
Engineering Self-adaptive Systems: From
Experiences with MUSA to a General

Design Process

Massimo Cossentino1, Luca Sabatucci1(B), and Valeria Seidita1,2

1 Consiglio Nazionale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni,
Palermo, Italy

{massimo.cossentino,luca.sabatucci}@icar.cnr.it
2 Dip. dell’Innovazione Industriale e Digitale, Università degli Studi di Palermo,

Palermo, Italy
valeria.seidita@unipa.it

Abstract. Designing and developing complex self-adaptive systems
require design processes having specific features fitting and representing
the complexity of these systems. Changing requirements, users’ needs
and dynamic environment have to be taken in consideration, also con-
sidering that, due of the self-adaptive nature of the system, the solution
is not fixed at design time but it is a run-time outcome. Traditional
design approach and life cycles are not suitable to design software sys-
tems where requirements continuously change at runtime.

A new design process paradigm is needed to design such systems. In
this Chapter, we present a retrospective analysis based on three projects
developed in the last five years with the middleware MUSA in order to
identify specific features of the design process for supporting continuous
change and self-adaptation. The result is a general approach allowing to
reduce the gap between design time and run-time.

Keywords: Adaptive management · Continuous change ·
Design process

1 Introduction

Today, there are several trends that are forcing application architectures to
evolve. Users expect a rich, interactive and dynamic user experience on a wide
variety of clients including mobile devices. Customers expect frequent rollouts,
even multiple times a day, to keep pace with their informational and service
requirements. Moreover, customers want to significantly reduce technology costs
and are unwilling to fund technology changes that do not result in direct cus-
tomer benefits.

In traditional software life-cycles, a single change can affect multiple com-
ponents, creating a complicated testing effort, requiring testers to understand
various code interdependencies or test the entire application for each change. IT
c© Springer Nature Switzerland AG 2019
D. Weyns et al. (Eds.): EMAS 2018 Workshops, LNAI 11375, pp. 96–116, 2019.
https://doi.org/10.1007/978-3-030-25693-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-25693-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-25693-7_6


Engineering Self-adaptive Systems 97

organizations demand a paradigm shift: from monolithic applications (that puts
all user interfaces, business logic and data in a single process) toward applications
that enable architectural extensibility.

The level of adaptability to changing requirements is managed at design
time using ad-hoc life cycle or process models. Developing self-adaptive systems
using a systematic approach requires to consider several factors that may be
summarized in: changing operational context and changing environment.

Even though different kinds of approaches for engineering self-adaptive sys-
tems exist - they span from control theory to service-oriented and from agent-based
approaches to nature-inspired ones - today some possible good approaches seem to
be those exploiting models-at-run-time and reflection. Nevertheless, a disciplined
and systematic design process for developing self-adaptive systems, able to con-
sider changing operational context and changing environment, still lacks.

A need for new design paradigms arises. Design paradigms where continuous
changes are managed through continuous delivery or adaptation of new portions
of the system during its operations.

The aim of this Chapter is to identify a general design process for self-
adaptive systems. For pursuing this objective, we started from our experience
with MUSA (Middleware for User-Driven Service Adaptation), the middleware
we created for developing self-adaptive systems. We explored the way in which
MUSA works, to identify and to analyze which are the elements of the process
involved in that. We considered a five years experience in employing MUSA on
three projects. The analysis has been conducted focusing on the design activities
and three different measures to gain insights on the effort spent in the design
and the aptitude of the system to autonomously find solutions. The results have,
then, been used for generalizing a design approach.

The rest of the Chapter is organized as follows: Section 2 discusses the need
for a new design paradigm, Sect. 3 illustrates some existing middleware for self-
adaptive systems, Sect. 4 discusses the retrospective analysis on MUSA; in Sect. 5
the obtained results are discussed and in Sect. 6 we discuss them and we propose
a general design approach; finally in Sect. 7 some conclusions are drawn.

2 Continuous Changes and Self-adaptation

A self-adaptive system is a system able to modify its behavior and/or its struc-
ture in order to respond to changes perceived from the environment it is working
on or from inside the system itself. Changes are considered to occur while the
system is working. System requirements and also system ability to adapt depend
by all the actors that interact with the system, the environment whose changes
are affected by and affect the system. The system behavior itself is a source of
changes and adaptation. Adaptive behavior is prone to three types of depen-
dency: actor-dependency, system-dependency, and environment-dependency.

Designing and developing self-adaptive systems have to consider the following
factors: requirements are identified at runtime, environment conditions contin-
uously change, users heavily and continuously interact with the system and the
global behavior of the system emerges at runtime.



98 M. Cossentino et al.

Traditional software engineering approaches cannot be used for developing
self-adaptive systems. They prescribe a very disciplined process that follows a
well-specific life-cycle; the main aim is to make the software development as more
predictable as possible. All the requirements have to be identified and analyzed
in the very early activities of the design process and then transformed into code.

A software system is a solution to a problem, regardless the level of com-
plexity of the problem and the software, and the level of adaptivity to changing
requirements is managed at design time using ad-hoc life cycles or process mod-
els. Several process models may be used: waterfall, iterative and incremental and
so on. This way of working has been well established since years for all those
systems that do not require particular changes and do not work in changing
conditions.

Different kinds of approaches for engineering self-adaptive systems exist
[14,22,41], they span from control theory [10] to service-oriented [29] and from
agent-based approaches [19,40] to nature-inspired ones [43]. They all map to the
so-called MAPE cycle [38]: monitoring, analyzing, planning and executing. In
[42], for instance, authors propose five patterns of interacting MAPE loops to
be used for implementing decentralized control.

A promising approach to manage complexity in runtime environments is to
develop adaptation mechanisms that involve software models. This is referred to
as models@run.time. The idea is to extend the model produced using MDE
approaches to the run-time environment. The authors of models@run.time
emphasize the importance that software models (artifacts) may play at run-
time stating that if a system changes the representation of the system should
change and vice versa. Another approach aims at managing complexity in run-
time environments and at implementing MAPE cycle by developing adaptation
mechanisms that involve software models (artifacts). Blair et al. [6] emphasize
the importance that software models may play at runtime. They use the mech-
anism of reflection inducing that the necessary adaptation is performed at the
model level rather than at the system level.

