Adapting PASSI to Support a Goal Oriented
Approach: a Situational Method Engineering
Experiment

Valeria Seidita', Massimo Cossentino?, and Salvatore Gaglio!+2

! Dipartimento di Ingegneria Informatica - University of Palermo, Italy
{seidita,gaglio}@dinfo.unipa.it
2 Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche,
Palermo, Italy
cossentino@pa.icar.cnr.it

Abstract. The construction of ad-hoc design processes is more and
more required today. Situational Method Engineering (SME) provides
an approach with a set of activities to be accomplished during the con-
struction of a new process. In this paper we present our approach for
adapting SME for the construction of multi-agent systems design pro-
cesses mainly focussing on the method fragments selection and assembly
phases. The MAS metamodel provides the driving concepts of these two
phases; in fact, we use MAS metamodel elements for enabling the re-
trieval of fragments from the repository and for reasoning about how to
assemble them or eventually to modify them. An experiment is reported
here we construct a new design process that includes a goal oriented
requirements analysis phase starting from the existing PASSI process.

1 Introduction

Situational Method Engineering (SME) [14], provides means for constructing
ad-hoc Software Engineering Processes® (SEP) following an approach basing
on reuse of components (often called method fragments) coming from existing
design processes. Our work is mainly focussed on the use of SME for the con-
struction of customized multi-agent oriented design processes. Method Fragment
is the core concept of SME; different well known approaches [5][11][15] present
different definitions and descriptions of method fragment but all of them start
from the assumption that whatever design process can be decomposed into (or
it is composed of, if we use a bottom-up point of view) self contained compo-
nents. One of the main principles of SME is that a method designer must have
at his disposal a rich repository of components (or method fragments or simply
fragments), coming from existing design processes, from it he can retrieve the
best fragments for his own needs when he is creating a new customized design

3 In this context we assume that the term Software Engineering Process is synonym
of: methodology, design process or simply process, we will use all these words indif-
ferently.

2 Valeria Seidita et al.

process. We principally ground our work on SME rationale and because our tar-
get is about multi-agent systems we needed to adapt/specialize this approach,
however some differences exist between SME and our approach: one of the most
important difference is that we use the Multi Agent System (MAS) metamodel
for defining the structure of the system we will build by adopting the new SEP.
The metamodel elements constitute a determinant input for the selection and
the assembly of fragments extracted from our method base and above all they let
the method designer identify the semantic differences among the same elements
coming from different fragments. These differences inevitably imply the need for
adapting/modifying the fragments for the assembly phase; in this paper we will
principally focus on this aspect. Another important difference is that we start
our design process construction from the assumption that in a given company
some kind of SEP is always present, sometimes it is not documented, and not
well-defined artefacts are produced so we use the CMMI practices [8] in order to
classify the actual design process and to identify the specific goals and practices
to be pursued in order to reach a specific maturity level; this results in a specific
set of process requirements. In this paper we will present our experiment on
the creation of a goal oriented design process following the proposed approach,
specifically we decided to modify PASSI [7] and to make it suitable for a goal
oriented requirements analysis. Our main requirements were to have an agent
design methodology including the use of ontologies and communications with a
FIPA compliant structure, so we decided to focus our work on PASSI, and to
have a requirements analysis in a goal driven fashion. For this aims we chose
to use some method fragments coming from Tropos [2] that we already stored
in our repository and to merge them with those from PASSI in order to fulfill
our requirements. We will point out how we based the selection of method frag-
ments on the new design process metamodel and how we constructed it. The
paper is organized as follows: in the next section we will describe our approach,
in section 3 a detailed description of the way for building a new agent oriented
design process is given and in section 4 we show how we applied it to a specific
system pointing out the results of the assembly phase; finally we will provide
some conclusions.

2 Situational Method Engineering for Agent Oriented
Methodologies Construction

According to [10] a method engineering process is composed of three main
phases: the requirements specification of a project specific method, the selection
of method fragments from the repository basing on the results of the previous
phase and the assembly of the selected fragments. These three phases are the
core of our approach that is reported in Figure 1, here we can identify three
main phases: process analysis, process design and process deployment.

