A Notation for Modeling Jason-like BDI Agents

Massimo Cossentino*, Carmelo Lodato*, Antonio Chella®, Salvatore Lopes™*, Patrizia Ribino* and Valeria Seiditaf
*Istituto di Reti e Calcolo ad Alte Prestazioni
Consiglio Nazionale delle Ricerche
Palermo, Italy
Email: {cossentino,c.lodato,lopes,ribino} @pa.icar.cnr.it
TDip. di Ingegneria Chimica Gestionale Informatica Meccanica, University of Palermo
Palermo, Italy
Email: {antonio.chella, valeria.seidita} @unipa.it

Abstract—The design and development of a large Multi
Agent System (MAS) is a complex and difficult activity where a
proper modeling notation may offer a significant contribution
to the formulation of the best solution. The support provided
by a specific CASE tool can significantly contribute to make the
chosen approach technically valid and it is also a fundamental
element of a feasible development strategy. The present work
reports a UML profile and the related graphical notation for
describing a MAS based on the Jason metamodel. Moreover a
specific CASE tool has been developed for supporting MASs
design and automatic code generation. The proposed notation
is shown in details using a classical example from the Jason
tutorial (domestic robot).

Keywords-Jason; Multi-agent system; CASE tool

I. INTRODUCTION

Many fields of research, such as economics, biology,
engineering, imply the study of highly complex scenarios
in dynamic environments. In order to approach such diffi-
cult problems, open and/or distributed systems are widely
employed because they can have the capability of reacting
in a quasi-real time to changes occurring in the environment.
Moreover, agent based platforms can offer a good way for
solving complex problems because of their intrinsic nature.
The agent approach is very useful to both the design and
implementation phases [1][2].

Among the general purpose platforms for developing
MAS (Multi- Agent System) application, JADE (Java Agent
DEvelopment Framework) [3] is one of most used.

Other platforms as INGENIAS [4], JACK [5], Practionist
[6] and Jason [7] adopt the BDI (Belief - Desire - Intention)
paradigm. In the BDI model, agents continually monitor
their environments and act to change them, based on the
three mental attitudes of belief, desire and intention.

Jason is a Java-based interpreter supporting an extended
version of AgentSpeak, a Prolog-like logic programming
language and it offers relevant utilities for the implemen-
tation of MASs.

Despite the relevant number of agent oriented methodolo-
gies that can be found in literature, only few of them cover
the entire process life-cycle from analysis to implementation.

Very few are aided by tools and even less use a specific
notation for managing all the concepts a MAS deals with.
In the case of BDI agents, concepts like agent, role, goal,
communication, plan, belief, desire, and intention have to be
defined during the design methodology activities. A proper
notation would allow a more efficient way for designing the
system and it would better fill the gap between the design
process and the used platform.

In this paper we present a notation for modeling Jason-
based MAS and a preliminary version of a CASE tool,
named JT (Jason Tool).

The advantages of graphically representing MAS are
evident: first of all, graphical notations are more readable
and understandable at a glance than any coding language,
secondly it is usually easier to explain a graphical model to
stakeholders involved in the design (that are not technical
designers) than read the application code with them.

The notation here presented is based on a UML 2.3
profile and it allows to draw the following diagrams: the
Goal Structural Description (GSD) expresses the structural
decomposition of the system goals, the Multi Agent Struc-
tural Description (MASD) describes the system in terms of
agents, their plans and interactions, the Multi Agent Func-
tional Description (MAFD) depicts the system dynamical
behaviour, the Single Agent Structural Description (SASD)
highlights the internal structure of each agent.

These diagrams are supported by JT that permits the MAS
design and its implementation for the Jason platform. JT has
been implemented by using a well known tool, Metaedit+
by Metacase [8][9]. It offers a valid environment for domain
specific modeling and it provides means for creating an ad-
hoc modeling language with concepts and rules coming from
the problem domain.

The present work is part of a more complex and complete
one. We are working on the definition of a methodological
approach for the design of BDI MAS where the proposed di-
agrams represent the outcome of the methodology activities.
In this paper we want only to show the adopted notation for
representing not only common agent concepts but principally
specific Jason elements. We started from the bottom with the

precise intent of giving meaning to the coding concepts in
the same way the creators of UML do [15]; only after this
step we can go on with the definition of the methodology
phases.

