. 6 shows the GSD for the “Writing paper” example. In this example, a set
of agents wants to write a paper. In order to solve the problem, an organizational
strategy is adopted. In this instance, we don’t want to argue about the design
choice. Vice versa, we accept the solution proposed in [8] because we want to
show how it is represented in a GSD.

As we can see in Fig. 6, the global objective of the organization (to be created)
is decomposed into two sub-goals fdv (first draft version) and sv (submit version).
The fdv goal is, in turn, decomposed into three sub-goals: write a title (wtitle),
an abstract (wabs), and the section titles (wsectitles). For the other hand, in
order to fulfill the sv, it is necessary to write the sections (wsecs) and to finalize
the paper (finish), that is to write the conclusion (wconc) and the bibliography
(wrefs). The GSD for the “Writing paper” example highlights the root goal of
the organization may be reachable only if all its subgoals have been satisfied.

writePaperSch monitoringSch ...
[wsectitles sanctioning ms

Achievernent Achieverent Max =1

ttf = itf =0 Min =1

monitoring >
(A0 wconc rewarding mr

Achievernent Achievement Achievemnent Max: 1

ittf =0 Itf =0 tf =0 Min=1

Fig. 7. The Writing Paper Example - SSD

This is because all the relations linking goals with the related subgoals are AND
relations.

4.2 Mission Identification Phase

The Goal Structural Diagram is the input of the Mission Identification phase
where the main aim is to identify Roles, Missions and Schemes. This phase starts
with the Roles Identification activity. Roles are identified by looking at Positions
coming out from the previously report Tropos or i*-like analysis phase. We con-
sider a Position characterized by its own competencies in order to fulfill its goals.
Often Roles are identified in an iterative refinement process working in this way:
some candidate Roles are identified, their consistency is verified against the Mis-
sions that is possible to assign them (see description of next activity). Roles
are splitted or merged according to what emerges from the analysis of Mission
assignments. Instantiating Missions is useful for the definition of organizations
complying with the Moise specification. Thus it is necessary to establish how to
group goals coming from the previous Goal Decomposition Phase. Practically,
we group the leaf goals of the diagram into missions according to the previously
identified candidate Roles, starting from the GSD. The Role involved in pursuing
a Goal is sometimes the same Role who has a direct interest in its achievement,
other times the goal is under the responsibility of other Roles. We assume that
information about Roles responsibility are coming from the requirements anal-
ysis phase and guide this activity. The analysis of mission assignment to Roles
may be useful for identifying Roles needing too many capacities or incoherent
profiles. This may lead to split the candidate Role. Other times, missions analy-
sis may indicate that similar Roles exist and their merging may be advisable. At
the end of this iterative activity, missions are grouped into Schemes according to
the high level goal to be satisfied. This series of iterations produces the Scheme
Structural Diagram, where the Mission and Scheme metamodel elements (see
Fig. 3) are instantiated.

In MoT, the SSD is an extended UML class diagram where main elements
are Goal, Scheme and Mission. In the SSD, a Scheme is modeled by means of a
package with a little sheet icon, where classes (i.e. missions) are grouped. The
package’s name corresponds to the social scheme id. In a SSD can be represented
more than one Scheme, thus representing the existence of different schemes in
the same organization with different objectives.

The Goal element is the same previously defined in the GSD and imported
in the SSD view. An SSD allows MAS developers to design the structure of
the Social Schemes in terms of goals and missions. In this diagram, we can also
specify the composition of each single mission with related goals. Some of these
goals are labelled as the root goal of the related Scheme.

As regards relationships among elements, we only use two kinds of relation-
ship: the aggregation and the dependency. The latter is used for representing
how two different schemes depend each others, the former is used for relating
missions and goals. With respect to Moise+, goals are aggregated into missions
that will be distributed/committed to Roles.

Fig. 7 shows a portion of the SSD for the “Writing paper” example. It is
composed of two Social Schemes, writePaperSch and monitoringSch. The portion
of writePaperSch scheme reported in Fig. 7 shows how the mManager mission
is a composition of five goals: wp, wtitle, concl, wabs, wsectitles. This mission
concerns the general management of the writing process. While the illustrated
portion of monitoringSch scheme includes two missions: ms and mr mission
formed by sanctioning and rewarding goal respectively. These missions concern
the employment of sanctioning and rewarding policies in order to enforce rules.
In the SSD, it is also possible to underline the dependences among different
Social Schemes. As Fig. 7 shows, the Scheme writePaperSch is related to the
monitoringSch Scheme through a “monitoring” dependency relationship. This
is because the scheme monitoringSch is adopted in order to ensure the correct
execution of the writePaperSch.