Process Requirement Analysis deals with requirements elicitation and analy-
sis, it produces a set of elements affecting the Method Fragments Selection and
Assembly activities. Finally in the Process Deployment phase the new SEP is

Lecture Notes in Computer Science 3

Process. . i i
Capability | Pr Lif !
4 Process - Process Life IKEYS |
Requirements - Cycle } |
L Analysis BM!F" | |
| Activity :
I
N W
Process Analysis I |
I Deliverable |
L
f Method Method =
= E | B] Now
T Fr Y
{ Qalantt I L 7 = ‘ Process
Method j
Process Design Hate CAPE ﬁ
Tool
Process Deployment
—— CASE Tool
Results Deployed System Instantiation
Evaluation System 1 Design Specific

Problem

Fig. 1. The proposed approach for Agent Oriented Methodologies Construction

instantiated, used to solve a specific problem and then evaluated. The results
of the evaluation are useful for defining new requirements for the next SEP (if
any).

It is worth to note that we consider the process of defining a new design process
as an iterative and incremental one. In the following subsections we will provide
a detailed description of the adopted agent oriented methodology construction
approach.

Process Analysis. Process Requirements Analysis is the first activity a method
designer undertakes in his work. It has inputs coming from the maturity level of
the organization, the development context (tools, languages, available skills, etc.)
and the type of problem to solve. These inputs are used to define the process life
cycle (that establishes the structure the designer has to follow during method
fragments assembly activity), the system metamodel concepts and the other pro-
cess elements (available stakeholders, required activities or work products) that
are used for selecting the method fragments from the repository (Method Base).
Process Capability: it is the concept defined in the SEI Process Capability Ma-
turity Model Integration (CMMI) for Development [8]: ”Software process capa-
bility describes the range of expected results that can be achieved by following
a software process”.

The software process capability of an organization provides a means for predict-
ing the most likely outcomes to be expected from the next software project the
organization undertakes. In this way it is well defined how to work for achieving
fixed objectives. In our work the identification of these activities results in a well
defined set of requirements on method fragments to be selected or on specific
stakeholders to be involved in the process.

Problem Type: the new process has to be tuned for a specific solution strategy
to a class of problems.

It is possible that, in a big company, different groups produce software for totally
different areas (for instance business administration, and biological systems sim-

4 Valeria Seidita et al.

ulation). In this situation it should be expected that each of these groups adopts
a different SEP giving the right importance to the aspects that are more sensible
in its target implementation domain.

Development Context: it is a description of the available resources (both human
and non human) and competencies that are available in the SEP enactment
group. The development context is usually a sensitive aspect to be considered
also because if the group is composed of people skilled with some specific ap-
proach or standard practice (for instance the use of UML in modelling the sys-
tem), it is highly desirable to capitalize such an experience in order to lower
training costs that always follow the introduction of a new SEP. In the devel-
opment context we also enumerate possible constraints that could come from
available developing tools.

Process Requirements Analysis: from the aforementioned issues, the method de-
signer achieves the necessary inputs for defining some fundamental requirements
about the new SEP to be built. These requirements define the domain of interest
that the new SEP should take into account.

For example, if the problem type deals with transportation of human beings and
if someone in the development group has formal methods practice then some
safety properties of the system may be proved.

The elicited requirements also provide some elements useful for the selection of
method fragments: they are the system metamodel and process elements.

The metamodel contains all the concepts that can be used to design and describe
the system to be: it defines domain-specific concepts, solution concepts and all
the concepts that specifically address the characteristic of the particular system
a designer is developing, together with all of their relationships.