The remainder of the paper is organized as follows. In
section II the Jason platform and Metaedit+ are introduced.
In section III we explain the proposed tool with its diagrams
and notation by using an example inspired by a Jason
tutorial. Finally some discussions and conclusions are drawn
in section IV.

II. BACKGROUND AND MOTIVATION

During the design and the implementation of a multi-
agent software system, it is useful to follow specific design
activities ruled by a methodology that leads the designer
from the system analysis to its implementation with a
specific programming language. In fact, the use of a correct
methodological approach results in a valuable software prod-
uct also reducing development time and costs. The adoption
of a CASE tool further improves on these advantages.

A relevant gap may exist between the design and the im-
plementation platform. This has been historically relevant in
the field of MAS development because most agent platforms
are based on object oriented concepts and they support agent
oriented abstraction with great limits.

In the case of BDI multi-agent systems, AgentSpeak and
its extension Jason present valuable features for applying
logic programming to BDI agents. Jason natively allows to
manage concepts like goal, belief, event and all the others a
BDI context would imply.

Several agent oriented methodologies for developing
BDI agents exist. Some of the most known are: MAS-
CommonKADS [10], MASE [11], Prometheus [12] and
INGENIAS [13]. Each of these methodologies produces
models using a specific modelling language.

MAS-CommonKADS [10] defines a set of models: Agent,
Task, Expertise, Coordination, Communication, Organiza-
tion and Design. It extends and integrates object-oriented and
knowledge engineering techniques. MAS-CommonKADS is
a complete methodology from analysis to implementation.
The Organizational model deals with elements such as
mental state, hence goals, plans and beliefs and external
interface, hence sensors, actuators and services.

The notation used by MAS-CommonKADS is quite simi-
lar to the UML one and no specific notation has been defined
for representing the peculiar concepts of BDI agents. Besides
there is a poor support from dedicated CASE tools.

MASE [11] provides two main phases, the analysis and
the design and it mainly creates models and guidance for
developing a detailed design. During the analysis phase, a
set of goals is identified and then used for creating use case
and sequence diagrams for representing the behaviour of
the system. In the following phases, roles and tasks are

designed and finally transformed in the implementation-
level agents and their conversations. AgentTool provides a
development environment for MASE and it includes semi-
automatic transformation of models.

Prometheus [12] supports the design of BDI agents based
on goals and plans. The methodology covers the design
phases from system specification to detailed design where
the system dynamics is specified in terms of interaction
protocols and the design of agents in terms of capabilities.
The methodology also allows to design elements such as
message, plan, action and perception.

Prometheus can be supported by two tools, Prometheus
Design Tool (PDT) and JACK Development Environment
(JDE). PDT [14] is based on a specific notation and allows
the designer to draw the Prometheus work products and to
check for inconsistences. JACK is a platform for building,
integrating and running BDI multi-agent system.

INGENIAS defines a notation for the specification of
MAS, extending UML with agent related concepts such
as agent, organization, role, goals and tasks. It also de-
fines activities for the identification and the specification
of MAS components in analysis and design. INGENIAS
links concepts of different diagrams and allows mutual
references. Its metamodel has been elaborated attending to
current research results in different areas like coordination,
reasoning, and workflow management. Moreover, the INGE-
NIAS Development Kit (IDK), coded in the Java language,
provides a framework for the implementation of modules,
for verification and code generation [4].

At the best of our knowledge, only few methodologies
are supported by CASE tools and none is specific for
designing Jason agents. What we aim to do is to create
a comprehensive methodological approach for developing
cognitive BDI agent by joining the strength of Jason agents
and the availability of a tool for the design and the automatic
generation of Jason code. The work we propose in this paper
is the first step towards our main aim and it deals with the
definition of a UML extended notation for modeling Jason
agents.

Our research and its outcome are based on the assumption,
taken by the MDE paradigm [16], that developing a software
system is nothing more than transforming models along the
methodological activities. Drawing models, hence all the
diagrams they include, is ruled by the chosen notational
syntax and by the system metamodel constructs each activity
is devoted to design.

The tool we developed is an instance of a meta-Case
tool (Metaedit+); we decided to use Metaedit+ for its rapid
prototyping capability of the solution. In fact, it offers the
possibility of creating a graphical environment for the newly
created notation and of automatically producing the related
code.

In the next subsection we give an overview on Jason, its
metamodel, and on Metaedit+.

