
A Proposal of Process Fragment Definition and
Documentation

Valeria Seidita1, Massimo Cossentino2 and Antonio Chella1

1 Dipartimento di Ingegneria Chimica Gestionale Informatica Meccanica
Università degli Studi di Palermo, Italy
{seidita,chella}@dinfo.unipa.it

2 Istituto di Reti e Calcolo ad Alte Prestazioni, Consiglio Nazionale delle Ricerche -
ICAR/CNR Palermo, Italy
cossentino@pa.icar.cnr.it

Abstract. This paper focuses on the field of Situational Method Engi-
neering (SME) for the construction of agent-oriented design processes.
Whatever SME approach a method designer wants to use, he has to
manage two main elements: the (method or process) fragment and the
repository where it is stored. Specific fragment definition and documen-
tation are fundamental during these activities, for new process composi-
tion, and for the consequent system design activities. This paper aims at
illustrating a proposal of fragment definition and documentation. This
proposal is aimed to be an input for the IEEE FIPA Design Process Doc-
umentation and Fragmentation working group and, as regards our own
research work, this is the ideal completion of the methodological practices
prescribed in the PRoDe approach for new processes composition.

1 Introduction

The work presented in this paper starts and is based on what we have done
during the latest years towards the definition of the best way to create ad-hoc
agent oriented design processes. The development of a multi agent system always
requires great efforts in learning and using an existing design process.

It has been said and heard several times that it does not exist one design
process (or also a methodology or a method) to develop systems able to solve
every kind of problems and that there is the need for creating techniques and
tools for a designer to develop an ad-hoc design process prior to use it on the
base of his own needs [11][20][19].

In order to solve this problem and to give means for one to develop an
agent system using the “right” design process, we adopted the (Situational)
Method Engineering approach and we started from pointing out what we intend
for design process. (Situational) Method Engineering [8][2][11][15] provides tools
and techniques for creating design processes by reusing portion of existing ones,
called method fragment, stored in a repository, the method base.

In [4] the main elements of an agent-oriented design process have been identi-
fied, they fundamentally ground on three of the main elements a designer always

meets during design, they refer to the stakeholders that perform activities in or-
der to produce design results (also labelled work products or artefacts).

The key idea of our approach is that this core triad has to be augmented by
another important element: the system metamodel. This concern, also deduced
from the MDE [16] approach, led to the consideration that producing design
results, is nothing else but instantiating elements from a (meta-)model.

The system metamodel is the fundamental element to be considered follow-
ing the (Situational) Method Engineering approach, PRoDe (the Process for
designing Design Processes), we have recently created [17]. In PRoDe the cre-
ation of design processes can be done by following specific phases from analysis
to implementation. The system metamodel contains the set of constructs that
will satisfy the system requirements

A lot of existing (Situational) Method Engineering approaches exist [7][14][12]
[9][1], they are developed around three main phases: the process requirements
analysis, the process fragments selection and the process fragment assembly. The
principal aim of SME is to manage the method fragment.

Nowadays, there are a lot of definitions of method fragment in the research
on (Situational) Method Engineering. We claim that none of them can be uni-
versally applied. Different (Situational) Method Engineering approaches own
different notion of method fragment and as a consequence they use proprietary
repositories. Actually, this reason and the lack of a unique fragment interface
severely limit the availability of repositories.

In this paper we focus on the process fragment definition and documentation
by identifying its main elements and following a twofold aim: reuse, in terms of
providing all the information for supporting the selection and assembly phases,
and reuse in a more general design point of view, hence providing information
useful to designers. During system development, designer needs guidelines on
the portion of work described in the fragment and how to produce the related
artefacts. So the main notion, we deal with, is the System Metamodel that
represents the major improvement to the work proposed in [17].

Our aim is to give a definition aiming at well documenting the process frag-
ment. We pursue a twofold objective: 1) using the fragment at the system design
time and 2) reusing in storage and assembly, in so doing we lay the founda-
tions for establishing a standard definition of fragment and the related standard
documentation. This work is the natural prosecution of the work done by the
authors within the IEEE FIPA Design Process Documentation and Fragmenta-
tion working group that already resulted in the standard way of documenting
design processes [10].

In the following sections the definition and a template for documentation of
process fragment will be shown together with an example of documentation.

2 Background and Motivation

During the latest years the fact that the projects’ features and organization
specificities greatly influence the software development methods has become ev-

ident. Besides the more the software systems become complex the more this fact
becomes urgent. The consequence is that it does not exist a unique development
method that could fit every kind of needs organizations could present and that
can be used for engineering every kind of software systems.