For instance in the case of a MAS (Multi Agent System), a metamodel repre-
sents concepts such as agent, role, communication, agent task, and so on. Each
concept of the metamodel must be designed/defined (that means instantiated)
at least in one fragment of the process (whereas it can be refined or cited in
several other fragments). In this way we can use the list of metamodel concepts
for the selection of method fragments from the repository [16][5]; the designer,
for each activity (like requirements analysis or detailed design), firstly selects the
concepts of the metamodel to be designed (for instance scenarios or functional
requirements) and then he uses this information, and other elements that we
will explain later, in order to retrieve the most useful method fragments for the
assembly activity.

A design process defines when and how someone does something in order to
reach a specific objective [13], so the process requirements analysis also results
in a list of elements composing the new SEP. These elements can be activities
(the work to be done), process roles (particular stakeholder performing the work)
and work products (artefacts resulting from some activities) and they too can
be used for the retrieval of method fragments [16]. Process Life Cycle Defini-
tion: it is concerned with the decision about the process model (or life-cycle)
to be adopted; this decision is influenced by several factors (for instance con-
tract constraints imposed by the customer/commissioner on that). According to

Lecture Notes in Computer Science 5

some studies it seems that the process life-cycle is not affected by the adoption
of the agent paradigm and therefore classical life-cycles (waterfall, spiral, itera-
tive/incremental, etc.) can be used for designing agents too [4].

Process Design. This phase presents two activities: the Selection and the As-
sembly of method fragments taken from a repository. The method fragment is
the building block of process design; it is extracted from existing design pro-
cesses, or created from scratch, and stored in a repository, called method base
from which it is selected basing on the results of requirements analysis.

Figure 1 shows that a method fragment can be extracted from existing design
processes or created/modified to meet a specific requirement of the new process.
The configuration of our actual fragments repository and how to use it for se-
lecting the fragments have been already discussed in [16].

The method fragments assembly activity results in the new SEP. This activity
consists in putting together the selected method fragments following the struc-
ture of the identified process life cycle on the base of specific assembly techniques.
This activity is still one of the most important unresolved points in the SME
field and some proposal have been done in [15][3], it is a very complex work
where the method designer has to collate all the elements gathered in the previ-
ous activities and to merge them using his experience and skills. We think that
in some cases a set of method fragment can be directly associated each other, in
other cases they need modifications of one (or more) constituting elements. For
instance if two method fragments adopt different semantics for the produced
work products, it is necessary to change (or adapt) the elements of one work
product kind to the other to allow a right assembly, or if the process part of two
different method fragment overlap then one, or both of them, must be modified
in order to create a unique consistent process.

Process Deployment The system designer adopts the new process with the
aid of a CASE tool for solving a specific problem. After that the designed sys-
tem is used and experimented, a results evaluation activity occurs in order to
measure and evaluate the new process, according to the CMMI model. Gathered
information can be used as a new process requirement for a next iteration (if
necessary).

3 Constructing a Goal Oriented Design Process

In this section we will illustrate how we modified/adapted an existing agent
design methodology, PASSI [7], in order to create a customized agent-oriented
methodology meeting a specific requirement: providing designers with a method-
ology supporting goal oriented requirements analysis and maintaining the skills
and background of all the designer that have been PASSI user since now.

This experiment was carried out by following the approach depicted in section
2, here one of the key point is the construction of the new design process meta-
model to which elements we refer for the selection and the assembly of method
fragments from existing methodologies [16][5].

Different agent oriented design processes present metamodels where we can often

6 Valeria Seidita et al.

find the same element, different elements with the same meaning and vice versa
same elements with different meanings; the same situation can be found among
the metamodel elements of the method fragments stored in the repository [16][5].
This may be a great limit when a designer wants to construct the new design pro-
cess because the semantic differences among metamodel elements from different
methodologies hardly affects the assembly activity. That is why the construc-
tion of the new metamodel has to be carried out in conjunction with a punctual
definition of each metamodel elements.

Since in this work we focussed on the adaptation of PASSI, we started the con-
struction of the new metamodel from the PASSI one; the process requirements
analysis pointed out that first of all we had to remove the elements designed
during the requirements analysis phase and to replace them with the new ones
introduced for supporting a goal oriented requirements analysis.

