PROCESSMODELSFOR
AGENT-BASED DEVELOPMENT

Luca Cernuzzi*?, Massmo Cossentino®, Franco Zamborelli

1) DISMI — Universitadi Modena eReggio Emilia, Italy
ViaAllegri 13 — 4200 Reggio Emilia, Italy
2) DEI — Universidad Catdlica“Nuestra Sefiora de la Asuncién”, Paraguay
Campus Universitario —C.C. 1683Asuncién, Paraguay, Tel: +59521-334650, Fax: +595-21-310072
3) Itituto d Calcolo e Reti ad Alte Prestazoni — Consiglio Nazonale Ricerche, Italy
Viale delle Scienze ed. 11, 90128 Palermo, Italy
e-mail: cernuzz.luca@unimore.it, cossentino@pa.icar.cnr.it, franco.zambonelli @unimore.it

ABSTRACT

A great deal of researches in the area of agent-oriented software engineering focuses on
proposing methodologies for agent systems, i.e., on identifying the guidelines to drive the various
phases of agent-based software development and the abstractions to be exploited in these phases.
However, very little attention has been paid so far to the engineering process subjacent the
development activity, disciplining the execution of the different phases involved in the software
development. In this paper, we focus on process models for software development and put these in
relations with current researches in agent-oriented software engineering. First, we introduce the
key concepts and issues related to software processes and present the various software process
models currently adopted in mainstream software engineering. Then, we survey the characteristics
of a number of agent-oriented methodologies, as they pertain to software processes. In particular,
for each methodology, we analyze which software process model it (often implicitly) underlies and
which phases of the process are covered by it, thus enabling us to identify some key limitations of
currently methodology-centered researches. On this base, we eventually identify and analyze
several open issues in the area of software process models for agent-based development, calling
for further researches and experiences.

KEYWORDS: Agent-based Computing, Software Engineering, Methodologies, Process Models.

1. INTRODUCTION

Agents and multiagent systems, other than a technology, represent a brand new
paradigm for software development (Jennings 2001; Zambonelli et al, 2003). When
adopting agents as the basic conceptual components of software systems, software has
to be conceived in terms of autonomous task-oriented entities, interacting with each
other in a high-level way (eg., via co-operation, coordination of activities,
negotiations), leading to possibly very articulated organizations (e.g., teams, coalitions,
markets, swarms). This calls from a brand new set of tools to support software
devel opment.

In this context, agent-oriented software engineering (from now on AOSE)
(Ciancarini and Wooldridge, 2001; Zambonelli and Omicini, 2004) has recently
emerged as the discipline devoted to the engineering of complex software systems based
on the multiagent systems paradigm. Researches in the area of AOSE include the
identification and development of both conceptual tools (e.g., formal modeling and
notational tools) and practical tools (e.g., agent-based infrastructures and case tools) to
support software engineers and programmers in the analysis, design and development of
multiagent systems. Among the others, a great deal of efforts in the AOSE area focuses

on the definition d methodologies to guide the process of developing multi agent
systems.

AOSE methoddogies, as they have been propased so far, mainly try to suggest a
clean and dsciplined approach to analyze, design and develop multiagent systems,
using spedfic methods and techniques. To this end, AOSE methoddogies, as well as
nonAOSE ones (Lahlouh and Sahnoun, 200}, typicdly start from a meta-model,
identifying the basic abstractions to be exploited in development (e.g., agents, roles,
environment, organizational structures). On this base, they exploit and aganize these
abstradions o as to define guidelines on hawv to proced in the analysis, design, and
development, and onwhat output to produce & each stage. Unfortunately, thisis far to
be enough for practicd software development withou a dear understanding of the
softwar e devel opment process model that shoud underlie the methoddogy.

In general, ore of the very goals of software engineering researchesisincreasing the
quality and the reliability of software, as well as improving the wst-effectiveness of
software development. In this context, the basic understanding is that there is a direct
correlation between the quality of the software being developed and the quality of the
software development process (Fuggetta, 2000Q. While this consideration is valid for
any human product, in the case of software it assumes even greater emphasis due to
fadors such asintangibili ty of the product, high-instabili ty of requirements, and —in the
case of multiagent systems — dynamics of operational environments and d the
multi agent systems themselves.

Acoordingly, in the development of software systems and d multi agent systems, the
identificaion d a suitable methoddogy canna abstrad from the identification d a
spedfic modd for the software development process (Boehm, 19883. Such model
shoud define how the different phases of software development shoud be organized
and coordinated with ead ather, which adivities engineers and developers have to
undertake in eadch stage and when, which techndogies and artifads may be used for
those adivities, which products have to be expeded for each stage, and which resources
need to be involved in the phases of software production pocess In aher word, the
software process model shoud guide dl the production effort and complement the
guidelinesidentified by a speafic methoddogy.

In recognition d the faa that current researches on AOSE methoddogies mostly
disregard any considerations abou process models, the contribution d this paper is to
go into detail s abou software processmodels and analyze afew key questions that —in
our opinion —will be of a key importance for the future of the AOSE discipline
(Zamborelli and Omicini, 2009. In particular:

» Does the dhoice of a spedfic software process model impad on the activity of
agent-oriented software development? How can past and current experiences in
the aea of software process models impad researches in the aea of agent-
oriented software engineaing? Are traditional software process models adequate
for multi agent systems?

* Which methoddogies, either implicitly or explicitly, adop which processmodel?
Can a spedfic methoddogy be gplied in the context of a specific processmodel ?

 What further research is needed in this aree? Which reseach trends and qoen
isaues are relevant and may be envisioned in AOSE arena from the process model
point of view?

Acoording to the aove key questions, and for the sake of elaborating on them, the
remainder of this paper is organized as follows. Sedion 2 introduces the concept of
software process models and dscusses the traditional and emerging trends in the aeg
also in relationship with agent-based computing. Section 3 pesents a survey of some

AOSE methoddogies proposed in the literature, with a spedfic focus on the
characteristics related to the processmodel perspedive. Section 4 identifies me open
Issles and pomising research dredions in the aea of process models for agent-
oriented software engineaing. Sedion 5concludes.

2. SOFTWARE PROCESSMODELS

In this section, we introduce the basic definitions and concepts related to software
development process models, survey the main process models propcsed so far in the
areg and pu thisin relation with agent-based software development and agent-oriented
methoddogies.

2.1 Processes vs. Methodologies

Process and methoddogy are often used with contradictory meanings, sometimes
they are seen as synonymous other times as different or complementary terms. In order
to prevent confusions and misunderstandings, we introduce aminimal glossary.

In this paper we will use the terms process software process software process
model, method, and methoddogy in acoord to the foll owing meanings:

» (Development) Process. Generally speaking, a development process (or smply
procesy is an ordered set of stepsthat involve dl those adivities, constraints and
resources required to produce aspecific desired ouput (e.g., a physicd artifact)
satisfying a set of inpu requirements. Typicdly, a process is composed by
different stages/phases put in relation with ead aher. Each stage/phase of a
processidentify a portion o work (more properly cdled work definition) to be
dore in the mntext of the process the resources to be exploited to that purpose
and the constraints to be obeyed in the exeaution d the phase. Phases are usually
compaosed by a set of adivities that may, in turn, be conceved in terms of
smaller atomic units of work (steps).

» Software (Development) Process. Looking more spedfically at the software
context, Fuggetta (2000 proposes an interesting definition o software
development process(or simply software process: “the coherent set of policies,
organizational structures, technologies, procedures, and artifacts that are
needed to concelve, develop, deploy, and maintain (evolve) a software product”.
Consequently, we can identify that also software processes can be (and are
typicdly) composed by a set of stages, each specifying which phases/adivities
shoud be caried on and which roles (i.e.: client, analyst, software archited,
programmers, etc.) and resources are to be invalved in them. However, unlike
traditional “development” processes, software proceses $oud aso take into
acoun the fad that the product shoud na only be developed bu aso: (i)
“‘conceived”, often relying on unstable or incomplete requirements; (ii)
deployed, i.e., pu to work in an operational environment; (iii) maintained and
evolved, depending on novel requirements or changes in the operational
environments.

» Software (Development) Process Model. A software (development) process
model prescribes around which phases a process $oud be organized (and
posshly but not necessarily which adivities soud be exeauted in some of the
phases), in which order such phases $houd be exeauted, and when iterations and
coordination (if any) between the work of the different phases sioud occur. In
other words, a process model defines a skeleton, a template, around which to

organize and cktail an adual process A software development process model
(that, from now on, we will simply indicate & a “processmodel”) does not take
cae of fine-grained work definitions, guidelines, modeling style for artifads, as
these can change and be adapted from case to case. This is one of the most
important aspeds of process models, and it will be the subjed of a detailed
analysisin the foll owing sub-sedions.

* Method. A method pescribes away of performing some kind d adivity within
a process in order to properly produce aspedfic output (i.e., an artifad or a
document) starting from a spedfic inpu (again, an artifact or a document). Any
phases of a process to be succesdully applicable, shoud be complemented by
some methoddogicd guidelines (including the identification d the techniques
andtodsto be used, and the definition d how artifacts have to be produced) that
could help the invalved stakehaders in acaomplishing their work acarding to
some defined best pradices.

 Methodology. A methoddogy is a wlledion d methods covering and
conreding different stages in a process The purpose of a methoddogy is to
prescribe acertain coherent approach to solving a problem in the context of a
software process by preselecting and puting in relation a number of methods
(Ghezz et al., 199)).