This vision is opposite to the traditional design approaches that prescribe
the system be stopped each time a new requirement or a new goal occurs or
the environmental conditions change. Conventional processes also prescribe that
changes have to be inserted in the system while it is not working; there are several
methods in literature for facing changes, from simple software maintenance to
software evolution [39]. In any case, a new design activity is necessary during
which the system cannot work; someone says that in this case, the system is
offline.

In our work, we consider that designing and developing self-adaptive systems
require continuous delivery and designing while the system is working; we accept
the idea the system has to be always online.

Baresi et al. [3] introduce the need of bringing near the design time to the run-
time: “The clear separation between development-time and run-time is blurring
and may disappear in the future for relevant classes of applications”. This allows
some changing activities to be shifted from design and development to runtime



Engineering Self-adaptive Systems 99

and some changing responsibilities to be assigned to the system itself instead of
to the analysts or designers. Thus, realizing and implementing adaptation [1,9].

Several scientists agree [2,13] self-adaptation is closely related to the ability
of reasoning about the inner world beyond than the outer. In other words, self-
awareness is the key for self-adaptation. In previous work, we adopted agent’s
knowledge to implement run-time artifacts for modeling user’s requirements and
norms [32].

We claim that the maintenance of complex distributed software is a mix of
continuous delivery and continuous integration. Automation is indeed one way
to enable constant changes. In particular, we are interested in exploring the
automation that supports continuous changes. Hence, continuous changes may
be handled at runtime with the aid of an automatic tool.

Our intuition is that the life cycle of a self-adaptive system, or of one of
its components, starts with its design and does not terminate with its deploy-
ment [25] and testing. The life-cycle continues with some monitoring phases
aiming at identifying and handling new or emergent requirements and/or needs
from users. This implies that self-adaptation allows making run-time changing
and the self-adaptive system itself supports the further development phase aid-
ing, or better substituting, designers. In so doing, we overcome the limits of
traditional design methodologies: they are not adequate for a self-adaptive sys-
tem because they do not consider the run-time.

In the following sections, we identify the characteristics of a design process
for supporting self-adaptive middleware. To investigate this topic we exploit
the experience gained with MUSA, a self-adaptive middleware, and then we
generalize some of the obtained results.

3 MUSA: A Middleware for Self-adaptation

MUSA (Middleware for User-driven Service Adaptation) [34] is a middleware for
orchestrating distributed services according to unanticipated and dynamic user
needs. It has been conceived for managing evolution and adaptivity of dynamic
workflows [33]. MUSA provides basic concepts to model a software system able
to detect and react to exceptional events, failures and resources unavailability.

Key enablers of MUSA are: (a) representing what the system will do and
how the system can do as a couple of first-class entities (respectively Goals and
Capabilities) [36]; (b) providing goals and capabilities and run-time artifacts the
system can reason on by representing them through a common formalism, based
on a grounding semantic [17]; (c) providing a flexible and configurable planning
system [31] for dynamically generating workflows of capabilities to address the
specified goals.

In the following, we compared MUSA with some of the middleware for self-
adaptation in the literature. The remaining sub-section will discuss which steps
are necessary for engineering a system with MUSA.



100 M. Cossentino et al.

3.1 Middlewares for Self-adaptation

Literature provides an increasing number of middlewares for developing and
managing the self-adaptive characteristics of a system under development. These
approaches are highly heterogeneous, yet one can usually classify them as com-
ponent or service-based [4,29], agent-based [14,31], or bio-inspired [20,43].

The benefits of these middlewares are that they provide basic functionalities
for rapid prototyping of many self-adaptation features such as monitors and
actuators. The common factor of almost all these different infrastructures is the
idea of exploiting the mechanism of reflection to take run-time strategic decisions.
They support some run-time entities and models, i.e., high-level abstractions of
the software system. By maintaining these abstractions at run-time, the software
system could be able to perform reflection, and it may predict/control certain
aspects of its behavior for the future.

Kramer and Magee [8,24] propose MORPH, a reference architecture for self-
adaptation, inspired to robotics, that includes (i) a control layer, a reactive
component consisting of sensors, actuators and control loops, (ii) a sequencing
layer which reacts to changes from the lower levels by modifying plans to handle
the new situation and (iii) a deliberation layer that consists in time consum-
ing planning which attempts to produce a plan to achieve a goal. The main
difference with our architecture is that we introduce a layer for handling goals
evolution. The architecture is suitable for implementing a self-adaptive system
able to deal with anticipated changes by selecting among pre-computed adapta-
tion strategies.

SeSaMe (SEmantic and Self-Adaptive MiddlewarE) [5] is a self-organizing
distributed middleware that uses semantic technologies to harmonize the inter-
action of heterogeneous components. In SeSaMe, components self-connect at run-
time, without any prior knowledge of the topology. The dynamic architecture
grants system’s reliability even when multiple components leave or fail unexpect-
edly, and dynamically alters the system’s topology to cope with message conges-
tion. The main difference is that SeSaMe focuses on structural/component-based
abstractions (groups, roles, components) whereas MUSA concentrates more on
functional requirements. In SeSaMe, adaptation consists in modifying the topol-
ogy of connections among the components, whereas in MUSA it consists in
changing the workflow by removing/replacing infeasible tasks.

SAPERE (Self-aware Pervasive Service Ecosystems) [43] is inspired to natu-
ral ecosystems to model dynamism and decentralization in pervasive networks. In
SAPERE various agents coordinate through spatially-situated and environment-
mediated interactions, to serve their own needs as well as the sustainability of
the overall ecology. The environment is modeled as a spatial substrate where
agents’ interactions are managed as virtual chemical reactions. The main differ-
ence is that SAPERE is focused more on emergence and evolution rather than
on control. The collaboration between agents is incidentally due to the current
context and to underlying eco-laws. Emergence is programmed via eco-laws, i.e.
natural metaphors that specify how agents will interact.