The PASSI metamodel can be found in several works [6], in this paper (Figure
2) we only show the portion of metamodel subjected to modifications. In PASSI
the requirements analysis phase leads to the agents identification which some
system functionalities are assigned to, so the elements that have to be taken into
account (Figure 2) are: Actor, Requirements and Scenario concerning the sys-
tem’s features and the entity exchanging information with it, Agent, Role, Task
and Plan representing the entities that perform a set of actions in order to reach
a system objective, Resource, what the agent uses and Dependency allowing to
create the society of agents pursuing the same aim.

In goal-oriented requirements engineering field the system under construction
(the system-to-be) is usually composed of the software and its environment, the
latest being composed of humans, devices and other software systems; these are
considered active components that can decide on their behaviors and they are
called agent®. Agents depend each other for the goals they want to achieve, the
tasks they perform to achieve the goals and the available resources they can use,
besides an agent may use plans to achieve a goal. A goal is the objective a sys-
tem has to achieve in cooperation with the agent in the system to be and in the
environment; goal, agent and scenario are strictly related [18] and all contribute
to the precise specification of software behavior.

What we have just said corresponds to a summary of the process requirements
elicitation phase (see section 2) we carried out at the beginning of our work; from
this analysis we realized that the elements we need in our new design process and
that should be introduced in the new metamodel are: goal, agent, environment,
resource, services, task and plan.

For the reasons we said before we decided to reuse fragments coming from Tropos
[9]; Tropos was conceived for providing a deep understanding of the environment
where the system will operate and for modeling agent oriented software archi-
tectures using the concept of agent, goal and plan.

We explored the Tropos metamodel in order to find which elements are designed
during requirements analysis and we found that the following elements have rela-

4 Note that in this context agent is not only a software entity and its significance is
much more complex than the PASSI agent one.

Lecture Notes in Computer Science 7

Agent J Role Task
10" 1"
: /—.‘. (L 1
Scenario Plan
N Dependency
Actor
[

Fig. 2. PASSI Metamodel-Requirements View

tionships with those identified during the previous process requirements analysis
activity: actor, goal, position, plan, task, dependencies and resource.
Referring to the PASSI metamodel (Figure 2) we can see that some of these

Table 1. Requirements Analysis Elements from PASSI and Tropos.

Deleted from To be modified Inserted from Tropos
PASSI

Requirement, | Actor, Agent, Role, Task, Plan, Goal, Position.

Scenario. Resource, Dependency.

elements are not present and we had to introduce them whereas for others we
had to check, both in PASSI and in Tropos, their definitions in order to point
out similarities and differences.

Table 1 resumes which elements we added ex novo, which elements we deleted
from the PASSI metamodel and which one we had to examine for eventually
changing their definitions and relationships.

In PASSI, Requirement represents a feature that the system to be must exhibit
and Scenario is the concrete, informal description of a single feature of the sys-
tem, they had to be deleted because now the system has to be seen according
to an ”objectives to be pursued” point of view.

In Tropos [2] a Goal is a strategic interest of an Actor that is an intentional
entity, it can be a Role, a Position or an Agent, besides an Actor depends on
another to accomplish a Goal, deliver a Resource, or execute a Task that is a
particular set of actions used to satisfy a goal.

The different definitions of the metamodel elements of the two design processes
are shown in Table 2; these led us to the conclusion that since in Tropos the
concept of agent is strictly related to the environment the system to be has to
work in and it can also be an active entity then it can be assimilated to the agent
in PASSI; the same we can say for Resource, Actor and Role, but with different

Valeria Seidita et al.

Table 2. Corresponding PASSI and Tropos elements definition.

different agents, which indicates
that one agent depends. for some
reason. on the other in order to

Elements PASSI Tropos

Actor External entity exchanging Intentional entity: role,
information with the system. position, agent.

Agent It is an entity responsible for A specialization of actor.
accomplishing some
functionalities.

Role It is a portion of the social behavior | A specialization of actor.
of an agent.