Based on the @&owe definitions, and comparing software proceses and
methoddogies, we can find some cmmon elements in their scope. Both are focusing
on what we have to doin the different activities needed to construct a software system.
However, whil e the software processis more catered onthe global processincluding
all the stages, their order and time scheduling, the methoddogy focuses more directly
on the spedfic techniques to be used and artifads to be produced (i.e. in the methods to
be alopted). In this ®nse, we could say that methoddogies focus more explicitly on
how to perform the activity or tasks in some specific stages of the process while
proceses may also cover more general management aspeds, e.g., basic questions abou
who and when, and how much).

2.2. Process M odels

Let us now anayze the most relevant process models proposed so far in the
literature and applied in industry.

The waterfall process model has been for many yeas the anblem of software
engineaing; it firstly appeared in the late 19505 but becane popuar in the 197(s. It is
structured as a cacade of phases, where the output of one phase @nstitutes the inpu of
the next one. Each phese, in turn, is dructured as a set of activities that might be
exeauted by different people wncurrently. There ae many variants of the waterfall
model (e.g., Figure 1) but, despite their differences, al existing waterfall processes look
alike and share the same underlying phil osophy: they prescribe asequential, linea flow
among phases, adopting standards on the way the outputs (deliverables) of each stage
must be produced, and sometimes prescribing methods to oltain the desired ouputs.

One of the key advantages of the waterfall modd is that it clealy identifies a
number of relevant phases that a processof software development shoud passthrough.
These phases — athough differently organized and with some small adaptation in scope
and importance — are likely to appea in any other process models and include: (i)
requirements elicitation, to colled the requirements for the system to be; (ii)
requirements analysis, to organize the requirements into a set of functionalities and

properties (non-functional requirements) to be provided by the system to be; (iii) design
of the achitedure of the system to be and of its comporents;, (iv) coding and
implementation d the system; (v) verification d the behavior of the system and d its
comporents; (vi) deployment of the system into an operation environment.

Neallessto say, multiagent systems development too shoud be involved in these
phases, athough sometimes with a different flavor than in traditional software
development. Requirements analysis for an agent system typicdly translates into a set
of “goals’ to be pursued by the agents of the systems, rather than in a set of
functionalities to be provided by, e.g., ojects. Coding and implementation may not
reducein writing code fragments, but also in integrating in agents a set of world models,
ontologies, communicdive cgabiliti es, and in shaping in a proper way the operational
environment. Verification and testing may often imply a number of simulations to test
the emergent behavior of the system, its cagpability to readV/approach a specific goal,
and —in the cae of open systems — the capability of its comporent agents to fruitfully
interad and negotiate with agents in the ecternal world. Deployment often implies
putting the system at work in an existing multiagent system emlogy, and at verifying
the impad of the system in such ecology (Zamborelli and Omicini, 2004.

The waterfall model played an important role in the history of software engineering
also because it firstly prescribed some indeed needed dscipline in the software
development process However, the waterfall mode accomplishes sich dscipline
through rigidity. Actually it is very hard to redly use aprescriptive cascade and linear
model withou considering feedbadks on earlier stages (feedbacks that in the waterfall
model are intrinsicdly costly) as primary componrents of a process Unlessa system has
very stable and clear requirements, and is conceved to be deployed in a dosed and
static operational environment, more flexibility and adaptability in the process is
necessry. For instance the vast majority of agent applicaions focus on @oen
multi agent systems that are based ona great number of agents whose interadions may
produce an emergent behavior and dstributed intelli gence and that are immersed in a
dynamic operational environment. Thus, the main limit of the waterfall model is that it
neither anticipates changes in requirements, na plans ftware evolution that now
proves vital in many circumstances.

Requirements

Elicitation \
Requirements

Analysis \
Design \

"4 Coding and

Implementation \

Verification

and Testing \

Deployment

Figure 1. The Waterfal model (with some feedbadk)

INCREMENTAL DEVELOPMENT
—]
ITERATIVE DEVELOPMENT

1=

Figure 2. The Evolutionary (Incremental and Iterative) approac

T

The nedal for flexible gproaches to process models, also called evolutionary or
incremental approaches, has been widely adknowledged in the literature. An
incremental approadh consists of a stepwise development, where parts of some stages
are postpored in oder to produce some useful set of functions earlier in the
development of the projed. Boehm (1988 defines evolutionary process modd as a
“model whose stages consist of expanding increments of an operational software
product, with the diredion d evolution keing determined by operational experience”. In
other words, in an evolutionary approach, the traditional phases of the waterfall model
are not intended to fully produce acomplete systems, bu rather to be exeauted multiple
timesin aquick way, so asto produce multiple version d the product and, onthe basis
of the feedbadk received, continue & working on the product, either by incrementally
adding partsto it or by refining already implemented ones (Figure 2).

The strategy behind evolutionary process models may be smply synthesized as
follows (Gilb, 1988: (i) design, code, and deploy something to the rea user; (ii)
measure the added value to the user in al criticd dimensions; and (iii) adjust the
objedives and the design and implementation d the system based on olserved rediti es;
(iv) reped as needed. However, it is important to observe that this pragmatic strategy
hasto be arried ou in a structured and dsciplined fashion.

A number of specific models may be acommodated uncer the evolutionary
approach (e.g., incremental implementation model, incremental development and
delivery model, evolutionary prototype model, etc.). Probably, the most recent model in
this diredion, and perhaps one of the most interesting, is the Extreme Programming
(XP) process model (Bedk, 1999 that is being increasingly used in projeds with
uncertain ar changing requirements. XP is an example of “agile gpproad” (see the agile
manifest at www.agil emanifesto.org) aimed at suppating changes and rapid feedbacks.
Agile gproaches have become enough popudar in the last yeas. Their philosophy can
be resumed by their fundamental strategies reported in the agile manifesto, which
prescribed to give ansideration to: (i) individuals and interadions over processes and
tods; (ii) working software over comprehensive documentation; (iii) customer
collaboration over contrad negotiation; (iv) respondng to change over foll owing a plan.

For this reasons, it appeas like these gproaches can be suited for those small-
medium-size projed cdling for rapid delivery and founded on qute unstable
requirements. As far as multi agent systems are concerned, we can for example imagine
that the adoption d an evolutionary approach can suit the development of an agent-
enabled patal in which agents can be incrementally deployed and improved with regard
to their capability of suppating users in accessng services and information. However,
we can hardly imagine that agents and multiagent systems delegated of some criticd

adivities, or which exeaution in a @ntext may have some dramatic impad, can be
eff ectively developed using a bare evolutionary approach, i.e., an XP model.

Ancther interesting approad is the transformation model (Ghezz et al., 199).
Unlike incremental models, which give priority to implementation, transformation
models are deeply rooted in theoreticd works on formal specifications. The software
development may be seen as a sequence of steps that gradually transform a set of formal
spedfication into an implementation. The process consists of two main pheses (Figure
3): requirement anaysis, providing formal requirements ecificaion (a phase which is
given a much greater importance in this model than in the waterfall or in incremental
ones) and opimization, which includes a cding phase amed at transforming (possbly
in an automatic way) the formal specifications into exeautable code and at performance
tuning of the resulting system.

Currently, the transformation approach is not widespread in industry, because it
requires an extensive use of formal modeling and also the presence of effective tods to
transform formal spedfications into adual code. Therefore, one can consider it a sort of
research-oriented approach with a few adua tods that suppat it. However, when
considering multi agent systems, one shoud take into acourt that — due to the intrinsic
complexity of agent architedures and to the dynamics of multiagent systems — formal
methods will definitely play an increasing and fundamental role in agent-based
development, passbly exploiting a transformationinspired use of formal spedfications
in the context of some sorts of evolutionary processmodel.

Reusable
components
Decisions and
rationale

) : Formal Lower level
Requirements | Requirements specifications specifications
analysis and Optimization »
specification
Verification Tuning

Recording of
developmental
history

Figure 3. The Transformation model

Evaluate alternatives,

entify. resalve risks
Determine objectives,
altermratives, ooretrains

Eisk analyss

Rizk analysis
Rk analysis

R
analy-
B

Requiremants
plan life-cyrle
plan

From% Prototype 2 | Frototyps 2

Simulations § modeks, barchmarks
Concapt
o
aparatian
foware
Uit

Saftwars

Davalopmant plan nq.i:.l;nmqnm product desigy
validatiors

Datailad
dasing

Intagraton [esign valitarion .
andgga-s[plan andl§21 fication Coda
Unit
tast

Plan next I[rg;gnrq.:.[Diavelop, varify neat
) Acap- lsvel product

Imiplamen-
eatiomn

Figure 4. The Spira model

The last process model we examine is the spiral one (Boehm, 1988), mainly focused
on project risks and their management. In fact, its aim is to identify and eliminate high-
risk problems in development by adopting a careful process design, rather than treating
both trivial and severe problems uniformly. To this end, the main characteristic of the
model is that it organizes the development process in a cyclic way. Each cycle of the
spiral consists of four phases (Figure 4). Phase 1 (upper-left quadrant in Figure 4) aims
a determining the objectives to be achieved in the cycle in terms of functional and
quality levels, and at identifying possible aternatives and associated constraints. Phase
2 (upper-right quadrant) aims at evaluating the potential risks of the objectives and of
the identified alternatives, eventually getting a decision on them. Phase 3 (bottom-right
guadrant) aims at developing and verifying the next level product. Eventually, phase 4
(bottom-left quadrant) aims at reviewing the results of previous stages and at planning
the next iteration of the spira. As the spiral enlarge with the execution of different
cycles, therisksinvolved in the project should more and more reduce, assuming that the
more risky issues are faced in the inner cycles.