4.3 The Plan Description Phase

The Plan Description phase allows to establish the precedence relations among
goals, that is the temporal sequence in which the goals are to be fulfilled. Es-
tablishing precedence relations among goals allows to consider different design
choices. This phase is assisted by the Goal Functional Diagram. At this stage of
the process, the functional aspect of goals (Plan) is determined.

The Goal Functional Diagram represents the functional view of the root goals
of the schemes. In other words, it depicts how the task/activity related to each
subgoal must be executed in order to fulfill the scheme root goal (that is the
plans to reach the root goal). It is important to highlight that there are three
different types of goal fulfillment: sequential, parallel and choice. If two goals
are related with a sequential relationship then the target goal can be reached
only after that the source goal is reached. If two goals are related with a parallel
relationship then both goals can be simultaneously reached. Finally, a choice
relationship indicates that it is possible to choose the goal to be achieved.

A GFD in MoT is realized by means of a UML activity diagram where the
Goal is represented by an activity where the name is the goal’s id. In a GFD the
plans to reach the goals are also defined. There are three different kinds of plan
operator: sequence, parallelism and choice, the first means that a goal ¢g; (having
two sub-goals g; ; and g;;+;) can be achieved only if the sequence of g;; and
Gi,i+j is terminated. All of them can be easily represented by means of the UML
activity diagram syntax, for instance the parallelism is represented through the
fork and the choice through the decision diamond. Sequence is represented by a
straight arrow line.

®
v
wp

fdv
L J

¥

fi an h ’
. <>

k[st =) __;_
é

wsectitles

©‘_“'—m g‘_m'—m.

[Rewarding j [Sanctlomngj
vy

&

®

—<i>_
é
®

(a) (b)

Fig. 8. Goal Functional Diagrams of the Writing Paper Example - GFD

Fig. 8(a) and Fig. 8(b) show the Goal Functional Diagrams built for the wp
and monitoring goals for the Writing Paper example which are the root goals of
writePaperSch and monitoringSch (defined in the previous section) correspond-
ingly. The GFD of the writePaperSch (see Fig. 8(a)) explains how to achieve the
root goal of the scheme. In detail, the fulfillment of the wp goal depends on the
achievement of the fdv and sv goal. The sv goal is reachable only after that the
fdv is satisfied. In turn, fdv is achieved executing the atomic goals wtitle, wabs
and wsectitles sequentially.

4.4 The Organizational Definition Phase

Finally, the Organizational Definition is the core phase of our methodology and
it includes several steps. This phase uses the work products coming from the

Commumca[ron

author
Max = 0
Min=0
8 Acquaitance 4@—> 8

writer edltor
Max=5 Max = 1

Min=1 *+— :HAulhonly Min =1

| ————— Obligation

wpglou

Obligation

monitoring

| |
‘ Obhglatlon ’

monitoring
Obligation Permission

|
writePaperSch, ? ? monitoringSch ?

mCollaborator mManager er monitoring
Max =5 M =
Min=1 M

|

m d.
(=

Ed
I

@
©
=@

3
2
£

@
©

=z
I}
=
i
=
5}
=

=
SR
"o
ES
Ei
I
ES
Ei

mﬂ

Fig. 9. The Writing Paper Example - OD

previous ones. Thus, it is almost natural finalizing the Roles of the Organization
to be created, by means of the elements previously identified and instantiated.
As a consequence, we can determine the kind of rule (Norms) that bind the Role
to the mission and also the work teams (Groups) to Roles belong.

The set of all formed work groups compose the entire Organization. The last
steps of this phase are to establish which Roles are compatibles (Compatibility
Links) with some others according to the policy adopted in the organization and
which subordination relations exist among Roles (Organizational links). This
phase is assisted by the Organizational Diagram.

In MoT, an Organizational Diagram is an extended UML class diagram for
designing the structural and normative aspect of an organization. The OD fo-
cuses on Moise+ elements such as Roles, Groups, Missions, Schemes and different
kinds of relationships.