In this scenario it is increasing the need for techniques allowing organizations
to create and then to use their own development method(s). Specific development
methods could take into account the kind of problems the organization is devoted
to solve and the characteristics they present in terms of designers/developers
skills, known and used tools and so on.

The discipline of Method Engineering has faced this problem and some im-
portant results has been reached. The Method Engineering has been defined by
Brinkkemper et al. [2] as “the engineering discipline to design, construct and
adapt methods, techniques and tools for the development of information sys-
tems ”. Method engineering aims to accomplish two different scopes: the first
is to create situation specific methods for meeting organizational features and
represent a sort of choice list, the second is to produce the so called method “on
the fly”. Hence the system development implies and starts with the definition
of development methods that fit specific project situations (this is the matter
of a sub-area of Method Engineering (ME), the Situational Method Engineering
(SME) [11]).

The best and quickest way to develop situation specific methods is reusing
existing ones. For these purposes (S)ME prescribes to break down existing meth-
ods into “components” that may be stored in a repository. These components
may be retrieved (analyzed and then selected) from the repository in order to be
composed/assembled in a new method fitting project/organization needs. They
can also be used as they are or adapted in order to best fit specific needs or in
order to facilitate the composition of the process.

Still open issues are: the definition of the components and their granularity,
how they have to be selected from the repository and how they can be assembled.

In the past the authors developed an approach for new design processes
composition (PRoDe [17]) that entails the aforementioned “component” namely
the Process Fragment and also the System Metamodel.

The Process Fragment is a portion of design process adequately
created and structured for being reused during the composition and en-
actment of new design processes both in the field of agent oriented soft-
ware engineering and in other ones (model driven engineering-based ap-
proaches are preferred fields of application for the proposed definition).

The System Metamodel is the definition of constructs needed for
creating system models.

It is our belief that during the enactment of the methods one (or more)
process role refers, more or less knowingly, to the metamodel in order to produce
work products where instances of a set of metamodel constructs are managed
(more details about this argument can be found in [10]).

Managing process fragments is the main aim of PRoDe, it covers the three
main phases of SME, the process requirement analysis and the definition of
process fragment, the selection and then the assembly. Because of our conviction
about the importance of the system metamodel in all the design activities, it has
a central role in PRoDe.

The first activity in the PRoDe approach entails a set of steps that, starting
from the process requirements, are able to produce the system metamodel or
in any case a first draft of it. PRoDe is iterative, the new design process, after
a first enactment, might be modified/enhanced due to test results and new re-
quirements identification. As regard selection and assembly the PRoDe approach
provides a well defined set of activities for identifying and retrieving fragments
from repository basing on some considerations made on the system metamodel
[17]. The PRoDe activities, as well as other SME approach activities, are also
highly grounded on the SME fundamental element, the Process Fragment (or
method fragment or chunk or simply fragment - however it is named by differ-
ent researchers), and obviously on the repository aimed at storing it. In order
to apply a SME approach in the most fruitful way, a well done definition and
documentation of process fragment is useful for properly storing, selecting and
assembling new design processes whatever SME approach one wants to follow.

The process fragment definition together with the specific SME process (see
for instance [17]) used for retrieving and composing fragments may notably in-
fluence how the repository is conceived and constructed. We try to not take this
chance by using the definition we propose in the following section.

3 The Process Fragment Definition

Figure 1 represents all the elements composing a Process Fragment. It contains
all the elements useful for representing and documenting the fragment under the
process, product and reuse point of view; the proposed fragment documentation
template, that will be presented in the following section, slavishly follows the
proposed representation, its elements and their definitions.

The root element, the Process Fragment, has been generally extracted from
an existing design process, therefore an important information to be stored in
the repository is the Design Process the fragment refers to. This serves for the
designer to set the application context and the particular features the fragment
would exhibit. The Process Fragment can be of three different levels of granu-
larity: phase, composed and atomic, each of them is related to the quantity of
work to be done and to the complexity of the produced outcome.

– A phase (process) fragment delivers a set of work products belonging to the
same design abstraction level of the design flow. Such a work product may
belong to any of the cited work product types. An example of phase-level
work product may be a system analysis document; it is composed of several
work products (diagrams, text documents, . . .) all belonging to the same
design abstraction level (system analysis).

refers to

has
terms by

Design
Process

Phase
Fragment

Composed
Fragment

Process
Fragment

Atomic
Fragment

Goal

pursues

Activityprescribes

System
Metamodel
Construct

System
Metamodel

Element

System
Metamodel

Relationship

defines/refines
/quotes

relates

provides
information

Guideline

Dependency Composition
Guideline

Role

performs/
assists

delivers Work
Product

Notation

Workflow

orders

is input/
output

is input/
output

depicts

Description

Fragment
Overview
Diagram

Diagram
Description

Glossary

Reuse
Guideline

Enactment
Guideline

System
Metamodel
Attribute

System
Metamodel
Operation

WP_Kind

1..1

1..*

1..1

1..1

1..*

1..11..*

1..11..1

1..1

1..1

1..1

1..1
1..*

1..*

1..*

1..*

1..1

1..*

1..*

1..1

1..*

1..*

1..1

Fig. 1. The Process Fragment View

– A composed (process) fragment delivers a work product (or a set of instances
of the same work product). Such a work product may belong to any of the
cited work product types.