In general, the spira model is very well suited for the development of all those
complex software systems which involve high risks, and which require a careful
planning to ensure that the final product will satisfy the specified requirements. In the
case of multiagent systems, one can think at several examples of mission critical

applications that would fruitfully take advantage of the adoption of the spiral process
model.

The spira model is sometimes viewed as a kind of meta-model, because it can
potentially accommodate any process development model. However, we prefer to
consider it a model by itself, well distinguished from the waterfall model (because of
the explicit cyclic nature), from evolutionary approaches (because of the great
importance given to planning and because the incremental development that the spiral
model suggest is not aimed at producing deliverables but rather at eliminating
development risks), and from the transformation one (whose cyclic nature mostly
reduces at verifying the specifications). A representative example of a process based on
the spiral model is the Rational Unified Process (Kruchten, 1998), which isiterative and
incremental, use-case driven and centered on the architecture (attention on structural
elements of the system and their relationships) of the system.

It is also worth mentioning that other process models aimed to specific areas of
software production have been proposed. However, more of those proposals are more
oriented to management issues than devel opment issues, and will be no longer analyzed
in this paper.

2.3. AOSE Methodologies and Process M odels

Getting back to methodologies, an important issue to analyze is if a specific
methodology can be exploited as a tool in the context of different process models or,
viceversa, if the adoption of a specific process model aso suggests the exploitation of a
methodology explicitly conceived for that process model.

In general, a methodology should provide guidelines for the execution of some
phases in a process model that should be independent from the specific way in which a
process model prescribes to execute and coordinate such phases. However, in practice
most of the methodologies proposed so far (and, specifically, in most AOSE
methodologies), has been conceived for adoption in the context of a specific process
model. We consider that the commitment to a specific process model can make the
methodology possibly less general but definitely more effective for practical application
in the context of that specific process model. Nevertheless, in several cases new AOSE
methodologies gets proposed without explicitly relating them to some process models
and, at the same time, being implicitly suitable only for a limited set of (or a single)
process models.

As al of us know, the real process of software construction, if not controlled, can
become a chaotic effort with alow probability of reaching the desired goal within fixed
limits of time and budget. Therefore, when an AOSE methodology is proposed with a
lack of attention to the process model, this lack may strongly undermine the practical
applicability of a methodology. As we have already anayzed, different process models
differently drive the actions during the project enactment and are differently concerned
with verification, control, comprehension, and improvement of the established
activities. Moreover, while some well known and documented process models let easily
capture good experiences and to transfer them to other persons, some others only aim at
introducing a minimum level of control in the chaos of the software development thus
allowing a high reactivity to very dynamic situations. These differences in process
models have a direct consequence: in order to have a good process and successfully
complete the project, it is necessary to adopt either explicitly general methods and
methodologies, or specifically suitable ones.

Ancther important aspect we shoud consider in ou study of processes and
methoddogies is that a processis not something static that, once alopted, shoud never
be dhanged. A processcan evolve over time, together with the increased awareness of
the involved people, towards a maturity level that ensures the process repeaability in
terms of quality of the produced software, cost and time. This is a fundamental
evaluation criterion for a company that wants to adopt the agent-based paradigm in its
development process In arder to evaluate from this point of view existing AOSE
proceses and related methoddogies, we wuld refer to the Process Capability Maturity
Model (CMM) (Paulk et al., 1995. CMM proposes a dasdfication d the process
maturity in five different categories. (i) initial; (ii) repeatable; (iii) defined; (iv)
managed; (v) optimized. According to CMM most of the existing AOSE approades are
smply “initia” due to the ladk of experience, and a few of them can classfy as
“repeatable”. In any case, it is worth nding that the CMM model evaluates a process
mode in its completeness thus including the methoddogicd aspeds that are so
intensively studied in the AOSE context. In this way, the CMM could be used to
evauate not only the goodressof the alopted processmodd in a spedfic situation bu
also the gpropriateness of eath method, thus driving the evolution d the studied
methoddogy towards a more mature one. On the @ntrary, evauating the dfediveness
methoddogy when it does not explicitly situates in the mntext of a processmodel, is of
limited meaning.

3. A SURVEY OF AOSE METHODOLOGIES FROM THE PROCESS MODEL
VIEWPOINT

In last few years a great ded of efforts has been spent in propcsing AOSE
methoddogies to guide the development of multiagent systems. For full details on
these, we forward the reader to some surveys in the area (Iglesias et a., 1999
Ciancaini and Woadldridge, 2000 as well as to the proceedings of workshop series:
Agent-Oriented Software Engineering (AOSE), Agent Oriented Methoddogies (AOM),
Agent Oriented Information Systems (AOIS), Engineering Society in the Agent Word
(ESAW), and Software Engineeaing for Large-Scale Multi-Agent Systems (SELMAYS).

However, as discussed in the previous dion, asmall attention has been devoted so
far to analyze the fundamental isaue of the related processmodels. For this reason, this
sedion surveys a number of selected AOSE methoddogies and analyze them with
regard to those dharaderistics that are relevant from the software process viewpoint.
Spedficdly, wewould like to analyze the foll owings issaues:

* Which process model do these AOSE methoddogies, either explicitly or
implicitly, assume?

* Which phases are mvered by these methoddogies? And, consequently, how
suitable is a spedfic methoddogy to be exploited in the context of an adua
processmodel ?

In more detail, with regard to the first paint, in the following we dassfy AOSE
methoddogies based on the dass of process model (among the four presented in
Sedion 2 it either assumes explicitly or that we cnsider to implicitly underlie the
methoddogy. Therefore, we emphasize that whenever a methoddogy does not
explicitly mention the process model it refers to, we dassfy it on a personal analysis
that may not necessrily reflect the original intentions of the propacsers, and that
sometimes had to sharpen shades.

With regard to the second pont, it is very useful to specify for ead methoddogy
which stages or phases of the mmprehensive software development processare wvered

10

since, in some aspects, the phase coverage is strongly related with the process. For
example, if amethodology does not cover the coding and implementation, it can hardly
be exploited in the context of extreme programming process models. As another
example, if the methodology does not cover the requirement elicitation phase, its
application in the context of a spiral process model or of a transformation model is
strongly undermined. Although in the specialized literature there is not a general
agreement about the naming and the roles of the various phases of software
development (e.g., some propose a more specialized separation of the analysis or design
phases trying to capture particular aspects like as conceptual, architectural, or detailed
design), the phases already identified in Section 2 when presenting the waterfall model

are enough to the purposes of our analysis.

Figure 5 summarize the characteristics, to be analyzed and detailed in the following
of this section, of severa AOSE methodologies.

Phases —

Process M odel
and
M ethodology |

Requirements
Elicitation

Requirements
Anaysis

Design

Coding and
I mplementation

Verification
& Testing

Deployment

Waterfall Like

Gaa

Roadmap

X (partialy)

Prometheus

X (partialy)

X

MaSE

X (partialy)

X(partialy)

AOR

XXX X[X

XXX X[X

XXX

Evolutionary
and I ncremental

OPM/MAS

MASSIVE

Ingenias

Tropos

PASSI and Agile
PASS|

XXX X[X

XXX X[X

XXX X

Transfor mation

DESIRE

X

| X(partialy) |

Spiral

MAS
CommonKADs

X(partidly)

Figure 5. Methodol ogies Classification

Before continuing the presentation, we outline that in spite of a number of other
papers trying to survey, classify, and evaluate, AOSE methodologies (Iglesias et al.,
1999; Lahlouhi and Sahnoun, 2002; Cernuzzi and Rossi 2002), this paper is the first
attempt specifically oriented to analyze the relations with the process model.

3.1. Waterfall-like

The methodol ogies that we feel should be considered as adopting a waterfall process
model include: Gaia (Wooldridge et a., 2000; Zambonelli et al., 2003); Roadmap (Juan
et a., 2002a), as a consequence of the fact that is was firstly proposed as an extension of

11

the original Gaia; Prometheus (Padgham and Winikoff, 2002); MASE (De Loach et d.,
2001); and AOR (Wagner, 2003). While for the first three methodologies their waterfall
nature is rather clear, the last two, for different reasons, may be considered at the
borderline with evolutionary and incrementa approach. In fact, they consider some kind
of iteration inside some stages. Still, since they do not clearly stress on these iteractions
or on the incremental process, we prefer to classify them into the waterfall-like class.

Gaia

The Gaia methodology (Wooldridge et a., 2000) and its official extension
(Zambonelli et al., 2003) focus on the use of organizational abstractions to drive the
analysis and design of multi-agent systems. Gaia models both the macro (social) aspect
and the micro (agent internals) aspect of a multiagent system, and devotes a specific
effort to model the organizational structure and the organizational rules that govern the
global behavior of the agents in the organization. This can make Gaia suitable for the
development of multiagent systems which can interact in an open world with self-
interested agents belonging to different stakehol ders.

Gaia explicitly covers a limited number of phases in the design process, namely
analysis and design (the latter included architectural and detailed design).