Fig. 9 shows the Organizational Diagram for the Writing Paper example.
A possible solution for this problem, can be provided defining an organization
with one group (wpgroup) and two roles (Writer and Editor). These roles are
an extension of the abstract role Author. As exemplified in Fig. 9, an agent
playing the writer role can play the editor role at the same time and vice-versa
because they are linked by a bidirectional Moise CompatibilityLink. Moreover, in
this diagram the organizational links existing between roles are also represented.
For example, the MoiseOrganizationalLink between editor and writer role is of
the type Authority. This means that an agent playing the role editor in the
writing paper organization has some kind of control on agents playing the writer
role.

<structural-specification>
<role-definitions>
<role id="author"> </role>
<role id="editor"> <extends role="author"/> </role>
<role id="writer"> <extends role="author"/> </role>
</role-definitions>
<group-specification id="wpgroup" monitoring-scheme="writePaperSch"
monitoring-scheme="monitoringSch">
<roles>
<role id="editor" min="1" max="1" />
<role id="writer" min="1" max="5" />
E </roles>
<links>
<link from="author" to="author" type="Communication"
scope="intra-group" extends-sub-groups="true" bi-dir="false"/>
<link from="editor" to="writer" type="Authority"
scope="1intra-group" extends-sub-groups="true" bi-dir="false"/>
<link from="writer" to="editor" type="Acquaitance"
scope="intra-group" extends-sub-groups="true" bi-dir="false"/>

</1links>
<formation-constraints>
<compatibility from="editor" to="writer" type="compatibility"
scope="intra-group" extends-sub-groups="false" bi-dir="true"/>
</formation-constraints>
</group-specification>
</structural-specification>

Fig. 10. Moise+ Structural Specification generated code from OD

Finally, the instantiated roles are linked by means of MoiseNormLinks to
related missions. In the portion of diagram reported in Fig. 9, one of the Writer’s
mission is mbib (i.e. getting references for the paper). The norm linking that
mission to the role is an Obligation, that is the agent playing the Writer role
must commit to this mission. The Editor, instead, may commit to the mission
mManager because the link is a Permission norm.

4.5 Code Generation Phase

The last phase of our process is the Code Generation. This phase is devoted to
produce the Moise+ organizational specifications of the MAS to be developed.
MoT supports this phase generating Moise+ code automatically.

In the previous sections we have defined the domain-specific modeling lan-
guage in order to design agent organizations to be implemented in Moise+. The
resulting metamodel containing the domain concepts with their relations and
notation is shown in Fig.3. In this subsection, instead, we want to specify the
mapping from model to code by defining a domain-specific code generator us-
ing MetaEdit+. In MetaEdit+, code generators are defined in the Generator
Editor using the MERL scripting language. MERL enables navigating through
the elements of the user designed diagrams accessing the data according to the
defined metamodel. Moreover, MERL allows translating the design data into the
formats required by the generation target language.

For our purposes, we have defined the main generators associated with the
diagram types defined in the section 3.1. Each generator is responsible of pro-
ducing a Moise+ specification portion.

Specifically, the Structural Specification Generator (SSG) and the Normative
Specification Generator (NSG) produces the XML portion of code concerning
the Moise+ Structural and Normative Specification by respectively analyzing
the elements designed in the Organizational Diagram.

The Functional Specification Generator (FSG) generates the Moise+ Func-
tional Specification. This (as hinted in the section 2) shows how the organiza-
tional goals can be reached and how to compose the missions to be assigned to a
specific role. For these reasons, the FSG is obtained merging two sub-generators:
the former maps of the Goal Functional Diagram in the XML code concerning
the Moise+ goal decomposition tree; the latter traduces the design data of the
Scheme Structural Diagram in the portion of XML code representing the com-
position of the missions. The Fig. 10 shows the portion of structural specification
generated by means of application of SSG to the OD of the writing paper exam-
ple.

5 Conclusion

In order to fully exploit the powerful of agents nowadays research is directing
towards multi agent systems organized in the same way the humans do. The
design and implementation of this kind of system obviously requires to manage
abstractions that have to be used for modeling norms, goals, social schemes ad
so on. Above all it requires supporting tools for guiding the designer from the
analysis to the implementation in simple and less costly fashion.