Task A task is an entity that aims to Particular course of action that
reach a sub-goal (for instance can be executed in order to
dealing with a communication); an | satisfv a goal.
agent uses tasks to execute its
plan(s).

Plan The set of tasks an agent performs | A set of actions.
to reach an objective.

Resource A concrete, tangj:ble entity that can | Physical or informational
be acquired. shared. or produced by | entity (without intentionality);
agents. it can be used to achieve goals

and/or to perform tasks and
can be shared by agents.

Dependency A relation between two roles of A relation between two actors,

which indicates that one actor
depends, for some
reason. on the other in order to

attain some goal or deliver a
resource.

attain some goal. execute
some plan, or delivera
resource.

relationships among them coming from the Tropos metamodel.

We had to make some reasoning about Task and Plan; in fact a Task in PASSI is
related to a particular behavior and the agent performs his action following a set
of plans whereas in Tropos task and plan someway have the same meaning both
being the actions an agent makes to pursue a goal. Besides the task modelling
activity, in the Tropos requirements analysis phase, represents a deeper view of
the goal analisys; so it is a concept more related to problem domain rather then
to agent domain. We had to separate these two concepts, maintain the concepts
of task and plan as they are in the PASSI metamodel and insert a new concept
named Problem Task to represent the Tropos concept of Task so facing this par-
ticularity.

The same we made for Dependency, we had to separate the two domains it be-
longs to in each design process, the problem domain and the agency domain; we
maintained the PASSI vision of Dependency and inserted a new concept, Actor
Dependency, for representing Tropos Dependency.

All this affected the use of some selected fragments, as we will illustrate later,
some of them needed some modifications and adaptations for fully reflect the

Lecture Notes in Computer Science 9

Agent Role Task

1 1 1
T‘ i Ojf
W
Position

Actor

Dependency

Goal 1

— 4 Problem Task
0% 1 | a }ﬂiende(A
1 Actor Dependency I

1

Fig. 3. The New Design Process Metamodel

changes made in the definitions.

We obtained a new metamodel where each element has a precise meaning re-
lated to the context the new design process has to be applied to; apart of the
resulting metamodel is shown in Figure 3. Once we established which elements
had to be inserted in the new metamodel we looked at the Tropos fragments
for selecting the more appropriate ones for our aims; from Farly Requirements
Phase we identified:

— the Domain Description fragments, here the designer analyzes the problem
statement from which he identifies a set of actors involved in the system
under construction and the related goals; then the goals are decomposed
through AND/OR-decomposition. The resulting work product of this frag-
ment is the Actor Diagram where all actors and their main goals are depicted;

— the Domain Analysis fragment, where the Actor Diagram is extended in
order to identify all the tasks (plans) each actor has to perform to pursue a
specific goal, and then through the means-ends-analysis each task is relate to
at least a goal. The resulting work product is the Goal Diagram describing
the set of actors, their goals and tasks and the dependencies among actors.

from Late Requirements Phase:

— the Identify System fragment, where, starting from the previously produced
Actor Diagram and Goal Diagram, the actor System-to-be is identified with
his goal and tasks (in the same way as in the previous two fragments) and
more goals and tasks are detailed. The result is a Actor Diagram named
System Actor Diagram.

— Describe Environment fragment, here the System Actor Diagram and the
Goal Diagram are used to find all the system’s actors and goals that can be
assigned to the System-to-be actor identifying, in so doing, the dependencies
between the System actor and all the other actors.

10 Valeria Seidita et al.

from Architectural Design Phase

— the Identify Architecture fragment where the System actor is decomposed
into sub-actors which goals are assigned to; this fragment results in an Actor
Diagram named sub-Actor Diagram from which agents can be identified;
generally each sub-actor becomes an agent.

— the Define Agent Society fragment where one or more capabilities, " the abil-
ity of an actor of defining and executing a plan for the fulfillment of a goal”,
are assigned to each identified agent; the resulting work product is a UML
activity diagram.