Galaassumes in arather explicit way a waterfall process model: analysis and design
are considered as phases that should follow a (not defined) requirements elicitation
phase, that should be performed in strict sequence, and for which methods for
interactions between phases are not defined. In the analysis phase four basic models are
produced: (i) the environmental model; (ii) a preliminary roles model; (iii) a preliminary
interactions model; and (iv) a set of organizational rules. These models are used as input
to the design phase that should define: (i) the overall organizationa structure (i.e., the
architecture of the system); (ii) completed preliminary roles and interactions models;
(iif) an agent model; and (iv) a services model. The result of the design phase is
assumed to be something that could be implemented in atechnology neutral way.

Although we consider Gaia as one of the most promising approaches as far as
anaysis and design are concerned, the limited number of phases it covers and the
strictly sequential approach may limit the adoption of Gaia, asit is, to systems with very
stable requirements and of limited dimension. In fact, for a very large system to be
effectively deployed, it must consider also extensive testing and simulations and a
careful deployment, issues that as of now find no accommodation in Gaia.

Roadmap

Roadmap (Juan et al., 2002a) focuses on building open systems giving special
emphasis to the societal aspects of the multiagent system. To this end, it extend the
original Gala methodology (Wooldridge et a., 2000) by introducing use cases, a
dynamic role hierarchy and additional models to describe the agent environment and the
agent knowledge, as well as an interaction model based on AUML (Bauer et a., 2000)
interaction diagrams.

As Gaia, Roadmap is mainly focused on the analysis and design phases. The
analysis phase contemplates the identification of: use cases, environment model,
knowledge model, and of roles, protocols, and interactions models. Based on these
models, the design phase ams at producing an agent model and a services model. As
Gaia, Roadmap lacks of support for detailed design, code and implementation,
verification and deployment, thus designers have to adopt other methodologies to cover
those aspects.

12

We @nsider Roadmap as implicitly committing to a waterfall processmodel, due to
the strict sequentia nature of its analysis and design. Although Roadmap dacumentation
explicitly encourages an iterative gproadh to development, nahing is sid in the
methoddogy to suppat such iterations. However, as an improvement over Gaia, the use
case model adoption partially covers the requirements gathering and can make the
sequential process of Roadmap more dfedive and reliable than that of Gaia in the
presence of unstable or badly defined requirements.

Prometheus

Prometheus (Padgham and Winikoff, 2002 focus on bulding agents using BDI
platforms, and on poviding explicit and detail ed guidelines and deliverables to industry
praditioners with limited agent experience. The methoddogy, per se, covers three
phases: (i) system spedfication, (ii) architedural design, and (iii) detail ed design.

The system spedfication phase @mvers the modeling d the system goals (that shoud
result in ore or more functionalities) as well as of a set of scenarios (modeling the
system processng). The architectural design phase mntemplates modeling agents, the
system overview, and the inter-agent protocols (modeled using AUML). The detail ed
design phase focuses on developing the internal structure of each agent in term of its
cgpabiliti es described by a set of descriptors (event, data, and gan). Prometheus aso
provides a hierarchicd mecdanism that alows designer to model multiple astradion
levels fadlit ating the design in great scde.

In addition, ore shoud aso consider that:

* The methoddogy is suppated by the Jadk Development Environment (JDE)
and the Prometheus Design Tod (PDT), two todls that can suppat in the
implementation and coding of the results of the Prometheus design plese;

» Guidelines for testing and debugging adivities have been explicitly defined
(Poutakidis et a., 2003;

» Activities related to requirement elicitation are partially covered by the
analysis phase (i.e., requirements analysis is explicitly included, though as
part of the analysis phase).

For which one can say that Prometheus cover, other than analysis and design, aso
requirements eli citation, coding, and testing.

The process defined by the Prometheus methoddogy is quite linear, proceading
sequentially from requirements dlicitation to implementation and testing. A limited
amount of feedbadk among phases may be identified only in the aossched relationship
between the system overview (architedural design) and the agent overview (detailed
design) models.

In any case, the fad that Prometheus covers a significant number of phases of a
software development process it is more prone than, say, Gaia or Roadmap, o being
easlly adapted for exploitationin the context of other processmodels, e.g., evolutionary
ones andthe spiral one.

MaSE

The MaSE — Multiagent System Engineering (DeLoad et al., 200) — methoddogy
isorganized in seven steps: capturing goals, applying use caes, refining goals into roles
and their interactions, creding agent classes, constructing conversation, assembling
agent classes, and designing the system.

Acoording to ou perspective, we cnsider that: goal capturing and the gopliance of
use caes partially cover the requirements elicitation plese; the analysis phase includes
the identificaion d roles, their tasks, and their interadions; then, the aedion d the

13

agent classs, of their conversation, and their assembling (including diagram for the
deployment of the system), can be made rrespondng to the design phese. MaSE is
suppated by agentTod (Wood and DelLoach, 2000, a CASE tod suppating all
MaSE's deps as well as code generation and automatic verificaion d inter-agent
communicaions. Overall, the methoddogy covers al phases from requirements
éicitationto implementation, and peartially also the verification and testing adiviti es.

Unli ke the methoddogies presented earlier, the MaSE methoddogy is limited to the
development of closed agent systems, in which al agents are known a priori, and in
which agents can trust each ather during conversations.

Acoording to the authors, MaSE has been conceived to be gplied iteratively and
incrementally. However, from al the documents available, the general process is
presented like asequential (waterfall) process with no explicit description d iterated
adivities.

The fact that MaSE covers in a rather satisfactory way most of the phases of
software development, can makes us think that MaSE could be indeed easily adapted to
be eploited in the antext of evolutionary or spiral process models. Of course, this
requires that suitable guidelines are defined to suppat the neeled iterations. In any
case, unlessthe methoddogy is properly extended to ded with the peculiar problems of
open agent systems (which are the vast mgority) its applicability would remain very
limited.

AOR — Agent-Object-Relationship

AOR (Wagner, 2003 is a peauliar methoddogy, very different from the @ove
presented ones, which contemplates the so cdled external models (i.e., models for the
analysis) and the internal models (i.e., models for the design). The central abstractions
of the AOR methoddogy are the so cdled “entities’ (i.e., agents, events, adions,
commitments, as well as ordinary objects) and speaal relationships to be defined among
them that suppement the dasscd assciation, aggregatior/composition and
generdi zatior/spedali zation rel ationships of UML models.

The external view aims at capturing the perspedive of an external observer (i.e., of
one or more so cdled “focus agent/s’) to model the domain producing one or more of
the agents, interaction frames, interadion sequences, interadion pettern dagrams. Then,
for each focus agent, the internal view (the design) aims at capturing the functionaliti es
of the system. The internal AOR model is then refined for each focus agent into an
implementation model for the target language/platform. AOR modeling language
(AORML) tods as well as a Microsoft Visio template are available for suppat AOR
Modeling activities.

The overal processof AOR consists of 5 steps: (i) domain analysis (the externa
AOR modd); (i) transforming the external AOR model into an internal AOR model for
the focus agent, and iterating this dep for ead focus agent that require an information
system development; (iii) transforming the internal AOR models into database design
models or logica data structure definition; (iv) refining the design models into
implementation models; (v) generating the target language wde. Thus, one can consider
AOR to cover requirements analysis, design, coding, and implementation pheases.

The process model adopted is like an incremental waterfal with iterative work
within some stages but no explicit iterations among phases. Thus, despite the very
diff erent nature, AOR shares the same alvantages and drawbadks of MaSE.

3.2. Evolutionary and Incremental

14

In this category we can classfy those methoddogies that explicitly focus on an
incremental and/or iterative gpproach among al the process These include: OPM/MAS
(Dori, 2002; MASSIVE (Lind, 200); Ingenias (GOmez-Sanz and Pavon, 2002;
Tropos (Bresciani et a., 2001 Giunchiglia € al., 2003; and PASSI with its extension
Agile PASSI (Cosentino and Sabatucci, 2004 Chella & a., 2009.

OPM/MAS

OPM/MAS - Objed-Process Methoddogy for Multiagent Systems (Sturm et al.,
2003 inherits its cgpabiliti es from objed and processoriented paradigms. In perticular,
it is conceved as an extensionto OPM (Dori et al., 2003. OPM considers that objeds
and processes are eually important to describe the system’s function, structure, and
behavior. It adopts a single graphical model to describe objeds, processes, and their
atributes (Objed-Process Diagrams — OPD) and a @rrespondng automaticaly-
generated Engli sh textual spedfication (Objed-ProcessLanguage — OPL).

In OPM/MAS (Sturm et al., 2003 objed and pocess are extended to include
spedfic agent-oriented attributes, i.e.: for objects, organization, society, platform, rule,
role, user, protocol, belief, desire, fad, god, intention, and service for processes, agent,
task, and messaging. Agent behaviors, in particular, are not necessarily encgpsulated
within ojeds, bu may be modeled using stand-alone processes.

OPM/MAS suppats the requirements, the analysis and the design pheses of the
development process and a deployment diagram is included in the methoddogy. For
the implementation and testing stages, CASE todls are under devel opment.

With regard to the processmodel, OPM/MAS — as OPM — adopt a single notation to
describe bath the structure and the behavior of the components of a multiagent system.
One of the distinguish charaderistics is that this notation can be incrementally and
seledively refined in deger specificaion. It contemplates different scaling
mechanisms. unfolding/folding, in-zooming/out-zooming and expressor/suppresson.
These medhanisms overall fadlit ate to seledively and incrementally focus on a spedfic
subset of iswes, refining the description to any desired level of detail, and thus helping
in manage the complexity of asystem modd at any time in the development process

For these reasons, and cespite the fad that the genera process model is not made
explicit in OPM/MAS, it possible to state that OPM/MAS is intrinsicaly suited for an
evolutionary and incremental model, in which the various parts of a wmplex, very
large-scale, multiagent systems, are incrementally refined as the development process
progress However, the potentials of OPM/MAS will be unfold in full only with the
avail abili ty of proper todls for implementation and testing.