A. JASON

Jason is a Java-based interpreter for an extended version
of AgentSpeak [17][18], a Prolog-like logic programming
language. The most interesting features of AgentSpeak is
that it is based on a the belief-desire-intention (BDI) model
[19]. In this model, agents are continually observing their
environment. If some change happens agents produce a
reaction that depends on the three mental attitudes of belief,
desire and intention.

Beliefs are information the agent has about the world (i.e.
itself, others agents and the environment), which could also
be out of date or inaccurate.

Desires represent all possible states of affairs that an agent
would achieve. A desire is what drives the agents actions.
So it is possible for a rational agent to have desires that are
mutually incompatible each other. Thus, Desires represent
possible options for an agent.

Intentions are the states of affairs that the agent has decided
to work towards. An agent looks at its options and chooses
between them. Options selected in this way become inten-
tions. The behavior of agents in Jason is defined by means
of a set of plans performed with the aim to fulfil goals.

Practically, agents sense the environment and react to the
perceptions coming from it. Perceptions are generated from
changes happened in the environment where agents live.
Such perceptions have practical influence on agents beliefs
and consequently on the commitment to the achievement of
agents goals. From a practical point of view, Agents respond
to changes by selecting plans from the own plan repository
for each change of beliefs and then by instantiating one
of these plans as an intention. These intentions can be
composed of actions, goals and plans to be achieved.

A plan in AgentSpeak is composed of three main elements
organized in the following form:

+triggering Event : context < —body

The triggeringEvent is something (changes in agents be-
lief, goals to achieve) representing the situation in which
the agent should execute a suitable action. Since there can
be several plans triggered by the same event, the context
can be used for specifying which among all the eligible
plans should be performed. The body can be considered the
consequent of the event linked to the context.Within the body
commonly the actions that an agent must perform to fulfill
its own goals are defined.

The fundamental elements appearing in the Jason pro-
gramming of an Agent are:

Beliefs: a set of predicates representing the initial agent
knowledge of its environment.

Rules: a set of logic expression composed by predicates or
mathematical equations.

Plans: sets of actions or and subgoal to be performed in
order to fulfil the current goal.

[

r J Belief [
L

updates

Trigger
Event

pursues

updates

executes

Event communicates|

reacts Action

causes

Figure 1. The Jason Metamodel

Figure 1 shows an excerpt of the Jason metamodel de-
duced from [20]; this metamodel may be useful for the
reader to understand the choices made about the notational
elements (see later in section III). It contains all the elements
the designer has to deal with and to report in, at least, one
diagram of the produced model.

The Agent has Beliefs and pursues Goals. It reacts to
Events executing Plans in order to change the world and to
purse its goals. Beliefs represent the information an agent
owns. Beliefs added or removed to the belief base during
the execution of a plan are known as Mental Notes.

Goals represent the situation (the state) the agent wants
to reach. They can be of two types: achievement (goal to
do) and test (goal to know).

Events happen as a consequence to changes in the agent
beliefs or goals. There are six types of events: belief addition
and deletion, achievement goal addition and deletion, test
goal addition and deletion.

Actions are simple tasks that an agent can perform inside
a Plan. Jason platform provide two kinds of Actions: the
Internal Actions (that does not produce changes in the
environment) and External Actions (that change the envi-
ronment).

Plans represent the agent know-how. A Plan contains a
Trigger Event defining in which circumstances it should be
considered.It may contain Actions, Goals and Mental Notes.
The related Context represents the conditions under which
the plan can be executed and it may be composed of Beliefs
or logical expressions.

Every element in the metamodel has to be instantiated
in at least one artefact during the development of the
Jason multi-agent system. In the next subsection we give
an overview on the diagrams created in order to design
the multi-agent system. They provide a structural and a
behavioral view of the single agent involved in the system
and of the society of agents.

B. Metaedit+

Metaedit+, developed by Metacase [8], is at the same
time a CASE tool and a meta-CASE tool. Hence using
Metaedit+ gives the possibility of creating and specifying
modelling languages with specific syntax and semantic for
each element of the notation. This fact is allowed by the
three layered structure of Metaedit+ that basing on the
GOPPRR (Graph, Object, Property, Port, Relationship and
Role) metamodeling language establish concepts and rules
for creating metamodels and as a consequence modeling
languages with the related graphical editor.

Moreover Metaedit+ offers the possibility of using and
creating what is called report. The report is a small program
defined and working on every diagram that may produce
document generation in html format or others and the gen-
eration of code skeleton in various programming languages
(Java, C, C++,...). Besides Metaedit+ is provided with an
optimum support for the UML modeling language.