Table 3 summarizes which element of the metamodel is defined in each selected
fragment and which input/output the framents need for their assembly. All these
fragments constitute the System Requirements Analysis phase, see Figure 4; the
first five fragments were obviously assembled (it was a re-assembly activity in
this specific case, since they all come from Tropos) without problems and cover
all the new metamodel elements except: Task, Plan, Dependencies and Role.
Let us now consider Task and Plan; in PASSI the Task (of an agent) is defined
in the Task Specification fragment where, focusing on agent behavior, a plan
is conceived also describing the dependencies with other agents; so tasks are
identified after the identification of agents. We reused from Tropos the Identify
Architecture fragment resulting in an actor diagram where agents are identified
with their goals and the tasks they use to achieve them, but at this stage we
still have the actors’ tasks that in the new metamodel we named ”Problem
Task”. In the Define Agent Society fragment the identified capabilities are the
set of actions an agent undertakes to follow the plan it is performing in order
to pursue a specific goal; looking at the definitions of Table 77 in this fragment
this fragment we can identify the link between those elements (Task and Problem
Task) we had to specialize and distinguish between problem and agency domains.
Thus this fragment was modified and adapted in order to relate the two elements;
specifically the adaptation consisted in producing the fragment result in the form
of a PASSI task specification diagram, that is itself a UML activity diagram,
without focussing on the dependencies among agents, only an agent at time is
considered.

We made a kind of merging between the PASSI Task Specification fragment [1]
and Tropos Define Agent Capability fragment taking into account the definitions
of the two metamodel elements they define and the kind of work products they
produce. The resulting work product of the new fragment was a UML activity
diagram where for each agent task a plan is depicted; here we can see that the
Problem Task we have defined in the Identify System fragment is refined and
linked (as we can see from metamodel in Figure3) to the task of the agent.

As regard defining the Role and Dependency elements we decided to select the
Roles Identification fragment from PASSI because there the roles each agent
plays is defined and also we can identify the dependencies among agents, but,
as we can see from Figures 2 and 3, in PASSI the concept of Role is related
to that of Scenario whereas in the new metamodel this latter concept is not
present, and since it is the input for Roles Identification fragment, this needed

Lecture Notes in Computer Science 11

to be modified. We derived only the rationale underpinning the concept of role
and we merged it with the description of Tropos agent interaction, the result
was a UML sequence diagram where the interaction (the Dependency) among
agents is represented pointing out the different role they play when performing
a set of actions.

In the next section we will detail this part of assembly activity through an
example. In Figure 4 the new design process is shown; the lower part shows,
through a SPEM [17] activity diagram, the new fragments (each of them is
represented by an activity) we assembled and details for each of them the related
work product.

1
Code Deployment
‘ Phase H Phase TestPhese
Requirements ?
1 v I

System 4| Agent Society Agent.
Regquirements > Pl | Implementation
Phase Phase

e e i e |
: I KEYS

b I
| @—+Dy5-=8 — P8 DE:‘)""“*DZQ :
1
I Actor Diagram Goal Diagram System Actor : DZD
! Domain Domain Identify System Diagram Describe ™ N 1 Activity
: Description Analysis Environment :
! 1 = Zm
L e - =] - I
| @~ @md— ng gh Db . Ble---- = i UML
| Roles Task Spec. Define Agent ! Dieorm
: Roles id. e Db ey " Agent Identify Environment | :
: Diagram arifcation anipty Diagram prchitecture Diagram :
1 A 1 Dacument
I [| (Diagram

Fig. 4. The new Design Process

4 Results Evaluation

In order to empirically evaluate the resulting design process, we used it for the
development of an agent based platform for the simulation of collaborative mod-
els in the field of automotive industry. The aim of this platform is to support the
planning phase of engineering activities in a collaborative fashion thus enhancing
the quickness and the effectiveness of automotive development process through
an intense involvement of the suppliers.

The platform was conceived for the distributed collaborative new product devel-
opment and it is composed of three sub-systems: i) First Level Suppliers map-
ping, ii)Collaboration Choice management and i) Collaboration mode man-
agement.