MASS VE

MASSIVE - Multi Agent SystemS lterative View Engineering (Lind, 200} is a
pragmatic methodfor the design and construction o multi agent systems.

MASSIVE is based ona view-oriented approach: different phases can be exeauted
focusing on dfferent aspects of the systems. The considered views are: environment,
task, role, interaction, society, architedural and system view. To exemplify: in the
society view, the multiagent systems is considered as a structured coll ection d agents,
organized acwrding a particular organizational model; in the interadion view, the
multi agent system is considered as an ensemble of interading agents, in which various
forms of competition and cooperation, as well as non-traditional forms of cooperation,
may be identified.

The development methoddogy based on vews offers various models of a
multiagent system that can be used to incrementaly define it. In particular, in

15

MASSIVE, views are explicitly embedded in a process model inspired by
stepwise refinement, the so called iterative view engineering. This is a
product centered process model combining roundtrip engineering (i.e., aternating
software @nstruction from specificaions and reverse engineging to improve
spedficaions) and iterative enhancement (i.e., promoting several cycles of the process
to enhance apartitioned and incomplete software model).

Another characterizing part of MASSIVE is the so called “experience
factory”, which provides a conceptual framework for enabling a
systematic learning process within an organization. This way it is
possible to improve the development processand product models of a particular
projed according to the experience gained in the development process (so
as to reach a higher maturity of the process).

Overall, the MASSIVE process covers analysis, design,
implementation, verification and testing, and deployment. No attention
is paid to requirements elicitation.

In our opinion, MASSIVE is one of the few examples of a
methodology for multiagent systems that explicitly takes care of the
underlying process model in a very detailed way. The fact that it is
based on a well-organized incremental process model and that it
considers most of the relevant phases of multiagent systems
development, makes MASSIVE a very promising approach, although its
applicability may be possibly undermined by the lack of a proper
requirements elicitation phase as well as of adoption of notations (e.g.,
AUML) already well accepted in the multiagent systems community.

INGENIAS

INGENIAS (GOmez-Sanz and Pavon, 2003 build on previous work on the
MESSAGE methoddogy (Caire d al. 200)). Its aim is to suppat multiagent systems
development by generating multiagent systems ecificaions incrementally covering
the analysis, design, and implementation pleses of the development process It adopts
AUML asthe basic natation to suppat the process

INGENIAS identifies five metamodels to be eploited in development: agent
model, interadion model, tasks and goals model, organization model, and environment
model. Such meta-models (partially inherited from the MESSAGE methoddogy) allow
the designers to incrementaly define the achitedure and the functionalities of the
multiagent system, by focusing on dfferent points of view during development (in a
similar way that MASSIVE does).

INGENIAS suppats multiagent systems engineers using three éements: (i) a visua
language for multiagent systems definition (GOPRR), (ii) integration with the phases
and workflows of the USDP, and (iii) development todls: the meta-case METAEDIT+
(Kelly et a., 1996.

INGENIAS explicitly applies the Unified Software Development Process— USDP
(Jacobson et a., 1999. This is an iterative process model identifying two dmensions
for the software developing process time (phases of the life cycle), and content (models
and aher artifads). Thus, the eplicit processmode it adopts is the so cdled stepwise
refinement one, a specific form of an incremental process model. INGENIAS covers
analysis, design, and coding and implementation phases. This suggests that INGENIAS,
the same & MASSIVE, could be avery effedive methoddogy for rapid development of
agent system, with the alditional advantage of providing standard ndations and ready-

16

to-use tods. Still, missng it the requirements elicitation phese, it can hardly be gplied
to criticd systems design.

Tropos

The key characteristic of the Tropos methoddogy (Bresciani et a., 200%
Giunchiglia d@ a., 2003 is its grong focus on early requirements elicitation. The
requirements phase of Tropasis grongly influenced by the i* modeling framework (Y u,
1995. The main concepts on which Tropos is based are the “actors” with their goals,
their plans, and the inter-dependencies.

All analysis of system requirements in Tropcs is based onthe goals that must be
achieved by the system to be, and onthe identification d the actors (whether humans or
agents) that shodd be cnsidered to achieved these goals. The process adopted by
Troposis basicdly one of analyzing goals on behalf of different adors, and is described
in term of anon deterministic concurrent algorithm, including a completenesscriterion.
A few primary goals are analyzed from the perspedive of its respedive ador (typically
humans at the beginning of the procesg, and as subgoas are identified, they are
delegated to ather adors (typically agents) or assumed by the adua actor. This analysis
is caried ou concurrently and namally implies iteration among different phases,
espedally between requirements elicitation and requirements analysis. Once dl goas
are identified and assgned to specific actors, the design phase ams at producing the
organizational structure of the systems (i.e., identifying relationships between agents),
and at detalling the spedfic daracteristics of the mposing agents. The
implementation plese relies on appropriate AUML-based toals.

Overadl, Tropos covers all the phases of the software development processup to the
coding and implementation. The incremental iterative nature of the process however,
reduces to requirements dicitation, analysis, and design, ruling implementation ou of
the cycle. For this reason, we believe Tropos is very suitable to the development of
those multiagent systems that rely on urstable or hard-to-be-identified requirements,
and for which an incremental processmust be foll owed before astable design satisfying
the requirements can be identified. However, it is definitely not suitable for those
projeds requiring rapid prototyping and quck delivery of products.

PASS and Agile PASS

PASS (Cossntino and Sabatucci, 2009 is a methoddogy for multiagent systems
development which design activity is carried ou adopting five sequential phases that
explicitly take into accourt the need for incremental refinement.

In particular, PASSI covers the following phases of software development: (i)
system requirements, to produce ause-case based description d the functionaliti es and
an initia decompasition d them acordingly to the agent paradigm; (ii) agent society,
that is an analysis phase amed at composing a model of domain ortology, social
interadions and dependencies among the agents; (iii) agent implementation, which is a
design phase amed at modeling the solution architedure in terms of required agents,
classes and methods, it is composed o both a structure definition and a behavior
description d the whole system; (iv) code, the implementation phese amed at modeling
asolution at the aode level. It islargely suppated by patterns reuse and automatic code
generation; (v) deployment, aimed at modeling the distribution d the system parts
aaossadistributed platform. PASSI aso includes a description d the testing approach
divided in two dfferent stages: the agent test, where eab single agent is tested after its
implementation, and the society test, where the multi-agent system is tested after
deployment.

17

Although explicitly incremental, the great number of sequential phases in a cycle
may require along time before the first prototype wde can be obtained in PASSI; this
configures PASSI as a suitable doice in application problems for which the @ding
phase can be positioned somehow late in the process i.e., projeds with a low level of
changes in requirements but the ansiderable risks require an iterative-incremental
approach (medium-large projects). In order to ded with smaller projeds and more
dynamic problems, the aithors (Chella d@ al., 2009 conceived an adapted version d
PASS, i.e, Agile PASSI which preserves the iterative and incremental nature but — by
following the ideas of agil e processes — leals to a quicker processmore oriented to code
delivery than to dacumentation production.

PASS is an example of a complete methoddogy that not only pays the neeled
attention to the processmodel, but also recognizes that different application needs may
require different types of processes, and accordingly face the problem of adapting the
methoddogy to dfferent agile processmodels.

3.3. Transformation

As an example of a methoddogy that can be somewhat considered committed to a
transformation process model, we report here @ou DESIRE (Brazier et a., 2003,
which also may be dassfied under the evolutionary and incremental hat.

DESRE

The compositional multi-agent design method DESIRE - DESsign and Spedficaion
of Interacting REasoning comporents (Brazier et al., 2003 suppats the design d
comporent based autonamous interadive agents considering conceptual design and the
system’s ecificaion exploiting knowledge-based techniques.

DESIRE views the individua agent and the overal system as compasitional
structures modeling both the inter-agent functiondlities (requirements for the
coordination and cooperation in the social interadion expressed in term of knowledge
and reasoning skill s) and the intra-agent ones (requirements for the tasks domain), as
well as taking into accourt the processes and knavledge dimensions. DESIRE partially
cgptures the organizational asped of a multiagent system withou considering the
organizational structure

In DESIRE the following models are supported: (i) problem description; (ii)
conceptual design; (iii) detail ed design; (iv) operational design; and (v) design rationale.
Also, to improve the reusability, the methoddogy offers designers a set of generic
models (i.e. generic co-operative agent model, generic model of a BDI-agent, generic
model for diagnostic task, for design task, generic model of reasoning path, etc.). It is
worth to nae that there is no fixed sequence of design.

DESIRE covers the phases from requirements elicitation upto the verification and
testing (partialy). In faad, the high level modeling environment of DESIRE alows
engineas to automatically generate prototypes of multiagent applicaion from the
detail ed design. On the basis of these partial prototypes, new designs and prototypes are
iteratively generated and examined. In this sense DESIRE can be ansidered to adopt an
evolutionary model.

However, duing the problem specificaion phese, informa requirement are
incrementally transformed into formal ones, to fadlitate cde generation and the
verificaion pocess Due to the formalization d the requirements, the verificaion
processis dore by a mathematicd proof and dang so, the verificaion and testing phase
is partially covered. For this reasons, we can also consider DESIRE to adopt, at least for
some of its phases, a transformation model.