This paper introduce a first step towards the creation of a design process for
developing MASs organized in hierarchical structures that can be implemented
with Moise+ and supported by a CASE tool using a specific notation for repre-
senting organizations. In particular, we illustrated a portion of our methodolog-
ical approach devoted to instantiate the main elements necessary to create an
agent organization with Moise+.

Moreover, we developed a CASE tool by using Metaedit+ that allows to
generate specific code for each kind of diagrams, in so doing we are able to
support the designer in producing organizational multi agent systems models and
then implementing them in a semi automatic way. The Moise+ metamodel is the
basis for our tool that, thanks to automatic generation of code from diagrams,
lets the designer free from the heavy work related to the manual production of
organization XML code.

Finally it is worth noting that the use of Metaedit+ constitutes a first ex-
periment that produced very good results in terms of CASE tool for supporting
design activities. The approach we adopted for the creation of the UML profile
for representing organizations is general enough for being applied with every kind
of tools since it is grounded on the creation of a metamodel that complement
the one of Moise+ with that of UML.

For the future we are planning to develop a CASE tool as an extension of
Eclipse that might let us overcome the age-old limit of Metaedit+ in managing
images and easily positioning elements in the diagrams.

Acknowledgment. This work was realized within IMPULSO and partially sup-
ported by the EU project FP7-Humanobs and by the FRASI project.

References

10.

11.
12.

13.

14.

15.

16.

. Raphael H. Bordini, Jomi Fred Hiibner, and Michael J. Wooldridge. Programming

multi-agent systems in AgentSpeak using Jason. Wiley-Interscience, 2007.

. Paolo Bresciani, Paolo Giorgini, Fausto Giunchiglia, John Mylopoulos, and Anna

Perini. Tropos: An agent-oriented software development methodology. Autonomous
Agent and Multi-Agent Systems (8), 3:203-236, 2004.

. M. Cossentino, N. Gaud, V. Hilaire, S. Galland, and A. Koukam. ASPECS: an

agent-oriented software process for engineering complex systems. Autonomous
Agents and Multi-Agent Systems, 20(2):260-304, 2010.

. V. Dignum and F. Dignum. Modelling agent societies: co-ordination frameworks

and institutions. Progress in Artificial Intelligence, pages 7-21, 2001.

. K. Fischer, M. Schillo, and J. Siekmann. Holonic multiagent systems: A foundation

for the organisation of multiagent systems. Holonic and Multi-Agent Systems for
Manufacturing, pages 1083-1084, 2004.

. Isazadeh H. and Lamb D. A. Case environments and metacase tools. 1997.
. Jomi Fred Hiibner. J-moise+ programming organizational agents with moise+ and

jason (2007).

. Jomi Fred Hiibner, Jaime Simao Sichman, and Olivier Boissier. Moise tutorial.

(for moise 0.7).

. Jomi Fred Hiibner, Jaime Sim&o Sichman, and Olivier Boissier. Moise+: towards

a structural, functional, and deontic model for mas organization. In Proceedings
of the first international joint conference on Autonomous agents and multiagent
systems: part 1, page 502. ACM, 2002.

Jomi Fred Hiibner, Jaime Sim&o Sichman, and Olivier Boissier. Developing or-
ganised multiagent systems using the MOISE+4 model: programming issues at the
system and agent levels. International Journal of Agent-Oriented Software Engi-
neering, 1(3):370-395, 2007.

Douglas C. Schmidt. Model-driven engineering. Computer, 39(2):25-31, Feb. 2006.
Juha-Pekka Tolvanen and Matti Rossi. Metaedit+: defining and using domain-
specific modeling languages and code generators. In OOPSLA ’03: Companion
of the 18th annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 92-93, New York, NY, USA, 2003.
ACM Press.

M. Wooldridge and N.R. Jennings. Intelligent Agents: Theory and Practice. The
Knowledge Engineering Review, 10(2):115-152, 1995.

M. Woolridge and M.J. Wooldridge. Introduction to Multiagent Systems. John
Wiley & Sons, Inc. New York, NY, USA, 2001.

E. Yu. Modeling organizations for information systems requirements engineer-
ing. Requirements Engineering, Proceedings of IEEE International Symposium on
(1993):34-41, 1993.

Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing
multiagent systems: The Gaia methodology. ACM Transactions on Software En-
gineering and Methodology (TOSEM), 12(3):317-370, July 2003.