In the rest of this section we will illustrate some details of the second sub-system
design, and the work products resulting from the application of some fragments
in order to exemplify the result of using the metamodel elements in the assembly

12 Valeria Seidita et al.

Table 3. Fragments Related to the New Metamodel Elements.

Name Objective Input Output MMM
Domain To identify the A verbal Actor Diagram Actor, Goal.
Description actors involved in | description of (Tropos

the system and the problem to Diagram).

their goals. be faced.
Domain To identify the Actor Diagram. | Goal Diagram Problem Task,
Analysis tasks of each (Tropos Actor

actor and to apply Diagram). Dependency,

means-and- Resource.

| analysis.

Identify To Identify the Goal Diagram. System Actor [Actor, Goal,
System System-to-be Diagram (Tropos | Problem Task.

actor. Diagram).
Describe To assign all the Svstemn Actor Environment Actor
Environment | system actors® Diagram. Diagram (Tropos | Dependencies.

goals to the Diagram).

System-to-be.
Identify To decompose the | Environment Agent Diagram Agent.
Architecture System-to-be into | Diagram. (Tropos

sub-actors and to Diagram).

identify agents.
Define Agent | To identify a set Agent Diagram. | Task Task, Plan
Society of capability for Specification

each agent in Diagram (UML

order to establish Activity

which plans they Diagram)

have to follow.
Roles To identify the Task Spec. Roales Role,
Identification | roles each agent Diagram. Identification Dependency.

plays and the Diagram (UMI

dependencies Sequence

with other agents. diagram).

phase.

In Figure 5 we show, for space concerns, a reduced view of the work product
resulting from the Domain Analysis fragment, it is an Actor Diagram where we
identified the actors involved in the system (the main contractor MC and the
Supplier) and some of the goals and the tasks (problem tasks in this case) they
have to achieve. After this activity we proceeded with the system identification
which resulted in the identification of the Platform system actor with its depen-
dencies with other actors.

Once the System actor was identified we could decompose its goals and assign
each of them to an agent (Identify Architecture fragment whose resulting work
product is shown in Figure 6, the yellow ball with the horizontal line is an actor);
then for each agent and for each goal we detailed, through a means-end-analysis
all the tasks an agent has to perform. Let us consider the Request Clustering (see
Figure 6) without focussing on the inner meaning of the task itself, it represents
the capability of the WBS Manager agent to pursue the Start Clustering goal
and it is composed of the activities shown in Figure .

Lecture Notes in Computer Science 13

Fig. 6. The Agent Diagram

Figures 7.a) and 7.b) respectively represent the task specification diagram and
the agent interaction diagram resulting from the Define Agent Society fragment
that is the one we merged with PASSI Task Specification and Role Identifica-
tion; they only differ, from the work product produced in the original fragments,
in the fact that now in the task specification diagram we do not show that in-
teraction with other agents, so as in the task specification one, that is however
inferred from the specification diagram that presents the same information of

14 Valeria Seidita et al.

Expert Clusterign:Cluster
T

|WES Handler: WBS Manager

T
] 1
! Send Activity Data !

]
1
D> Cluster Activity

|
]
|
|
: ReturnClusteredActivity

L

a) b}

Fig. 7. Define Agent Society and Roles Identification Work Products

Role Identificationdiagram. These two figures clearly show that the creation of
the new design process using the approach based on metamodel was in this case
succesful because we could integrate two great portions of two methodologies
maintaining the traceability of the definition of metamodel elements along the
whole process even using different CASE tools, for the first fragments in fact we
used TAOMAE tool, the agent oriented modelling environment providing support
for Tropos and for the rest of design process we used Rational Rose.

5 Conclusion

In this paper we presented an experiment of using SME for the construction of
ad-hoc agent oriented design processes; the core concept of this approach is the
MAS metamodel of the constructing design process whose elements are used for
the right retrieval of method fragments from the repository and for their right
assembly. We used our approach for experimenting the construction of a design
process basing on specific requirements: a goal oriented agent design process
based on the main structure of PASSI. In the work done we adapted PASSI
merging it with some fragments coming from Tropos.