18

We have dready stated in Sedion 2 what we @nsider the limitations of the
transformation model for pradical industry applicability. Still, the possbility enforced
by DESIRE of somewhat integrating in an incremental model the alditional power of a
transformation model represents a patentially promising approadc.

3.4. Spiral
We founda single methoddogy that could be dearly included in this class i.e., the
MAS-CommonKAD Sone (Iglesiaset d., 199).

MAS-CommonKADS

MAS-CommonKADS (Iglesias et a., 1997 extends the models defined in
CommonKADS, adding techniques from objed-oriented methoddogies (like Object
Modeling Technique — OMT, Objed Oriented Software Engineering — OOSE, and
Resporsibility Driven Design - RDD) and from protocol engineering to describe the
agent protocols.

The methoddogy starts with a @mnceptuali zation phase which is an informal phase
used to colled the users' requirements. Consequently, MAS-CommonKAD S partialy
covers the requirement elicitation phase by means of the use cae model. For the
following analysis and design phase, MAS-CommonKAD S defines the following
models: (i) agent model; (ii) task model; (iii) expertise model; (iv) coordination model;
(v) organization model; (vi) communicaion model; and (vii) design model, which
contemplates the goplication design, architecture design and datform design.

According to its propaosers, MAS-CommonKAD S aso considering the ading unit
testing, integration and global testing, and implementation and maintenance stages,
however, we have not foundsuppating documentation for those phases.

The processmodel adopted for small projeds is a waterfall-like based onthe reuse
of comporents previously defined, while for large projeds MAS-CommonKAD S
adopts the same process model of the CommonKAD S methoddogy, that is, the spiral
model.

Although rather obsolete, and passbly hardly applicable to modern multi agent
systems senario, the MAS-CommonKAD S methoddogy has the alvantage of showing
that a spiral process model can be gplied in the mntext of multiagent systems. In
addition, it points out (as PASSI does) that the same methoddogy can be effectively
adapted and applied in the context of different processmodd (i.e., a waterfall for small
projeds, and a spiral for complex and risky projects).

3.5. Summary

Most of the AOSE methoddogies analyzed (those presented in this sdion as well
as those that we have excluded from the presentation for the sake of length limitations)
adorpts either awaterfall -like or an evolutionary/incremental model.

In particular, from the &ove analysis we can state that:

* Those methoddogies that do nd make any explicit reference to the process
model, end upin promoting a rather standard waterfall processmodel or — more
rarely —arough incremental processmodel;

» Those methoddogies paying more care to the process model isuue end upin
explicitly propasing an incremental processmodel.

Summarizing, we can state that the need for incremental process models is widely

recognized in the mmmunity.

A very few methoddogies adopts a transformation-like model (here we have

mentioned DESIRE). Although ather attempts in transforming informal spedfication

19

into code by mean atransformation processhave been explored so far (consider e.g., the
work of d' Inverno and Luck (1997) using Z schemas), thase dforts are to be mnsidered
single methods and ndations more than complete methoddogies. Nevertheless it is our
opinion that the use of formal model for multiagent systems development will notably
increase in the future (as already stated in Section 2.

Spiral modelstoo have encourtered avery limited success Very likely, thereasonis
that a few complex induwstrial projeds (involving high risks) have been so far caried
out. Thus, the neal to anticipate and passbly eiminate the risks associated with
complex software development projeds in agent based development have smply not
emerged. Still, we exped the spiral model to increase its role in the future, with the
increase of multi agent systems to be developed in red-world complex setting.

4. OPEN ISSUES

As drealy discussed, upto date, researchers and praditioners in AOSE have paid
more dtention to methoddogies rather than the whole software development process
Methoddogies play indeed a very important role, bu require to be put into the mntext
of a processmodd. With regard to the latter, in addition to the spedfic isaues discussed
in the previous dion, severa further issues may represent interesting chall enges for
researchers and praditioners in this community. Hereinafter, we present some of them
considering five coomplementary assessment diredions: on the processmodels, focusing
on the need of spedfic agent-oriented agile process models (Sub-section 4.7); on the
methoddogies, focusing on the need of multi-perspedive gproaches (Sub-section 4.2;
on the methods and the meta-models for agent-oriented development (Sub-section 4.3;
on the tods suppating the process of agent-based development (Sub-section 4.4; and
on the evaluation and improvement of the process and the resulting product quality
(Sub-sedion 4.9.

4.1. Extreme Programming of Multiagent Systems

Sedion 3 les already outlined the neal for incremental and passbly very agile
processes for software systems and multiagent systems development. However, some
further considerations on this are to be reported.

It isamatter of afad that most industrial practice of software development — due to
the lak of time, strict schedules for delivery, no time ad resources to spend in
documentation adivity —end upin being unstructured, frenetic, and missng at al some
kind d organizationin human resources. The most innowetive trend in agil e approaches
to software development, namely Extreme Programming (XP) is an interesting attempt
to start from the dowve state, and popcses a very agile structure that can bring some
engineaing flavor to the process withou forcing to spend too many resources,
preserving the need for quick delivery and, at the same time, ensure more reliabili ty.
The new approach is rapidly gaining a relevant indwstrial acceptance for the
development of conventional types of small- medium-size software in projeds aff ected
by uncertain or changing requirements (Succi and Marchesi, 2001)).

To the best of our knowledge, the only propasal towards and XP approach in agent-
based development is that of Knuldauch (20@2), proposed with an explicit suppat for
change and rapid feedbadk. The gproach consists in bulding and maintaining in a
cyclic fashion two main models: (i) a processmodel (for the design of agent scenarios);
and (ii) the exeautable agent source wde including automated test cases. The process
model aims at cgpturing and clarifying requirements, visualy documenting agent

20

functionaliti es, and facilit ating the cmmunicaion with end wsers. Using spedfic todls
it is posgble to automaticadly generate source wde, thus introducing the next phases
(coding and testing), and to focus on interactions among agents and agent life-cycle
management. Finally, the cyclic development processconsists in switching between the
implementation and processmodels updating them arbitrarily.

Although it is a pioneeing popcsa potentially very interesting, it has sverd
limitations — which may be wnsidered as current genera limitations of the agent
techndogy rather than limitations of the proposal itself. First, the complexity of
potential agent interaction scenarios and the amerging behaviors within a multi agent
may make pre-planning very hard (Lind, 20@), which isin sharp contrast with the very
founcitions of the XP philosophy, stating that implementation and evaluation o
exeautable aode must have priority over a comprehensive documentation. Second, keing
XP strongly concerned with rapid prototyping and testing, the lack of appropriate tods
for the testing of multiagent systems (making it impossble to systematically evaluate
spedfic agent-oriented problems sich as the resped of socia rules, the orred
enadment of collaboration strategies etc.) represents a serious issue.

We strongly believe that agile and XP-like processes for agent-based devel opment
are needed to improve aceptance of agent-techndogy by indwstry. Still, further
researches in the AOSE area are needed to pave the way to XP-oriented agent-based
development.

4.2. Multi-per spective Approaches

Ancther potentialy interesting diredion to improve the dfedivenessand reliabili ty
of agent-based development is to focus on dfferent perspedives during the
development process With the term perspedive, we mean an abstrad representation o
the system highlighting some aspeds of current interest, while hiding all the others that
are not interesting from that spedfic point of view. This is an application d different
fundamental principles of the software engineaing (i.e. separation d concerns,
horizontal moduarity, etc.) and may help a more exhaustive mmprehension d the
system to bein al of its different aspeds.

In mainstrean software engineaing, the gplicaion d this approach has been
widely used. For instance, structured analysis and design approadies edfy the system
to be alopting two main perspectives: the data flow and the data structure. On the other
side, ojed orientation defines the system considering the objects (and their description)
perspedive, the (instantiation) relationships among objeds and classes, and, findly, the
interadions among different classes (or objeds). Also in the atificial intelligence area
in the mnstruction d expert system, two mainly perspectives are mnsidered: the
knowledge representation and the inference skill s.

Recently, in the AOSE arena, this multi-perspedive idea has been adopted — to
different extent — in a number of proposals (see for example MASSIVE and
INGENIAS) and hes adso been advocaed in a different paper by the aithors
(Cosentino and Zamborelli, 2009.

While it is easy to reagnize the importance of multiple perspectives in order to
achieve a thorough comprehension o the system (especialy when dealing with
multi agent systems that are often used to implement complex and dstributed solutions),
it is not easy to oltain a multi-perspective design processthat conjugates baoth quality
and cost parameters. Quality pursuing would bring to increment the number of different
perspedives but to avoid the introduction d colliding specificaions in dfferent views
pushes to adopt a spedfic design tod suppat for maintaining their coherence Both of

21

these apects (an increment in the number of perspectives and the mherence deck
performed by a specific design todl) originate an increment in the projed costs (and
time) and therefore limit the posshility of diffusely applying this approad.

Accordingly, we believe further investigations are needed to make the multi-
perspedive gproach pradicd, i.e., as a way to reduce complexity rather than increase
the aosts of software devel opment.

4.3. Meta-M odels, Meta- M ethodologies, and M ethod Engineering

Actualy, several works (Cosentino and Seidita, 2004 Odell et a., 2005
Henderson-Sellers, 2009 are focusing on the identification d appropriate meta-models
for AOSE methoddogies and process models, where a metamodel is intended as
rational analysis and identification d the astradions used in multi-agent system
development. However, since it is quite hard to synthesize the better of all existing
propaosals, in this approad still subsists the risk of produwcing a result that is too
complex and nd enough aff ordable.