Engineering Self-adaptive Systems 101

As a final remark, independently from the kind of middleware chosen for a
specific purpose, all of them imply a methodological shift in which some design
models move from the design-time towards run-time artifacts.

3.2 Using MUSA for Engineering a Self-adaptive System

The use of MUSA for building a self-adaptation system consists basically in pro-
viding a model of goals and a model of capabilities to the MUSA instance, thus
enabling its proactive means-end reasoning. However, there exist a preliminary
activity to be done: the analysis of the domain for building a common ontological
background for goals and capabilities.

The Problem Ontology Description (POD) is a design fragment [28] that
allows describing the problem domain elements and their relationships in a
formal way. This activity grounds on an ontology used as an analysis (i.e.
descriptive) model for representing the reality of problem domains typically
addressed by agent-oriented technologies. This ontology is described by the Prob-
lem Ontology metamodel. The Problem Ontology metamodel, we employ, has
been inspired by the FIPA (Foundation for Intelligent Physical Agents)1 stan-
dard and ASPECS [16] ontology. Thus, similarly, our meta-ontology describes
what are the elements of interest in a domain (Concept) with their properties
(Predicate) and how they act in the domain (Action) and it introduces some
new elements in order to explicitly model intentional behaviors.

Requirement Analysis and Goals. Traditionally, when specifying system require-
ments, analysts crop the solution space in order to define the expected sys-
tem behavior in a deterministic way. However, the characteristics of being
autonomous and proactive make the agents able to explore a wider solution
space, even when this space dynamically changes or contains uncertainty [40].
The novelty of our approach consists in making some constraints of the solution
less rigid, thus allowing more degrees of freedom to the system.

Several methods exist in literature to conduct a goal-oriented requirement
analysis. We do not suggest to use a specific one, providing the output is rendered
via the GoalSPEC language [37]. It has been specifically conceived to support
MUSA with a run-time artifact for dealing with user’s requirements, some of its
most interesting features will be presented in the following.

GoalSPEC Supports Adaptivity . GoalSPEC provides some domain-independent
keywords but it offers a powerful plug-in mechanism for providing different ontol-
ogy groundings. It is fully compatible with the Problem Ontology Description
fragment, thus goals can be expressed as desired states of the world, defined in
the POD as concepts and predicates.

GoalSPEC Supports Evolution. GoalSPEC allows MUSA agents to reason and
commits to the specified goals. Goals are run-time artifacts, therefore agents
perceive them as part of the environment. This run-time nature of goals allows
they can change during system lifecycle, thus supporting a global evolution of
the system.
1 Available at: http://www.fipa.org/specs/fipa00086.

http://www.fipa.org/specs/fipa00086


102 M. Cossentino et al.

Services and Capabilities. The concept of capability comes from AI (planning
actions [21]), software engineering (contracts [18]) and service-oriented architec-
ture (micro-services [26]). Indeed, this composite nature is well represented by
the separation we adopt between abstract capability – a description of the effect
of an action that can be performed – and concrete capability – a small, indepen-
dent, composable unit of computation that produces some concrete service.

Implementing system functionalities as capabilities provides some benefits:

– each capability is relatively small, and therefore easier for a developer to
implement,

– it can be deployed independently from other capabilities,
– it is easier to organize the overall development effort around multiple teams,
– it supports self-adaptation because of improved fault isolation.

An example of description of capabilities is provided in [34] where the smart
travel domain is considered. In this context, each capability encapsulates a web
service for reserving some kind of travel service (hotel, flight, local events).

Moreover, we focused on the idea that capabilities make it easier to deploy
new versions of the software frequently. Providing capabilities (as well as goals) as
run-time entities contributes to enable continuous changes and self-adaptation.
Supporting this claim is one of the objectives of this Chapter. In the remaining
section, we used data about the implementation of three different applications
for getting some findings of the easiness of continuously evolving a system.

4 A Retrospective Analysis of MUSA

This section presents a retrospective analysis of the design activities with MUSA
and discusses some emerging results.

Empirical Study Design. We selected MUSA [34] because we gained a prac-
tical experience of use, due to its adoption in several applications.

In the last years, MUSA has been employed in research projects and case
studies with very different application domains. Table 1 gives an overview of the
sources from where data have been collected.

The empirical study mainly focuses on the design activities for producing
ontology, capabilities and goals for the selected projects of Table 1. The design
process we followed in all the projects follows three main activities:

– As it happens in traditional requirement analysis, we suggest every MUSA
project started with a good understanding of the domain. We adopt an ontol-
ogy to record and represent this knowledge. For this reason measuring the
evolution of the ontology model may be interesting for this study.



Engineering Self-adaptive Systems 103

Table 1. Summary of research projects and case studies where the MUSA middleware
has been employed between 2013 and 2016.

Acronym Type App. Name Description

IDS Research

Project

Innovative

Document Sharing

The aim has been to realize a prototype of a new

generation of a digital document solution that

overcomes current operating limits of the common

market solutions. MUSA has been adopted for

managing and balancing human operations for enacting

a digital document solution in a SME

OCCP Research

Project

Open Cloud

Computing

Platform

The aim was the study, design, construction and testing

of a prototype of cloud infrastructure for delivering

services on public and private cloud. MUSA has been

employed, in the demonstrator, in order to implement

an adaptive B2B back-end service for a fashion

company

Smart Travel Case Study Travel Agency

System

MUSA provides the planning engine that creates a

travel-pack as the composition of several heterogeneous

travel services. The planning activity is driven by

traveler’s goals

– The second step is understanding and representing customer’s requirements.
In MUSA, they must be translated into significant states of the system to be
addressed. In some circumstances, this activity may require a revision of the
ontology to adjust some of the concepts. For this reason, the study includes
an evaluation of the evolution of the goal model.