– An atomic (process) fragment delivers a portion of a work product and/or a
set of system model constructs (in terms of their instantiation or refinement).
A portion of a work product is here intended never to be a whole work
product; in other words, atomic fragments never deliver entire work products.

The process fragment prescribes some activities to do, each of them is a portion
of work that has to be performed by one or more stakeholders (Roles).

Activity delivers Work Products, where the results of design activities are
drawn by using a specific Notation and each work product is developed under
the responsibility of one role. The notation to be used greatly influences the flow
of work to be done for producing a work product and for this reason a fragment
has to be supplied with a set of Guidelines. As regards the process and product
perspective of the fragment the Enactment Guidelines provides all the elements,
description and so on, for applying the workflow prescribed in the fragment.

It is not mandatory to follow a specific notation, the same kind of diagram (for
instance a structural one) may be expressed by using different notations without
significant differences in the resulting expressiveness. Moreover, different kinds
(WP Kind) of work products can be delivered. We identified two main work
product kinds: graphical and textual, the former when an activity results in a
diagram, the second when designers produce textual documents. Finally a work
product can be of composite kind if it is a composition of the previous said kinds,
for instance a document with a diagram and the text explaining it (more details
can be found in [18]).

As well as in the design process definition, one of the most important elements
in the fragment definition is the (Multi-Agent) System Metamodel (Multi-Agent
SMM); each fragment is based on a system metamodel that is obviously a part
of the metamodel of the design process it comes from. The metamodel contains
the set of constructs representing the (portion of) system to be designed using
a specific process fragment. We consider System Metamodel composed of con-
structs that can be elements (SMME - the concepts to be designed), relationships
among them (SMMR), attributes (SMMA) and operations (SMMO) for respec-
tively representing a particular feature and the behavioral characteristics of an
element (see [6] for further details).

The main aim of process fragment is to instantiate one (or more) system
metamodel construct(s) (SMMC) and in so doing it may be requested to define
relationships among elements or to quote other elements and/or relationships;
besides the result of defining an element or a relationship might be the refinement
of existing elements or relationships. This fact led to the definition of the kinds of
action to be done on a system metamodel construct (see the following section for
details). Finally SMMC has a definition to be listed in a glossary; the definition
is mainly useful during selection when the method designer wants know which
kind of metamodel construct better fits with the metamodel construct s/he is
dealing with.

Until now we explored the process and product part of the fragment through a
set of elements that has to be necessarily present in the fragment documentation,
now let us quickly focus on the elements that principally deal with the reuse
aspect of the fragment: Goal, and Dependency guidelines. The fragment goal is
the objective the process part of the fragment wants to pursue and it is to be
used during fragment selection from the repository. For this reason it is related
to the new design process requirements, in other words, a goal describes the
contribution a fragment may give to the accomplishment of some design process
requirements.

The dependency guideline aims at describing specific constraints, if they ex-
ist, for the fragment to be composed with other ones, for instance, there can
be fragments dealing with system metamodel elements that are very specific to
particular application domains, in this case it should be possible that such frag-
ments can be composed with fragments coming from the same classes of design
processes.

It is important noting that the way the work has to be performed inside one
fragment may slightly change depending on the notation of the work product
produced; if the result has to be a graphical work product the activity and
the related guidelines are different if we want to use two different notations.
Since the fragment aims at designing a specific system metamodel construct,
we can consider the fragment itself independent from the specific notation. The
same result can be obtained by producing different work products in different
notations.

In the following table we give the detailed definition of all the elements com-
posing a process fragment:

Table 1: Process Fragment Elements Definitions

Term Definition

Design Process It is the design process from which the fragment
has been extracted.

Phase A specification of the fragment position in the de-
sign workflow. Usually referring to a taxonomy
(i.e. Requirements elicitation, Analysis, Design,
etc.)

Goal The process-oriented objective of the fragment.
Activity A portion of work assignable to a performer (role).

An activity may be atomic (sometimes addressed
as Action) or composed by other activities.