In this direction, we can cite the contributions coming from the FIPA Methoddogy
Tedchnicd Committee (Cossentino et al., 2003 and the OPEN framework (Henderson
Sellers, 2009 that adopt the method engineering paradigm, more gopropriately cdled
situational method engineering (Ter Hofstede and Verhoef, 1997. In this approadc the
development processis compaosed by assembling pieces (method fragments) of it from a
repository of methods built up taking pieces from existing processes/methoddogies.
Eadh method fragment is mainly composed by three elements: (i) the processto achieve
fragment objectives; (ii) the atifads to be produced; and (iii) the roles played by the
involved people.

The process composition by reusing existing parts may be seen as an application d
the compositionality software engineering principle, acording to the roman idea of
“divide @ impera’, strongly related with moduarity, incrementality, abstraction, and
separation d concerns, that are principles frequently advocated by software engineering
authors (see for example (Ghezzi et a., 199)). Also, the relationships among
comporents may be asciated to the objed oriented aggregation relationship.

The complete method engineeing process could start from the selection d the
elements that compaose the meta-model of the multiagent system. Then the development
processis composed by seleding proper fragments from the repasitory. In FIPA those
adivities are suppated by a Computer Aided Method Engineging — CAME todl.

To harmonicdly integrate all the diff erent fragment of methods, engineas will neel
guidelines, up to nov, some guidelines are avallable, for example in the OPEN
framework, abou the alequate use of a particular method in a spedfic context, that is,
abou the mrred use of a single method fragment (component). Some kind d patterns,
i.e. design or architedural patterns, have been proposed in specialized literature, bu to
redly accomplish with the method engineaing purpose, engineers need more
“methoddogical patterns’ for the thorough process resulting by the methods
integration.

Other interesting attempts are trying to propcse new processes as a synthesis of the
best models propased by previous ones. The ideais to find ou the minimum common
ground between dfferent processes and to extend it to a general approach by adopting
the best feaures of each considered processin a wnsistent way. Some example of this
trend are Skeleton (based on Roadmap and Prometheus) (Juan et a., 2002,
INGENIAS (GOmez-Sanz and Fuentes, 2003, MESMA (Cuesta & al., 2003, etc.
However, this pradicestill not guarantees that the results would be more useful than the

22

previous process they extended. In effect, it is pradicdly impossble to take into
acount al the best contributions of the dready existing methoddogies and the
frequently newly proposed ores. Moreover, probably it is impossble to define the
“panacea’ process that better covers all the multiple possble projed cases and
multiagent applicaions. Thus, every syncretism is destined to be partial and, from the
point of view of the process model, to suffer the some drawback of the original
approad it extends.

4.4. Tools

When developing an agent-based system, several todls are necessary during the
different stages of the process Because of the scope of this paper, in the foll owing we
will only discussdesign todls and their related open research issues.

Applicaion fields for design tods gpread from requirements €licitation to design,
testing, validation, version control, configuration management and reverse engineeing;
we can classfy them in three different categories:. CASE, CAME, CAPE tods. The
CASE aaonym means Computer Aided Software Engineaing and it names tods that
could be used to design with the most different approaches. Usually they well suppat
the modeling activities and orly constrain the designer in the dchoice of the system
modeling language (for instance UML), and, when code generation is passble, on the
list of suppated coding languages. The main limit of these todls is that they are not
aware of the adopted method (in terms of work to be dore) but they are only concerned
with the representation d some (often na coordinated) views of the system. Several
examples of research-level CASE tods are available for the design of multiagent
systems but at our knowledge, there exists no agent-oriented tod that has readed an
indwstrial quality level.

As regards CAME tods (CAME stands for Computer Aided Method Engine&ing),
they are mncaved to suppat methods rather then design. They do nd adopt any
spedfic software development processmodel (they are not even aware of its existence
because they are only concerned with the drawing of the different aspeds of the model
separately) and therefore the designer could fredy work on the different views even
violating the prescribed processwithou any warning from the toadl. No spedfic CAME
tod for agentsis reported, at our knowledge, in literature. One of the intrinsic limits of
CAME tods (the ladk of process awarenessg is overcome by CAPE (Computer Aided
Process Engineering) tods that are avare of the adopted processmodel (or could even
be used to design it) and coordinate the different stages of the design in order to resped
its prescriptions. This category of tods is, at our knowledge, totally unexplored in the
field of agent-oriented software development and their growth is as desirable & the
diredly related development of spedfic agent-oriented processes.

4.5. Evaluation and improvement of processes and resulting products quality

A possble way to let accessble the expertise is to insist on evaluation frameworks
that could highlight the advantages and drawback of agent-based methoddogies and
process models in particular contexts. In this snse, different authors have proposed
interesting works on the evaluation d methoddogies (Sturm and Shehory, 2003
Cernuzzi and Rosd, 2002 Hoa Dam and Winikoff, 2003 etc.). However, at our
knowledge no work has focused onthe evaluation d process models and we think that
more dfort is gill needed in evaluating methoddogies, spedfic methods and techniques
in AOSE. In effed, the grea mgjority of the proposed works are centered on quitative

23

evauation, while engineers need of more quantitative results that may fadlitate
comparative analysis and the selection d spedfic methodks.

5. CONCLUDING REMARKS

Since the very beginning of software engineering researches, a variety of software
process models have been propased, from sequential waterfall-like to evolutionary and
transformation-based ores, with the goa of identifying effedive, reliable, and
reproducible ways to produce software. In the community of software engineering, there
is now a general consensus that for most red-world industrial projeds the pervasive
waterfall model shoud be better replaced by more flexible and iterative gproadies,
such as evolutionary and spiral ones. Also, it is an acknowledged fad that no single
genera-purpose process model can be dfedive for al projeds, and that different
commercia and engineering neads may be satisfied by different process models. In
addition, software processes canna be defined and established orce and for ever, they
need to be mntinuowly assessed and improved.

The &owve considerations imply that a magor duty of a software engineer — ather
than designing software by applying methoddogies —isto apply its expertise to identify
the most appropriate process model for any specific situation, and pu this model at
work. Unfortunately, despite the @ove understanding, this paper has outlined that
current researches in the aeaof AOSE and d AOSE methoddogies underestimate the
importance of the process model in multiagent system development. In most of the
cases, an AOSE methoddogy gets proposed withou any explicit reference to the
underlying processmodel.

It is our hope that the analysis and the discussons reported in this paper may
somewhat clarify abou the importance of process models in agent-oriented software
development, and may be of inspiration for processoriented researches in the AOSE
community. In addition to the open isaues identified in this paper, further issues related
to the engineaing of very large allectives of distributed agents exhibiting complex and
emergent behaviors, and to the analysis of the innowetive processmodels that could suit
these kinds of systems, would be worth to be investigated (Zamborelli and Omicini,
20049).

REFERENCES

Bauer, B., Mdller, J., and Odell, J., 2000. Agent UML: A Formalism for Spedfying Multiagent Software
Systems. In: Ciancaini, P., and Woddridge, M. (Eds) Agent-Oriented Software Engineeing -
Proceedings of the First International Whorkshop (AOSE-2000. Springer-Verlag, Berlin (Germany) ,
pp. 91-103

Bed, K., 1999. Extreme Programming Explained: Embrace Change. Addison-Wesley, Boston, MA
(USA)

Boehm, B., 1998. A Spiral Model of Software Development and Enhancement. IEEE Computer, Vol. 21,
N° 5, May, 1988 pp. 61-72

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopouos, J., 2001. A Knowledge Level
Software Engineaing Methoddogy for Agent Oriented Programming. In: Procealings of the 5th
International Conference on Autonomous Agents. ACM Press Montred (Canada), pp. 648655

Brazer, F., Jonker, C., and Treur, J., 2002. Principles of Component-Based Design of Intelligent Agents.
Data and Knowledge Engineering, vol. 41, No. 2, pp. 1-28

24

Caire, G., Chainho, P., Evans, R., Garijo, F., Gémez Sanz, J., Keaney, P., Led, F., Masnet, P., Pavon,
J., 2001. Agent Oriented Analysis Using MESSAGE/UML. Procealings of Agent-Oriented Software
Engineeing— AOSE 01, May 2001, Montred (Canada), pp. 101-107

Cernuzz, L. and Rossg, G., 2002 On The Evauation Of Agent Oriented Methoddogies. Proceedings of
the OOPS_A 02 - Workshop an Agent-Oriented Methoddogies, November 2002 Sedtle (USA), pp.
21-30

Chella, A., Cossentino, M., Sabatucd, L. and Seidita, V., 2004 From PASS to Agile PASS: Tailoring a
Design Processto Med New Nedls. In 2004 IEEEWIC/ACM International Joint Conference on
Intelligent Agent Technology (IAT-04), Sept. 2004, Beijing (China),

Ciancarini, P. And Wooldridge, M., 2001. Agent-Oriented Software Engineeing. Procealings of the 1%
International Workshop an Agent-Oriented Software Engineeing, Springer Verlag, LNCS, Vol. 1957,
pp. 1-24

Cosentino, M., Hopmans, G., Odell, J., 2003. FIPA Standardization Activities in the Software
Engineeing Area Workshop an Objed and Agents (WOA'03) Sept, 10-11, Cagliari (Italy),

Cosentino, M. and Sabatucd, L., 2004 Agent System Implementation in Agent-Based Manufacturing
and Control Systems: New Agile Manufaduring Solutions for Achieving Pegk Performance. Paolucd
M. and Sadle R. editors. CRC Press April 2004

Cosentino, M. and Seidita, V., 2004. Compasition of a New Processto Med Agile Needs Using Method
Engineeing. Software Engineering for Large Multi-Agent Systemsvol. 11l . LNCS Series, Elsevier Ed..