– A third step concerns the development of the services the system may employ
in the emerging solution. In MUSA, capabilities are run-time artifacts that
describe how to employ available services to compose a solution. As well as
goal modeling, defining the capabilities may require a revision of the ontology.
Therefore, we decided to include the analysis of the available capabilities.

For comparison reasons, for each project, we identified three main iterations,
in which the application received substantial changes. In different projects, itera-
tions have been deduced by considering the delivery of functionalities, therefore
they may have a variable duration between 1 to 2 months. In each iteration,
we have considered either which artifacts have been produced or how they have
been modified with respect to the previous iteration (versioning history).

For each artifact, we planned a set of measurements.

– The first measurement is the size of the model. It is calculated by employ-
ing the system metamodel as illustrated in [7]. The metamodel provides the
language for describing models of the system. It contains elements and rela-
tionships underpinning and guiding the design process activities used for
developing a specific system. During the design activities, designers use the
metamodel as a trace for instantiating elements in the models. The size of
the model is a measure of the effort spent on instantiating models from the
metamodel. It refers to introducing new elements, relationships, attributes
and so on.

– The second measurement is the effort (in man-hours) spent in the model.
This measure is calculated by considering the number of commits done for



104 M. Cossentino et al.

the specific artifact. To be more precise, we asked the involved developers to
confirm or adjust the values. In any case we considered a possible error in this
measure, thus we considered significant the differences of effort rather than
their absolute values.

– The last measurement is done on the running system. After injecting the new
set of goals and capabilities (by replacing the previous ones), MUSA calculates
a new space of configurations and extracts a number of solutions to be used to
provide the requested functionality. The measurement is done on the space of
configuration as a value of the degree of freedom of the adaptation mechanism.
It provides two values: the number of different solutions computed by the
system for solving the problem.

5 Interpretation of Results

Table 2 reports the empirical data extracted from the three projects during their
initial three iterations. Data is also summarized in three charts, as shown in
Fig. 1.

The use of MUSA implies, at the very beginning, to perform some classical
design activities. After the first injection, the self-adaptive application is online
and every required change may be handled while it is running. We use the
empirical data for identifying duration/effort of the various release phases of the
process necessary for delivery a self-adaptive application with MUSA.

Before examining data, it is useful to provide some additional details about
how MUSA works. MUSA is based on the paradigm of collaborating agents
and artifacts [27]. Figure 2 depicts the main stakeholders, agents and artifacts
involved in this process. According to the classic vision, an agent can perceive
the environment and act in order to change it. In addition, MUSA agents are
self-aware of which capabilities they own and how to use them for producing a
result. MUSA agents share a main goal: ‘to address users’ run-time goals’ (i.e.
requirements). Therefore they continuously monitor either goal injection or goal
changes.

When the designer specifies a set of goals to be addressed (or update them),
then the agent groups called solution explorer is ready to collaborate to find
one or more abstract solutions (as workflow of abstract capabilities). These form
a run-time model called Solutions artifact (Fig. 4). The algorithm is described
in [31,35].

Now, we use data from Table 2 to specify how these participants (humans
and agents) collaborate during design-time and run-time (Fig. 4). It is worth
noting that we should address two different system layers in studying MUSA
applications: the MUSA middleware and the MUSA application:

1. The MUSA middleware provides runtime facilities for goal-models and capa-
bilities, and enables agents for solution-discovery and adaptive-orchestration.

2. The MUSA (self-adaptive) application is the result of employing the MUSA
middleware in building a set of user’s requested functionalities. It is able to
adapt to a changing domain.



Engineering Self-adaptive Systems 105

Table 2. Summary of the empirical data by retrospective analysis of research projects
in which the MUSA middleware has been adopted for engineering a self-adaptive system

Project iteration 1 iteration 2 iteration 3

IDS first injection bugfix+evolution evolution

size (number of model elements)

ontology 6 9 10

capability 4 6 7

goal 4 6 7

effort (man hours)

ontology 10 7 3

capability 30 23 7

goal 14 7 1

design total effort 54 35 21

space of configuration (number of solutions)

1 6 6

OCCP first injection evolution bugfix+evolution

size (number of model elements)

ontology 10 10 10

capability 5 8 12

goal 8 8 9

effort (man hours)

ontology 30 10 7

capability 70 40 50

goal 7 7 4

design total effort 107 57 61

space of configuration (number of solutions)

1 9 18

Smart Travel first injection bugfix+evolution bugfix+evolution

size (number of model elements)

ontology 12 12 14

capability 3 5 8

goal 5 7 7

effort (man hours)

ontology 7 7 14

capability 40 25 20

goal 100 14 1

design total effort 147 46 35

space of configuration (number of solutions)

5 5 5



106 M. Cossentino et al.

Fig. 1. Charts reporting average data, along three iterations, as extracted for the three
projects. Top-left diagram shows the average increase of the complexity of the ontology,
the capability model and the goal model. Top-right diagram shows the corresponding
effort (in man hours) required to complete the iteration. Finally, bottom diagram high-
lights the growth of the space of solutions.

Design-time and run-time phases are represented in Fig. 3 in which we high-
light the MUSA middleware and the MUSA (self-adaptive) application areas.

Design-time, generally speaking, is the moment in which taking design choices
concerning the characteristics of the application. The design-time of the MUSA
Middleware is out the scope of this Chapter. We work under the hypotesys that
MUSA is complete and always running.

Therefore, Fig. 3 focuses on MUSA Middleware run-time phase (right-side of
the box on the bottom). The box on the top represents the two phases of the
MUSA application: design-time and run-time.

The design-time for MUSA applications concerns the definition of an ontol-
ogy and, subsequently, of a couple of artifacts: goals and capabilities. As shown
in Fig. 3, this design-time of the MUSA application occurs during MUSA middle-
ware run-time, indeed the designer may exploit some simulation facilities offered
by the middleware for evaluating the degree of adaptation of the application as
a consequence of the new specifications.