Work Product The resulting product of the work done in the frag-
ment; it can be realized in different ways (diagram,
text,..) also depending on the specific adopted no-
tation.

WP Kind Represents the specific kind one work product can
be; it strictly depends on the means the adopted
notation provides. One work product can be:
Structured or Free text, Structural, Behavioural
or Composite

Notation Each deliverable can be drawn by using a specific
notation. Concepts dealt by the fragment have to
find a mapping in the notation. Notation usually
includes a metamodel and a set of pictorial pre-
scriptions used to represent the instantiation of
metamodel elements.

Role The stakeholder performing the work in the pro-
cess and responsible of producing a work product
(or a part of it). Usually referring to a taxonomy
(i.e. System Analyst, Test Designer, etc.)

System Metamodel Construct (abstract class) The concept the fragment deals
with, for instance a fragment aiming at defining
the system requirements has to define and to iden-
tify the concept of requirements. Each metamodel
construct has to be defined during, at least, one
portion of process work and has to appear in at
least one work product.

System Metamodel Element It is an entity of the metamodel that is instantiable
into an entity of the system model. Examples of
System Metamodel Elements (SMME) are: classes,
use cases,. . . .

System Metamodel Relationship It is the construct used for representing the exis-
tence of a relationship between two (or more) in-
stances of SMMEs. For instance, the aggregation
relationship among two instances of a SMME class
is an instance of the SMMR association.

System Metamodel Attribute It is a particular kind of elements used for adding
properties to SMMEs. An SMMA is a structural
feature and it relates an instance of the class to
a value or collection of values of the type of the
attribute. [21]. The attributes type is a SMME.

System Metamodel Operation It is a behavioral feature of a classifier that spec-
ifies the name, type, parameters, and constraints
for invoking an associated behavior [21].

Glossary A list of definitions for the system metamodel con-
structs.

Description It is the textual and pictural description of the
fragment; it provides a bird-eye on the whole pro-
cess the fragments comes from and the fragment
overview in terms of tasks to be performed, roles
and work product kind to be delivered.

Table 1: continues in the following page

Table 1: continues from the previous page

Term Definition

Composition Guideline A set of guidelines for assembling/composing the
fragments with others. This may include nota-
tional specifications, and constraints (also ad-
dressing issues like platform to be used for system
implementation and application area)

Dependency The description of specific dependencies of this
fragment from other ones; it is useful for compo-
sition.

Enactment Guideline The description of how to perform the prescribed
activity. This may include best practices and spe-
cific techniques for achieving the expected results.

Table 1: ends in this page

4 The Process Fragment Documentation

The document used for the Process Fragment description is made of six main
sections (the template is shown in Figure 2), each of them refers to one (or a
set of) element(s) of the Process Fragment representation (see Figure 1). Three
sections deals with the three main elements a design process is composed of, as
we stated in section 2, they are: Stakeholders, Workflow and Deliverable, hence
the description of who performs the work to be done and how, in order to deliver
an artefact of the system model.

The Stakeholders have to be simply described through the name and the
description of the activities (the work) their are responsible for. They are named
Role in compliance with SPEM 2.0 [13].

The Workflow section serves for documenting all that regards the structure of
the portion of work to be done in the process fragment. It covers the set of proce-
dural rules for sequencing design activities and documents/artefacts exchanged
among Roles in order to produce the main output of the fragment.

The concept of workflow we had in mind when we created this document
template is the one introduced by [22], it is structured by work breakdown ele-
ments that give us the possibility to represent portion of design work at every
level of granularity, hence we can represent phases, activities and tasks.

The Workflow description is made with one SPEM 2.0 activity diagram that
represents the portion of work related to the role performing it and all the needed
input and output documents. Each work breakdown element is completed with
a textual description of information such as the name, the kind e.g. if it is a
task, an activity or other else, the description and the roles involved in the
work. Besides the list of all the input and output system metamodel constructs
and the list of all the input and output work products are needed in order to
have means for analyzing the process fragment, also automatically, during the
selection and assembly phase when a new design process is being creating.