Cosentino, M. and Zambonelli, F., 2004 Multiagent Systems Development from the Autonomy
Perspedive, Computational Autonomy. LNCS Series No. 2969 Elsevier Ed.

Cuesta, P., Gémez A., Gonzdez J.C., and Rodriguez F., 2002 The MESMA Approach for AOSE.
Proceedings of Fourth Iberoamerican Workshop a Multi-Agent Systems (lberagents2002, at
IBERAMIA'2002 the VIII Iberoamerican Conference on Artificial Intelligence November 11-12,
2002 Malaga (Spain),

DeLoad, S., Wood, M. and Sparkman, C., 2001 Multiagent Systems Engineeaing. International Journal
of Software Engineering and Knowledge Engineering, vol. 11, No. 3, pp. 231-258

Dori, D., 2002 Objed-Process Methoddogy — A Holistic System Paradigm. Springer, Berlin,
Heidelberg, New Y ork

d’'Inverno, M., and Luck, M., 1997 Development and Applicaion of a Formal Agent Framework.
Proceedings of the First IEEE International Conference on Formal Engineaing Methods, November
12-14, 2002, Hiroshima (Japan), pp. 222-231

Fuggetta, A., 200Q Software Process a Roadmap. Proceelings of the Conference on the Future of
Software Engineaing, June 4-11, 2000, Limerick (Ireland), ACM Press New York (USA), pp. 2534

Ghezi, C., Jazayeri, M., and Mandrioli, D., 1991. Fundamentals of Software Engineeing. Prentice Hall
International, Upper Saddle River, NJ (USA)

Gilb, T., 1988. Principles of Software Engineaing Management, Addison-Wesley, Boston, MA (USA)

Giunchiglia, F., Mylopaulos, J. and Perini A., 2002 The Tropcs Software Development Methoddogy:
Processes, Models and Diagrams. Procealings of Agent-Oriented Software Engineeing (AOSE-
20@2), July 2002 Bologna (Italy), pp 6374

GoémezSanz, J. and Pavén, J., 2003. Agent Oriented Software Engineaing with INGENIAS. Procealings
of the 3 Central and Eastern Europe Conference on Multiagent Systems, Springer Verlag, LNCS
2691, pp. 394-403

Henderson-Sellers, B., 2005. Method Engineaing to Creade a Comprehensive AO Methoddogy
Framework. Chapter 13 in Agent-Oriented Methoddogies (edited Henderson-Sellers, B., and
Giorgini, P.) IdeaGroup Inc., Hershey, PA; USA, 2005

Hoa Dam, K., and Winikoff, M., 2008. Comparing Agent-Oriented Methoddogies. Proceedings of Agent
Oriented Information Systems-AOIS 03, July 2003 Melbourne (Australia), pp. 78 - 93

Iglesias, C., Garijo, M., Gonzdez J.C. and Velazm, JR., 1997. Analysis and Design of Multiagent
Systems using MAS-CommonKADS. In: Singh, M., Rao, A.S. and Woddridge, M. (Eds.), Intelli gent
Agent 1V, Springer, LNCS 13645 pp. 312-328

25

Iglesias, C., Garijo, M. and Gonzdez J.C., 199. A survey of Agent-Oriented Methoddogies. In: Muller,
J.P., Singh, M., and Roa, A.S. (Eds.), Intelligent Agent V, Procealing of ATAL-98, Springer, LNCS
1555 pp. 317-330

Kelly, S., Lyytinen, K. and Rossi, M., 1996. MetaEdit+: A Fully Configurable Multi-User and Multi-Todl
CASE and CAME Environment. in Advanced Information Systems Engineaing, Proceedings of the
8th International Conference CAISE'96 (eds. P. Constapoulos, J. Mylopaulos, Y. Vassliou), Springer-
Verlag, pp. 1-21

Knublauch, H., 2002 Extreme Programming of Multi-Agent Systems. Proceeadings of the First
International Conference on Autonomous Agents and Multi-Agent Systems - AAMAS '02, ACM
Press July 15-19, 2002, Bologna (Italy), pp. 704-711

Kruchten, P., 1998. The Rational Unified Process An Introduction. Addison-Wesey , Boston, MA
(USA)

Jambson, I., Rumbaugh, J. and Booch, G., 1999. The Unified Software development Process Addison
Wesley, Realing, MA (USA)

Jennings, N. R., 2001, An Agent-Based Approach for Building Complex Software System,
Communications of the ACM, Vol. 44, No. 4, pp. 3541

Juan, T., Peace, A. and Sterling, L., 2002a. ROADMAP: Extending the Gaia Methoddogy for Complex
Open Systems. Procealing of the First International Conference on Autonomous Agents and Multi-
Agent Systems - AAMAS’02, July 15-19, 2002 Bologna (Italy), pp. 3-10

Juan, T., Sterling, L. and Winikoff, M., 2002b. Asembling Agent Oriented Software Engineeaing
Methoddogies from Fedures. Procealings of the First International Conference on Autonomous
Agents and Multi-Agent SystemssAAMAS 02, Third International Workshop an Agent-Oriented
Software Engineaing AOSE-2002 July 15, 2002 Bologna (Italy), pp. 161-172

Lahlouhi, A. and Sahnoun, Z., 2002 Multi-Agent Methoddogies' Incoherencies. Proceeadings of the
OOPSLA 2002 Workshop an Agent-Oriented Methoddogies, November, 2002 Sedtle (USA), pp.
64-73

Lind, J., 2001 Iterative Software Engineeing for Multiagent Systems, the MASSVE Method. Springer
Verlag, New York, Secaucus, NJ, USA

Odéll, J., Noding, M., and Levy, R., 2005 A Metamodel for Agents, Roles, and Groups, in Agent-
Oriented Software Engineaing (AOSE) IV, Odell, J., Giorgini, P., and Mdller, J. (eds.), Ledure Notes
on Computer Science volume (forthcoming), Springer, Berlin (Germany)

Padgham, L. and Winikoff, M., 2002 Prometheus: A Methoddogy for Developing Intelligent Agents.
Proceedings of the First International Conference on Autonomous Agents and Multi-Agent Systems -
AAMAS '02, Third International Workshop an Agent-Oriented Software Engineaing AOSE-2002
July 15, 2002, Bologna (Italy), pp. 135-146

Paulk, M., Weber, C.V., and Curtis, B., 1995. The Capability Maturity Model for Software. Addison
Wedley, Realing, MA (USA)

Poutakidis, D., Padgham, L. and Winikoff, M., 2002 Debuggng Multi-Agent Systems Using Design
Artifads. the Case of Interadion Protocols. Procealings of the First International Conference on
Autonomous Agents and Multi-Agent Systems - AAMAS 02, July 15-19, 2002, Bologna (Italy), pp.
960-967

Sturm, A., Shehory, O., 2003 A Framework for Evaluating Agent-Oriented Methodd ogies. Procealings
of Workshop an Agent-Oriented Information Systems — AOIS 2003 5th International Bi-Conference,
July 14, Melbourne, (Australia), October 13, 2003 and Chicago, IL (USA), 2003 LNCS 303Q pp. 94-
109

Sturm, A., Dori, D., Shehory, O., 2003 Singe-Model Method for Spedfying Multi-Agent Systems.
Proceedings of the Sewnd International Conference on Autonomous Agents and Multi-Agent
Systems - AAMAS 03, July, 2003 Melbourne (Austraia), pp. 121-128

Sucd, G. and Marchesi, M., 2001 Extreme Programming Examined. Addison-Wedey, Realing, MA
(USA)

Ter Hofsted, A.H.M., and Verhoef, T.M., 1997. On the Feasibility of Situational Method Engineeing.
Information Systems, vol. 22, No. 6/7, pp. 401-422

26

Wagner, G., 2003 The Agent-Objed-Relationship Metamodel: Towards a Unified View of State and
Behavior. Information Systems, Val. 28, No. 5, July, 2003 Elsevier, pp. 475504

Wood M., and DelL.oach, S.A., 2000 An Overview of the Multiagent Systems Engineaing Methoddogy.
Ciancaini, P., and Wooldridge, M. (Eds.) Agent-Oriented Software Engineeing - Proceedings of the
First International Workshop (AOSE-2000. Springer-Verlag, Berlin (Germany), pp. 207-221

Wooldridge, M., Jennings, N. R. and Kinny, D., 2000 The Gaia Methoddogy for Agent-Oriented
Analysis and Design. Journal of Autonomous Agents and Multi Agent Systems, Vol. 3, No. 3, pp. 285-
312

Yu, E., 19%. Modelling Strategic Relationships for Process Reengineaing. PhD thesis, University of
Toronto, Department of Computer Science

Zambonelli, F., Woddridge, M. and Jennings, N. R., 2003 Developing Multiagent Systems: The Gaia
Methoddogy. ACM Transaction on Software Engineering and Methodology, vol. 12, No. 3, pp. 417-
470

Zambonelli, F. and Omicini, A., 2004 Challenges and Reseach Diredions in Agent-Oriented Software
Engineeing. Journal of Autonomous Agents and Multiagent Systems, val. 9, No. 3, Kluwer Academic
Publishers, pp 253-283

27