The run-time of the MUSA application is shown in the top-right box of
Fig. 3. It includes two possible states: online and offline. Offline is when the
application is executing background operations but it not provides a working
response to user expectations; on the other side, online means the application
is providing the expected functionalities. The application is offline before the



Engineering Self-adaptive Systems 107

<<agent>>
solution
explorer

<<agent>>
solution
manager

<<agent>>
service
manager

models@runtime

DOMAIN
ONTOLOGY

GOALS

SERVICE

SOLUTIONSCAPABILITY

designer

user

developer

Fig. 2. The Human-Agent collaboration for the development of a MUSA self-adaptive
application.

first injection (of goals and capabilities) and after any future injections for bug-
fixing or functionality evolution: during this phase the middleware layer provides
functionalities for solution-discovery. When the application layer is online, the
middleware operates with an adaptive orchestration.

It is worth noting that, in the fashion of a continuous software delivery, the
red line of Fig. 3, i.e. the boundary between MUSA application design-time and
run-time, is less clear than the blue one. Indeed, after the first injection, designing
the MUSA application may be an activity performed during application is online.
Clearly, when changing the specifications at runtime, a short interruption of
service occurs due to the adaptation activity.

Run-TimeDesign-Time

Design-Time Run-Time

SIMULATION
SOLUTION

DISCOVERY
ADAPTIVE

ORCHESTRATION

ONTOLOGY OFFLINE ONLINEGOALS CAPABILITIES

MUSA Middleware

MUSA Application

Fig. 3. States of MUSA run-time execution. (Color figure online)

In Fig. 4, the alignment represents the design activities corresponding to a
particular artifact (ontology, goals, capabilities and architecture). Indeed, MUSA
agents support designer and developer, respectively, (1) by evaluating the degree
of freedom of the set of goals and capabilities that are going to be built, and,
(2) by verifying the compliance of the service under development with the cor-
responding capability. Figure 4 highlights this collaboration by coupling humans
and agents in a design activity (designer with solution explorer and developer
with service manager).



108 M. Cossentino et al.

Fig. 4. Outcome of the retrospective analysis.

According to previously reported data, we identified three iterations (or
release cycles) that begin and terminate with an injection. In Fig. 4, the ampli-
tude of lines are proportional to the effort required for refining the correspondent
artefact.

Results of the retrospective analysis are summarized in Fig. 4 and resumed
in the following findings.

Injections. The boundary between the offline and online design is marked by the
first injection, that is the moment in which the self-adaptive application begins.
Time before the first modification point, the left part of the figure, represents
when analyst, developer and customer designed the first version of the system
for solving a specific problem with the aid of some agents working in MUSA.
The short time interval soon after an injection is used by MUSA for acquiring
occurring changes in the operating condition and for releasing new configurations
of the system.

Boundary between MUSA Application Design-Time and Run-Time.
The developer designs a first set of capabilities the system has to own and the
designer designs a first set of goals the system has to pursue by using the right
capabilities. These two design-time activities are performed respectively, with the
aid of the service manager agent and the solution explorer agent. In particular,
the solution explorer aids the designer in evaluating if available capabilities are
enough for addressing the set of goals, also indicating the degree of freedom for
future adaptations. The classical boundary between design-time and run-time is
going to disappear.

Solution as a Model at Run-Time. Once the self-adaptive application is
online, agents collaborate in order to achieve the goals and to monitor the envi-
ronment. They exploit the available capabilities of the selected solution. The
solution is a run-time artifact that only agents are responsible for (no human
role is involved). They may change it for adaptation purpose.



Engineering Self-adaptive Systems 109

Convergence. After each modification point, each design iteration takes a short
time and less effort to be completed; on the other hand, the space of solutions
increases. We observed that the self-adaptation property contributes in reducing
the design effort. This because, iteration after iteration, the ontology domain
description becomes stable and the repository of capability increases. As a con-
sequence, the self-adaptive application is able to endorse a higher number of
deviations from standard situations. Every time a modification occurs in the
running/operating conditions (for instance, a new goal, a change in the environ-
ment or a change in the way the user uses the system), it is less frequent designers
start a new design iteration. However, when a manual change is required, the
ontology allows to quickly refine goals and to specify new capabilities. In prac-
tice, in the long run, designers and agents will interact less and for short time.

6 Discussion

In this section, starting from the results of the retrospective analysis, we propose
a skeleton of a design process for engineering self-adaptive systems. We will
achieve this objective by extracting a schematic design process from our previous
experience with MUSA and then trying to generalize it.

6.1 The Design Process Adopted in MUSA Applications

It is a matter of fact that exploring the new world of adaptive system has brought
many research groups to move in a new context where old methodologies have
soon proved to be not applicable. Similarly, when starting our experiences with
MUSA we tried to employ design activities and related artifacts coming from our
agent-oriented software engineering background. Notably we considered influ-
ences coming from PASSI [15], Agile PASSI [12], and ASPECS [16]. Some of
them influenced not only our way to use MUSA but, as it was expectable, the
development of MUSA itself. For this reason, we will find some of them in the pro-
cess we are trying to sketch as a suggested approach to the design of self-adaptive
systems. Another relevant issue to be considered when looking at the way we
designed our MUSA-based solutions is that MUSA itself was quickly and dras-
tically evolving. Mostly in the first part of this 5-years long observation period.
The fundamental concepts MUSA is based on (goals, capabilities, agents’ hier-
archical organization and so on) remained unchanged but their contribution to
the middleware implementation significantly evolved over time. Looking at how
we effectively developed the solutions required in the different projects where
we employed MUSA, we can see the constant presence of the following design
activities:

– Ontology definition
– Goals definition (and injection)
– Capability definition (and injection)



110 M. Cossentino et al.

– Problem Solution
– Adaptation loop

These activities will be detailed in what follows.