The Deliverable section is made of two main parts, the first deals with the
truly description of the document kinds to be produced in order to provide
guidelines for producing them and the second handles the relationships of the
work product with the constructs of the system metamodel here managed. So in

1. Fragment Description
1.1. Fragment Goal
1.2. Fragment Granularity

1.2.1. Composing fragments
1.3. Fragment Origin

1.3.1. The Process Lifecycle
1.4. Fragment Overview

2. System metamodel
2.1. Definition of System metamodel elements
2.2. Definition of System metamodel relationships
2.3. Definition of System metamodel attributes
2.4. Definition of System metamodel operations

2.4.1. Fragment Input/Output in Terms of System Metamodel Constructs
2.4.2. Definition of input system metamodel constructs

3. Stakeholders
3.1. Role 1

4. Workflow
4.1. Workflow description
4.2. Work Break Down Elements description
4.3. Work Break Down Elements’ input/output in terms of system metamodel constructs
4.4. Fragment’s Input/Output in terms of Work Product

5. Deliverables
5.1. Document name

5.1.1. Deliverable notation
5.1.2. Deliverable content in terms of system metamodel constructs

6. Guidelines
6.1. Enactment Guidelines
6.2. Reuse Guidelines

6.2.1. Composition
6.2.2. Dependency Relationship with other fragments

7. Glossary
8. References

Fig. 2. Process Fragment Document Template

the first part of the section the description on how to produce the work product
and an example on the specific notation used are given.

This part of the document aims at exhaustively providing all the information
for the designer to produce the deliverables. In the second part of this section
the said relationships are represented in a particular kind of diagram that the
authors created by extending SPEM 2.0 [6], namely the work product content
diagram.

The word content let us understand that this diagram aims at having a
complete and detailed view on the elements managed during the production
of the work product. Exactly this diagram collects all the system metamodel
constructs that are managed during the enactment of the process fragment and
are also reported in the work product, hence the design process input constructs
that are not reported in the work product are not shown in this diagram.

Input constructs are used by designer for the analysis and for reasoning about
the system to be produced. In the content diagram we also report information
about the type of design actions made on each construct.

One specific design action is made on each metamodel construct and it is
useful for catching various information about the fragment and the resulting

work product. The list of possible design actions has been identified by ana-
lyzing the way of working of designer; we used for that a lot of agent oriented
design processes under the hypothesis that each work product production aims
at instantiating at least one metamodel construct.

Instantiating means defining one or more instances of metamodel construct
that have to be represented in the work product following one specific notation.
Often, during the definition of one construct designer needs to consider other
constructs already defined in other process fragment and/or to report them in
the work product he is producing. Another frequent situation is when designer
relates one instance of one construct to another one, for instance a generalization
among classes, in this case he defines a relationship.

Finally designer could need to refine constructs by adding information or
features to an already defined one, in this case he defines attributes and/or
operations for that construct. Therefore the possible design actions to be made
on system metamodel constructs are:

– define , instantiation of construct (element, relationship, attribute and op-
eration), the label used is D for all construct except for the relationship in
which case it is R,

– quote , reporting a construct in the work product, the labels used are Q, QR,
QA and QO respectively for element, relationship, attribute and operation.
Quotation also introduces relationship, hence dependency, with other work
products.

R

R
RR

R

R

R

R
QR

QR
Implementation

Agent

Q

Implementation
Task

Q

Platform Task

Q

Concept

Q

Ontology
Element

Platform Agent

Q

Type

Java Type

Q

Single Agent Structure Definition

D

Task Attribute
 A

Task Action

 O
Q

Implementation
Attribute

 A

D

Agent Attribute
 A

Keys

SMM Element Structural
WPKind

Behavioral
WPKind Structured

WPKind
Free

WPKind

a

Composite
WPKind

c

D=Define, R=Relate, Q=Quote, QR=Quote Relationship,
QA=Quote Attribute, QO=Quote Operationrelationship relationship

SMM
Operation

 O
SMM Attribute

 A

c

Fig. 3. An example of Work Product Content Diagram

In Figure 3 an example of work product content diagram is given, it rep-
resents the outcome of the Single Agent Structure Definition process fragment
extracted from PASSI [3]; here we can see that the aim of this process fragment
is to produce a work product where the Implementation Agent and Implemen-
tation Task are respectively refined by adding the Agent Attribute and the Task
Attribute, hence these latter are defined whereas the former are quoted and re-
lated with them. Besides, in order to define the Agent Attribute and the Task
Attribute, Concept and Java Type have to be quoted. Finally the work product
prescribes to also report the Task Action and the Platform Agent that are con-
sequently quoted. It is worth noting that the notational symbol used for System
Metamodel Construct (SMMC) is not used for system metamodel relationship,
even if we understand that this is not stylistically correct from a notational point
of view we prefer to maintain that for reducing the complexity of producing and
reading this kind of diagrams. Besides there can be more than one relationship
among instances of the same constructs and this is shown by the number close
to the R label. This kind of diagram let designer to easily identify all the system
metamodel constructs the fragment is devoted to manage.