The new process was then used for the design of a real system letting us to
validate our choices and to point out that the key point during fragments selec-
tion and assembly activities is the specific semantic of the metamodel element
that each fragment underpin; a deep knowledge on the meaning of the meta-
model elements let the method designer choose the most useful fragments and
adapt/modify some of them for a precise need.

This is the second experiment we made in design process composition (the first
was Agile PASSI [6]) and we are planning to do another experiment on the cre-
ation of a new design process, this time creating from scratch its metamodel.
We trust in this way to learn more and more about assembly techniques and to
be able to specify guidelines and to create a support for automatic composition

Lecture Notes in Computer Science 15

of fragments; until now in fact the selection and assembly technique are mostly
based on the skills and the knowledge a specific designer has on the fragments
repository he uses.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.
18.

M. Cossentino an L. Sabatucci and V. Seidita. Method fragments from the passi
process. Rapporto tecnico ICAR-CNR, (21-03), 2003.

Paolo Bresciani, Paolo Giorgini, Fausto Giunchiglia, John Mylopoulos, and Anna
Perini. Tropos: An agent-oriented software development methodology. Autonomous
Agent and Multi-Agent Systems (8), 3:203-236, 2004.

S. Brinkkemper, M. Saeki, and F. Harmsen. Meta-modelling based assembly tech-
niques for situational method engineering. Information Systems, Vol. 24, 24, 1999.
L. Cernuzzi, M. Cossentino, and F. Zambonelli. Process models for agent-based
development. FEngineering Applications of Artificial Intelligence, 18(2):205-222,
2005.

M. Cossentino, S. Gaglio, A. Garro, and V. Seidita. Method fragments for agent
design methodologies: from standardisation to research. International Journal of
Agent-Oriented Software Engineering (IJAOSE), 1(1):91-121, 2007.

M. Cossentino, S. Gaglio, L. Sabatucci, and V. Seidita. The passi and agile
passi mas meta-models compared with a unifying proposal. In In proc. of the
CEEMAS’05 Conference, pages 183-192, Budapest, Hungary, Sept. 2005.
Massimo Cossentino. From requirements to code with the PASSI methodology. In
Agent Oriented Methodologies [12], chapter IV, pages 79-106.

SEL. CMMI for Development Version 1.2. Technical Report of the Software Engi-
neering Institute of the Carnagie Mellon University., August 2006.

Paolo Giorgini, Manuel Kolp, John Mylopoulos, and Jaelson Castro. Tropos: A
requirements-driven methodology for agent-oriented software. [12], chapter II,
pages 20-45.

D. Gupta and N. Prakash. Engineering Methods from Method Requirements Spec-
ifications. Requirements Engineering, 6(3):135-160, 2001.

Brian Henderson-Sellers. Method engineering: Theory and practice. In ISTA, pages
13-23, 2006.

Brian Henderson-Sellers and Paolo Giorgini. Agent Oriented Methodologies. Idea
Group Publishing, Hershey, PA, USA, June 2005.

I. Jacobson, G. Booch, and J. Rumbaugh. The unified software development pro-
cess. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1999.

K. Kumar and R.J. Welke. Methodology engineering: a proposal for situation-
specific methodology construction. Challenges and Strategies for Research in Sys-
tems Development, pages 257269, 1992.

I. Mirbel and J. Ralyté. Situational method engineering: combining assembly-based
and roadmap-driven approaches. Requirements Engineering, 11(1):58-78, 2006.
V. Seidita, M. Cossentino, and S. Gaglio. A repository of fragments for agent
systems design. Proc. Of the Workshop on Objects and Agents (WOA06), 2006.
SPEM Specification. http://www.omg.org.

A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Roundtrip from
Research to Practice. Proc. 12th IEEE Intl Requirements Engg Conference, Kyoto,
pages 4-8, 2004.