Ontology Definition. One of the key ideas at the basis of MUSA is to let
different modules contribute to find a solution to a problem even if they have
not been conceived for that. In order to do that all the system parts (at least
those involved in the solution of a specific problem, others may exist that are not
involved on this but will contribute to another) need a common semantics for
sharing information. Following the influences coming from our past experiences
in software design we decided to provide that by using a methodology. Such
methodology not only describes the concepts in the solution domain (and their
status by using predicates) but also actions allowed in the domain itself.

Goals Definition (and Injection). In order to employ MUSA for solving a
problem the designer has to communicate the problem requirements to MUSA.
This is done by using goals and more specifically by injecting them in the
(already) running middleware. Such goals will be received by a Solution Explorer
agent who will be in charge of pursuing them as already depicted in Figs. 2 and
4. Goals will be expressed by referring to the problem ontology produced by the
previous activity.

Capability Definition (and Injection). In our projects, capabilities often
come from the real world. For instance, existing web or cloud services. A great
part of the capabilities construction effort therefore consisted in wrapping them
in order to ensure a semantically effective interaction with MUSA.

Problem Solution. This is the moment when MUSA is asked to solve the
problem. MUSA uses its reasoning algorithms in order to find an abstract solu-
tion (employing abstract capabilities) and if feasible binds that to executables
modules/services (concrete capabilities).

Adaptation Loop. There are several reasons that may trigger this loop: the
execution of a concrete capability may not reach the expected result, the mod-
ule/service wrapped by the capability is no more working or the proactive means-
end reasoning module does not find a solution to the injected set of goals. MUSA
reacts to such situations in two different ways: firstly, it tries to overcome the
obstacle by replanning the solution (at the concrete or abstract level), finally, if
the other ways did not solve the issue, MUSA involves the user in the loop by
asking for its collaboration in terms of goals changing, constraints relaxing or
injection of new capabilities.

According to our experiences these activities are all crucial and constantly
applied in the design of our systems. Because of that we think these activities may
be the pillars for building a more general design process as it will be discussed
in the next subsection



Engineering Self-adaptive Systems 111

6.2 A Generalised Design Process

A crucial part for any design process is to define its application scope. We think
our experience is representative for the following category of systems and prob-
lems. First, the system is composed of two layers:

1. A middleware layer providing assembling/orchestrating/coordinating features
of existing pieces of functionalities (software) and providing adaptation fea-
tures to cope with unforeseeable changes.

2. An application layer running upon the middleware one. This layer directly
interacts with the user providing the required functionalities/solutions.

Elementary pieces of functionalities assembled in the solution may be
described in a semantically coherent way. The problem may be described in
terms of functional and non-functional requirements that may change during
system execution and that may be expressed in a machine understandable lan-
guage. The problem requires the system to adapt to unforeseeable changes in the
environment and in the system itself (requirements included) so that it can find
solutions that may employ different strategies/portions of software/parameter
settings.

For such a category of problems/systems we think the following process skele-
ton may be successfully applied.

1. Define problem and solution taxonomy or other semantic description. This
creates an operational abstraction where the problem may be consis-
tently described in terms of requirements and solution elements (composi-
tion/employment of existing pieces of software, data types, etc.).

2. Define problem model in a machine-readable language. Problem requirements
cannot be expressed in conventional design languages (for instance UML)
since the application-layer of the system has to be aware of them, both at the
functional and non-functional level of detail.

3. Collect and wrap existing functionalities. The result will be a repository of
semantically interoperable pieces of software that the adaptation middleware
may compose to obtain the solution.

4. Validate functionalities repository towards requirements satisfaction. To this
purpose, some relevant works on certification of self-adaptive systems may
be found in literature [11,30]. Another challenge for adaptive systems is to
ensure that enough pieces of functionality are available to face the demands
of change proposed by the environment, changing user needs, system failures
and so on. This check is a relevant issue and we think each middleware should
interact with the designers (for instance using simulation features) in order
to verify if the existing repository ensures a sufficient degree of adaptation.
The specific algorithms used by the middleware may deeply affect the results
of this validation.

5. Run the application layer. This may be roughly compared to the conventional
running phase of a traditional software. The application layer needs the mod-
els produced in the previous phase in order to learn and pursue the specified



112 M. Cossentino et al.

objectives. If the solution is not found or when it fails after succeeding for a
while, the next activity will follow.

6. Adaptation. According to different implementation philosophies (and prob-
lem constraints) this phase may involve the human or not. For instance, when
sensitive decisions have to be taken, a human supervision is usually required
before swerving from a straightforward solution. Adaptation may involve the
employment of alternative pieces of functionalities in pursuing the same plan,
a replanning of the solution strategy or other approaches (for instance evolu-
tionary ones) according to the specific middleware.

6.3 Limits of This Analysis

The data extracted could be a bit biased because in these three projects, engi-
neers developed both the MUSA middleware and the MUSA application for the
specific domain problem. In the reported retrospective analysis the most com-
plex part was separating the time required for fixing the middleware from the
time required to implement the application (ontology, goals and capabilities).

Moreover, we have restricted the retrospective analysis to the first three
iterations. However, some projects were developed in more iterations that were
not considered in this analysis. This choice was done in order to make them
comparable. In any case, Fig. 1 shows that the trend of the curves is quite regular.
So we can hypothesize the sample is quite respectful of the reality.

7 Conclusions

Due to the features of self-adaptive systems and the fact that, nowadays, sys-
tems are more interconnected and various than before, designers have not the
right means to anticipate and design interactions among different components,
interaction among users and the system. Indeed, (self-adaptive) software system
properties are effectively known when all the relationships among the software
components and between the software and the environment have been expressed
and have been made explicit. Such issues have to be dealt with at runtime; mod-
eling and monitoring users and the environment is the key for enabling software
to be adaptive [13,23].

Self-adaptation deals with requirements that vary at run-time. Therefore it
is crucial that requirements lend themselves to be dynamically observed, i.e.,
during execution. Middlewares for self-adaptation constitute the right tools for
easing complex systems development and for providing a form of model@runtime.
A methodological approach for developing self-adaptive systems supporting run-
time continuous change still lacks.