Another notational element that can be seen in this diagram and that is
largely used in all the SPEM 2.0 diagrams of the fragment documentation is
the Work Product Kind. Briefly, we needed to represent different kinds of work
product so we extended SPEM in order to include the following kinds 3:

– Behavioural, it is a graphical kind of work product and is used to represent
the dynamic aspect of the system (for instance a sequence diagram repre-
senting the flow of messages among agents along time);

– Structural, it is also a graphical kind of work product and is used for repre-
senting the static aspect of the system, for instance a UML class diagram;

– Structured, it is a text document ruled by a particular template or grammar,
for instance a table or a code document;

– Free, it a document freely written in natural language;
– Composite, this work product can be made by composing the previous work

product kinds, for instance a diagram with a portion of text used for its
description.

The main aim of the section on Deliverables is to provide, among the others,
some kind of guidelines for producing the work product. Another kind of guide-
lines has to be documented in the Guidelines section, here there are two types
of guidelines, the enactment and the reuse. The enactment guideline provides a
textual description on how to carry out the work in the fragment by referring
and describing in details how to manage the system metamodel constructs of
the fragment.

The aim of the reuse guidelines is very different, they are directed to the
reuse possibility of the fragment thus providing suggestions for composing the
fragment with other ones and the dependencies from other fragments. Reuse
guidelines supplies another view on the dependencies of the fragment already

3 Definitions reported from our previous work on the matter in [18]

Fragment Goal
Describing semantic agent communications in terms of exchanged knowledge (referred to an ontology), content
language and interaction protocol.
Fragment Origin.
The presented fragment has been extracted from PASSI (Process for Agent Societies Specification and Imple-
mentation) design process. PASSI (Process for Agent Societies Specification and Implementation) is a step-by-
step requirement-to-code methodology for designing and developing multi-agent societies. The methodology
integrates design models and concepts from both Object-Oriented software engineering and artificial intelli-
gence approaches. PASSI has been conceived in order to design FIPA-compliant agent-based systems, initially
for robotics and information systems applications. . . .

Deployment Model

System Requirements Model

Tasks
Specification

Roles
Identification

Agent Implementation Model

Structure
Definition

Behavior
Description

Code Model

Code
Production

Domain
Ontology

Description

Roles
Description

Protocols
Description

Agent Society Model

Initial
Requirements

Agents
Identification

Domain
Description

Deployment
Configuration

Multi-Agent

Structure
Definition

Behavior
Description

Single-Agent

Agent
Test

Society
Test

Next Iteration

Code Reuse

Communication
Ontological
Description

Fig. 4. A Portion of the COD Fragment Document - The Fragment Description

visible in the workflow description by means of the input work products and
in the content diagram by means of the quoted elements so as in all the tables
describing input and output constructs of the fragment.

What we consider the key concept of our approach to SME for represent-
ing design process in general and process fragment in particular, the System
Metamodel, is documented in the second section on the proposed template. The
attention paid to the System Metamodel, how it is conceived and it is composed
of is the most important improvement the authors give to the previous fragment
definition made in [17]. The section on metamodels includes a class diagram for
representing the Complete System Metamodel of the fragment and the definition
of each SMM Construct together with, when applicable, a statechart describing
its different states while managed by the designer during the application of the
fragment. An example reported from the Communication Ontological Descrip-
tion (COD) process fragment is shown later in Figure 5 (consider that this and
the following figures are extracted from the COD documentation so other fig-
ures are present with different numeration). Then all the input/output system
metamodel constructs are listed in a table where a distinction is made between
the constructs to be designed and the ones to be quoted.

The first section regards the Fragment Description that includes: the goal,
the granularity, the origin of the fragment and an overview on the fragment.
The description of the fragment goal aims to provide the reader with a quick
understanding of the goal pursued by the process fragment using a simple sen-
tence like, for instance, “the aim of this fragment is collecting requirements”,

possibly relating the description to common-sense in software engineering. The
goal serves mainly in giving a mean for the method designer to select the right
fragment for his purposes.
As regard the granularity, it establishes the length of the work done in the frag-
ment and in some way the complexity of the fragment in terms of work product.
As already said there can be three kinds of fragment: phase, composed and atomic
(see also Figure 1).

Finally Glossary and References completes the documentation by providing
useful description of the most important terms used in the fragment and a list
of references for improving knowledge on the fragment, above all on the origin,
the application context and so on.

5 An Example of Process Fragment Document

In the following an example of fragment documentation is given through a set
of figures that we extracted from the document related to the Communication
Ontological Descritpion - COD process fragment from PASSI [3]. Each figure
represents a relevant portion of the document, the complete version of this frag-
ment can be found in the FIPA DPDF working group website4.