In this Chapter, we illustrated the results of a retrospective analysis con-
ducted on our middleware (MUSA) to identify the characteristics of a design
process for developing self-adaptive systems.

We started from the hypothesis that changes occurring at run-time have to
be handled by the system itself; like it were part of the team of designers. We
reached this objective in MUSA by employing a well-specific agent architecture.



Engineering Self-adaptive Systems 113

The analysis mainly highlighted that, using MUSA, supporting self-adaptive
solutions implies a design process where humans and agents collaborate. Goals
and capabilities are run-time entities that constitute the continuous data
exchange between human and agents. Human and agents collaborate until the
system (all the agents) possesses the useful knowledge for reaching the defined
objectives by its own. Moreover, the collaboration between humans and agents
and the fact that a run-time model exists until the system is running, guarantee
the required system behaviour modifications during subsequent releases.

Finally, we deeply analyzed the way in which a system is developed by using
MUSA and we identified some principal design activities a design approach for
engineering self-adaptive system has to contain. The analysis of the use of MUSA
covered five years. One of the most important insights we realized, also compar-
ing that with other self-adaptive middleware systems, is that activities devoted
to identifying the ontology of the system, the goals, and the capabilities are nec-
essary to build a tool providing the right automation for supporting continuous
changes.

The most relevant result of this analysis is the identification of the design
process we used in developing MUSA applications. This process supports contin-
uous change and strongly induce human and agents to collaborate in pursuing
the solution. From this process we generalised a wider scope process for the
design of self-adaptive applications based on the employment of a middleware
layer providing assembling/orchestrating/coordinating features of existing pieces
of functionalities (software) and providing the required adaptation features to
cope with unforeseeable changes.

References

1. Andersson, J., et al.: Software engineering processes for self-adaptive systems. In:
de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for
Self-Adaptive Systems II. LNCS, vol. 7475, pp. 51–75. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5 3

2. Aßmann, U., Götz, S., Jézéquel, J.-M., Morin, B., Trapp, M.: A reference archi-
tecture and roadmap for Models@run.time systems. In: Bencomo, N., France, R.,
Cheng, B.H.C., Aßmann, U. (eds.) Models@run.time. LNCS, vol. 8378, pp. 1–18.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08915-7 1

3. Baresi, L., Ghezzi, C.: The disappearing boundary between development-time and
run-time. In: Proceedings of the FSE/SDP workshop on Future of software engi-
neering research, pp. 17–22. ACM (2010)

4. Baresi, L., Guinea, S.: A3: self-adaptation capabilities through groups and coor-
dination. In: Proceedings of the 4th India Software Engineering Conference, pp.
11–20. ACM (2011)

5. Baresi, L., Guinea, S., Shahzada, A.: SeSaMe: towards a semantic self adaptive mid-
dleware for smart spaces. In: Cossentino, M., El Fallah Seghrouchni, A., Winikoff,
M. (eds.) EMAS 2013. LNCS (LNAI), vol. 8245, pp. 1–18. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-45343-4 1

6. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27
(2009)

https://doi.org/10.1007/978-3-642-35813-5_3
https://doi.org/10.1007/978-3-319-08915-7_1
https://doi.org/10.1007/978-3-642-45343-4_1


114 M. Cossentino et al.

7. Bonjean, N., Gleizes, M.-P., Chella, A., Migeon, F., Cossentino, M., Seidita, V.:
Metamodel-based metrics for agent-oriented methodologies. In: Proceedings of the
11th International Conference on Autonomous Agents and Multiagent Systems-
Volume 2, pp. 1065–1072. International Foundation for Autonomous Agents and
Multiagent Systems (2012)

8. Braberman, V., D’Ippolito, N., Kramer, J., Sykes, D., Uchitel, S.: Morph: a refer-
ence architecture for configuration and behaviour self-adaptation. In: Proceedings
of the 1st International Workshop on Control Theory for Software Engineering,
pp. 9–16. ACM (2015)

9. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy
of software change. J. Softw. Maint. Evol. Res. Pract. 17(5), 309–332 (2005)

10. Calinescu, R., Gerasimou, S., Banks, A.: Self-adaptive software with decentralised
control loops. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp.
235–251. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-
9 16

11. Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T.: Engi-
neering trustworthy self-adaptive software with dynamic assurance cases. IEEE
Trans. Softw. Eng. 44(11), 1039–1069 (2018)

12. Chella, A., Cossentino, M., Sabatucci, L., Seidita, V.: Agile passi: an agile process
for designing agents. Int. J. Comput. Syst. Sci. Eng. 21(2), 133–144 (2006)

13. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research
roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02161-9 1

14. Cheng, S.-W.: Rainbow: cost-effective software architecture-based self-adaptation.
ProQuest (2008)

15. Cossentino, M.: From requirements to code with the passi methodology. Agent-
Oriented Methodol. 3690, 79–106 (2005)

16. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: ASPECS: an
agent-oriented software process for engineering complex systems. Auton. Agents
Multi-Agent Syst. 20(2), 260–304 (2010)

17. Cossentino, M., Sabatucci, L., Seidita, V.: Towards an approach for engineering
complex systems: agents and agility. In: Proceedings of the 18th Workshop on
“From Objects to Agents”, 1867, pp. 1–6 (2017)

18. Curbera, F.: Component contracts in service-oriented architectures. Computer
40(11), 74–80 (2007)

19. De La Iglesia, D.G., Calderón, J.F., Weyns, D., Milrad, M., Nussbaum, M.: A
self-adaptive multi-agent system approach for collaborative mobile learning. IEEE
Trans. Learn. Technol. 8(2), 158–172 (2015)

20. Fernandez-Marquez, J.L., Serugendo, G.D.M., Montagna, S.: BIO-CORE: bio-
inspired self-organising mechanisms core. In: Hart, E., Timmis, J., Mitchell, P.,
Nakamo, T., Dabiri, F. (eds.) BIONETICS 2011. LNICST, vol. 103, pp. 59–72.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32711-7 5