Looking at the fragment outline, it can be seen that first of all we focus on
the fragment presentation through its goal and its origin, in so doing we reach
a twofold objective, letting the designer have a quick idea on the focus and the
domain in which the fragment might work and allowing a sort of automatic
or semiautomatic selection of the fragment. Figure 4 shows the fragment goal,
it is described in a very concise textual form that puts in evidence the main
elements the fragment will deal with, for instance it can be noticed the words
agent communication, knowledge and protocol. It is to be hoped that this part
of the document were compiled using words focussing on the fragment scope.
Figure 4 also shows a portion of the section dedicated to the design process the
fragment has been extracted from, the importance of this early discussion has
been already said.

As well as a design process, each process fragment is based on a MAS meta-
model composed of elements and relationships; the fragment document has to
explore this issue and to show all the elements type to be defined/quoted/related
in the fragment. Figure 5 shows the COD document section about System meta-
model. As already said the process fragment description, and documentation, is
principally aimed at showing the process and product part of the fragment for
easily identifying the way in which it can be reused. Figure 6 refers to the frag-
ment description section and details the inputs, the outputs and the fragment
workflow through a SPEM 2.0 activity diagram.

The fragment document continues with an example and the explanation on
how to produce the work product (see Figure 7) and with a set of composition
guidelines and dependency relationships.

4 http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/docs.htm

System metamodel
The portion of metamodel of this fragment is:

Figure a. The fragment System metamodel

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define and describe the ele-
ments reported in Figure a.
Definition of System metamodel elements.
This fragment underpins the following model elements:
Agency_Agent - an autonomous entity capable of pursuing an objective through its autonomous decisions,
actions and social relationships. It is capable of performing actions in the environment it lives; it can communi-
cate directly with other agents, typically using an Agent Communication Language; it possesses resources of
its own; it is capable of perceiving its environment; it has a (partial) representation of this environment in form
of an instantiation of the domain ontology (knowledge); it can offer services; it can play several, different (and
sometimes concurrent or mutually exclusive) agency_roles.
Each agent may be refined by adding knowledge items necessary to store/manage communication contents.
The Agency_agent statechart is:

Description of the Agency_Agent states:
Defined : An Agency_Agent is in this state once it is instantiated in the system model. The agent’s unique name
has to be defined.
Refined : An Agency_Agent moves in this state once its knowledge chunks are defined.

Fig. 5. A Portion of the COD Fragment Document - The System Metamodel

6 Conclusions and Remarks

In this paper we presented the process fragment definition and the documenta-
tion template we use in our work. After a long experience done on the construc-
tion of design processes we realized that this template is an optimum starting
point for the definition of a standard notion of process fragment. The presented
document has been conceived with both a textual and a diagrammatic part in or-

Workflow.
Workflow description.
The process that is to be performed in order to obtain the result is represented in the following as a SPEM 2.0
diagram

Figure b. The flow of tasks of this fragment

Fig. 6. A Portion of the COD Fragment Document - The Workflow Description

der to provide different views on the fragment and in order to allow the designer
to retrieve the most useful information for his own needs in a quick and also vi-
sual fashion. We created the document for being used for two purposes: reusing
the fragment during the process creation in a (Situational) Method Engineering
fashion and using it during design process enactment.

This work presents a fundamental improvement with respect to the work
done some years ago and illustrated in [17], here the system metamodel was
also considered as a component of the fragment but its importance has been
now enriched by all the notions related to its constructs and how they can be
defined. Moreover the fact that within PRoDe the System Metamodel is the
central element for retrieving, selecting and assembling fragments have led to
the need for its right and more fruitful representation in the fragment definition
and documentation.

Another important outcome of our work is that since the fragment aims at
designing a specific system metamodel construct, we can consider the fragment
itself independent from the specific notation. The same result can be obtained
by producing different work products in different notations. Such a feature is
one of the strengths of the proposed fragment definition that is highly reusable
and composable being mainly oriented to the metamodel construct it is aimed
to define; for instance a fragment that delivers UML based work products can
be easily composed to another fragment delivering free textual work product, it

Example.
In Figure c, the PurchaseManager agent starts a communication (see QueryForAdvice association class) with
the PurchaseAdvisor agent. The communication contains the Course ontology, the Query protocol and the RDF
language. This means that the PurchaseManager wants to perform a speech act based on the FIPA query
protocol in order to ask the PurchaseAdvisor advice on how to purchase (supplier, number of stocks, number of
items per each, purchase-money) provided the Course information.

Figure c. An example of Communication Ontological Description diagram.

Fig. 7. A Portion of the COD Fragment Document - An Example of the Pro-
duced WP

is only important that the two have a matching set of input/output metamodel
constructs. This fact overcomes the problem of interfaces among fragment and
the problem, until now present, of having all fragments producing work products
with the same notation; at worst we could create design processes where different
parts have different notations but also this problem can be overcame by using a
CAPE (Computer Aided Process Engineering) tool able to instantiate the right
CASE tool for managing the enactment of the newly created design process. An
example of such CAPE tool is Metameth, a prototype that we developed in the
past in our laboratory [5].

Acknowledgment. This work has been partially supported by the EU project
FP7-Humanobs.

References

1. S. Brinkkemper, M. Saeki, and F. Harmsen. Meta-modelling based assembly tech-
niques for situational method engineering. Information Systems, Vol. 24, 24, 1999.

2. S. Brinkkemper, R.J. Welke, and K. Lyytinen. Method Engineering: Principles of
Method Construction and Tool Support. Springer, 1996.

3. M. Cossentino. From requirements to code with the PASSI methodology. In Agent
Oriented Methodologies, chapter IV, pages 79–106. Idea Group Publishing, Hershey,
PA, USA, June 2005.

4. M. Cossentino, S. Gaglio, A. Garro, and V. Seidita. Method fragments for agent
design methodologies: from standardisation to research. International Journal of
Agent-Oriented Software Engineering (IJAOSE), 1(1):91–121, 2007.

5. M. Cossentino, L. Sabatucci, and V. Seidita. A collaborative tool for designing and
enacting design processes. In Proceedings of the 2009 ACM symposium on Applied
Computing, SAC ’09, pages 715–721, New York, NY, USA, 2009. ACM.

6. M. Cossentino and V. Seidita. Metamodeling: Representing and modeling system
knowledge in design processes. Technical Report 11-02, Technical Report ICAR-
CNR, 29 July 2011.

7. D. Gupta and N. Prakash. Engineering Methods from Method Requirements Spec-
ifications. Requirements Engineering, 6(3):135–160, 2001.

8. AF Harmsen, S. Brinkkemper, and H. Oei. Situational method engineering for
information system projects. In Methods and Associated Tools for the Information
Systems Life Cycle, Proceedings of the IFIP WG8. 1 Working Conference CRIŚı94,
pages 169–194, 1994.

9. B. Henderson-Sellers. Method engineering: Theory and practice. In D. Karagiannis
and editors Mayr, H. C., editors, Information Systems Technology and its Appli-
cations., pages 13–23, 2006.

10. IEEE Foundation for Intelligent Physical Agents. Design Process Documentation
Template, Document number XC00097A-Experimental, 2011.

11. K. Kumar and R.J. Welke. Methodology engineering: a proposal for situation-
specific methodology construction. Challenges and Strategies for Research in Sys-
tems Development, pages 257–269, 1992.

12. I. Mirbel and J. Ralyté. Situational method engineering: combining assembly-based
and roadmap-driven approaches. Requirements Engineering, 11(1):58–78, 2006.

13. OMG. Object Management Group. Software & Software Process Engineering
Metamodel. version 2.0. Document number: formal/2008-04-01. 2008, 2008.

14. J. Ralyté. Towards situational methods for information systems development: en-
gineering reusable method chunks. Procs. 13th Int. Conf. on Information Systems
Development. Advances in Theory, Practice and Education, pages 271–282, 2004.

15. M. Saeki. Software specification & design methods and method engineering. In-
ternational Journal of Software Engineering and Knowledge Engineering, 1994.

16. Douglas C. Schmidt. Model-driven engineering. Computer, 39(2):25–31, Feb. 2006.
17. V. Seidita, M. Cossentino, V. Hilaire, N. Gaud, S. Galland, A. Koukam, and

S. Gaglio. The metamodel: a starting point for design processes construction. Inter-
national Journal of Software Engineering and Knowledge Engineering., 20(4):575–
608, 2010.

18. Valeria Seidita, Massimo Cossentino, and Salvatore Gaglio. Using and extending
the spem specifications to represent agent oriented methodologies. In AOSE, pages
46–59, 2008.

19. K. Slooten and S. Brinkkemper. A method engineering approach to information
systems development. In Proceedings of the IFIP WG8. 1 Working Conference on
Information System Development Process, pages 167–186. North-Holland Publish-
ing Co., 1993.

20. ter Hofstede A.H.M. and Verhoef T.F. On the feasibility of situational method
engineering. Information Systems., 22(6/7):401–422, 1997.

21. UMLR-Revision-Taskforce. Omg uml specification v. 2.2. Object Management
Group, 2009.

22. WfMC. The workflow management coalition. http:/www.wfmc.org., 2005.