21. Gelfond, M., Lifschitz, V.: Action languages. Comput. Inf. Sci. 3(16), 1–41 (1998)
22. Haesevoets, R., Weyns, D., Holvoet, T.: Architecture-centric support for adaptive

service collaborations. ACM Trans. Softw. Eng. Methodol. (TOSEM) 23(1), 2
(2014)

23. Inverardi, P.: Software of the future is the future of software? In: Montanari, U.,
Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp. 69–85. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75336-0 5

https://doi.org/10.1007/978-3-662-46675-9_16
https://doi.org/10.1007/978-3-662-46675-9_16
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1007/978-3-642-32711-7_5
https://doi.org/10.1007/978-3-540-75336-0_5


Engineering Self-adaptive Systems 115

24. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: 2007
Future of Software Engineering, FOSE 2007, pp. 259–268. IEEE (2007)

25. Malek, S., Mikic-Rakic, M., Medvidovic, N.: A decentralized redeployment algo-
rithm for improving the availability of distributed systems. In: Dearle, A., Eisen-
bach, S. (eds.) CD 2005. LNCS, vol. 3798, pp. 99–114. Springer, Heidelberg (2005).
https://doi.org/10.1007/11590712 8

26. Namiot, D., Sneps-Sneppe, M.: On micro-services architecture. Int. J. Open Inf.
Technol. 2(9), 24–27 (2014)

27. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Auton. Agents Multi-Agent Syst. 17(3), 432–456 (2008)

28. Ribino, P., Cossentino, M., Lodato, C., Lopes, S., Sabatucci, L., Seidita, V.: Ontol-
ogy and goal model in designing bdi multi-agent systems. WOA@ AI* IA, 1099,
66–72 (2013)

29. Rouvoy, R., et al.: MUSIC: middleware support for self-adaptation in ubiquitous
and service-oriented environments. In: Cheng, B.H.C., de Lemos, R., Giese, H.,
Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems.
LNCS, vol. 5525, pp. 164–182. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02161-9 9

30. Rushby, J.: A safety-case approach for certifying adaptive systems. In: AIAA
Infotech@ Aerospace Conference and AIAA Unmanned... Unlimited Conference,
page 1992 (2009)

31. Sabatucci, L., Cossentino, M.: From means-end analysis to proactive means-end
reasoning. In: Proceedings of 10th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems, 18–19 May 2015

32. Sabatucci, L., Cossentino, M., Lodato, C., Lopes, S., Seidita, V.: A possible app-
roach for implementing self-awareness in JASON. EUMAS 13, 68–81 (2013)

33. Sabatucci, L., Lodato, C., Lopes, S., Cossentino, M.: Towards self-adaptation and
evolution in business process. In: AIBP@ AI* IA, pp. 1–10. Citeseer (2013)

34. Sabatucci, L., Lodato, C., Lopes, S., Cossentino, M.: Highly customizable service
composition and orchestration. In: Dustdar, S., Leymann, F., Villari, M. (eds.)
ESOCC 2015. LNCS, vol. 9306, pp. 156–170. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-24072-5 11

35. Sabatucci, L., Lopes, S., Cossentino, M.: A goal-oriented approach for self-
configuring mashup of cloud applications. In: 2015 International Conference on
Cloud and Autonomic Computing (ICCAC) (2016)

36. Sabatucci, L., Lopes, S., Cossentino, M.: Self-configuring cloud application mashup
with goals and capabilities. Clust. Comput. 20(3), 2047–2063 (2017)

37. Sabatucci, L., Ribino, P., Lodato, C., Lopes, S., Cossentino, M.: GoalSPEC: a
goal specification language supporting adaptivity and evolution. In: Cossentino,
M., El Fallah Seghrouchni, A., Winikoff, M. (eds.) EMAS 2013. LNCS (LNAI),
vol. 8245, pp. 235–254. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-45343-4 13

38. Schmidt, D.C.: Model-driven engineering. IEEE Comput. Soc. 39(2), 25 (2006)
39. Sommerville, I., et al.:: Software engineering. Addison-Wesley, Reading (2007)
40. Weyns, D., Georgeff, M.: Self-adaptation using multiagent systems. IEEE Softw.

27(1), 86–91 (2010)
41. Weyns, D., Haesevoets, R., Helleboogh, A., Holvoet, T., Joosen, W.: The macodo

middleware for context-driven dynamic agent organizations. ACM Trans. Auton.
Adapt. Syst. (TAAS) 5(1), 3 (2010)

https://doi.org/10.1007/11590712_8
https://doi.org/10.1007/978-3-642-02161-9_9
https://doi.org/10.1007/978-3-642-02161-9_9
https://doi.org/10.1007/978-3-319-24072-5_11
https://doi.org/10.1007/978-3-319-24072-5_11
https://doi.org/10.1007/978-3-642-45343-4_13
https://doi.org/10.1007/978-3-642-45343-4_13


116 M. Cossentino et al.

42. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35813-5 4

43. Zambonelli, F., Castelli, G., Mamei, M., Rosi, A.: Programming self-organizing
pervasive applications with SAPERE. In: Zavoral, F., Jung, J., Badica, C. (eds.)
Intelligent Distributed Computing VII. Studies in Computational Intelligence, vol.
511. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01571-2 12

https://doi.org/10.1007/978-3-642-35813-5_4
https://doi.org/10.1007/978-3-319-01571-2_12

	Engineering Self-adaptive Systems: From Experiences with MUSA to a General Design Process
	1 Introduction
	2 Continuous Changes and Self-adaptation
	3 MUSA: A Middleware for Self-adaptation
	3.1 Middlewares for Self-adaptation
	3.2 Using MUSA for Engineering a Self-adaptive System

	4 A Retrospective Analysis of MUSA
	5 Interpretation of Results
	6 Discussion
	6.1 The Design Process Adopted in MUSA Applications
	6.2 A Generalised Design Process
	6.3 Limits of This Analysis

	7 Conclusions
	References