In a nutshell, we exploited these two main Metaedit+’s
features for defining our UML profile for modeling Jason
agent with its related graphical editor and for automatically
generating code skeleton. The latter is not in the focus of
this paper.

III. THE PROPOSED NOTATION

In order to illustrate the proposed notation and how it
is used for designing a Jason MAS, we use throughout
the paper an example provided by the Jason tutorial [20],
the Domestic Robot example. In this case study, a robot is
employed in order to provide its owner with the beer he
wants to drink.

In this section we present our notation by means of four
specific diagrams showing the MAS solution adopted for
the domestic robot problem. The diagrams we show in the
next subsections are supported by our Jason Tool and are
the outcome of the design activities we are working on and
that, here, we only hint at.

The four diagrams cover both the analysis and the design
of the solution. As regard the requirements analysis, we
think a fundamental diagram would be the Goal Structural
Description one. This latter decomposes the main system
goals in sub-goals. It is largely inspired by the Tropos
approach [21] and it can be refined using techniques like
the means-end analysis.As regard the design phase, we refer
to two different levels of abstraction. First of all, the social
(multi-agent) level is presented. This level deals with the
collaborative, social solution to the problem. The diagrams
represent all the agents involved in collaborations aiming
to satisfy the requirements. The next level, the single-agent
one, deals with the inner perspective of the agent design.
This diagram represents all the elements that constitute the
detailed agent design and that are necessary to code each
single agent. Both the levels contain a structural and a

behavioral diagram although this latter is not significant (in
our example) at the single-agent level and will be omitted.

e
drink{beer

e
get(been)

{AMD},

7 .5

préevent drunkness
o toffridge) Takeioeen revent drunkness
J
larder{beer]

Figure 2. The Goal Structural Description diagram for the domestic robot
example

A. The Goal Structural Description Diagram

This diagram presents a static decomposition of the prob-
lem goals. It is a mean for analyzing the problem and
sketching a solution in terms of goals and sub-goals. From
this point of view, this is not dissimilar from the diagram
we already presented in the notation proposed for modeling
organizations of agents (based on J-Moise) [22].

The GSD for the domestic robot problem is reported in
Figure 2. This diagram shows that the main goal is that
someone wants to drink a beer(goal drink(beer)). To do this
someone must get a beer (goal gef(beer)). A beer can be
obtained only going to the fridge(goal go_to(fridge)) and
taking a bottle of beer from the fridge (goal take(beer)). If
the fridge is empty then the goal rake(beer) is subordinated
to the goal order(beer). In addition, the goal get(beer)
contributes negatively to the prevention of drunkenness that
represents a soft goal (depicted by means of a cloud) for the
system.

Different design choices may arise from this scheme in
terms of roles and operative plans. The scenario adopted
in the Jason tutorial for the reported example considers a
domestic robot whose main goal is serving beers to its
owner. In order to pursue this goal, it must receive beer
requests from its owner, then go to the fridge, take out
a bottle of beer, and bring it to the owner. Moreover, the
robot must be aware of the amount of beers available in the
fridge and if the case, it should be able to order more beers
using the supermarket home delivery service. Some rules
are hard-wired into the robot by the Department of Health,
in the particular case a rule defines the limit of daily beer

consumption. We are here accepting the solution proposed in
the Jason tutorial in order to enable an easier understanding
of our proposal to the reader.

B. The Multi-Agent Level Diagrams

At the multi-agent level, two diagrams have been
conceived in order to design a MAS solution for a given
problem. In the specific case, we have introduced the Multi-
Agent Structural Description (MASD) diagram in order to
model the system in terms of agents and their relations and
the Multi-Agent Functional Description (MAFD) diagram
in order to describe the dynamical behavior of the system.

achieve (has)
tell {too_much)

awner robat

achieve (order) %

tell (delivered)

Supermarkel

. Initial Beliefs -
last_order_jdi1)

,,,,,,,, Initial Goals -] Initial Beliefs
getfheer) available(beer fidge)
limit(beer,10)
-wooeeee PlANS oeeeeees
+order{Product, Qtd)
Strue too_rauch(B) *true
-+has(owner,beer]
strue Plans
Hhastowner beer) +has{owner,beer)
ttrue :availabletbesr fridge) & not too_much(besr)
+drink(beer) -+has{owner,beer)
: has(owner beer) : ot available(beer fiidge)
+drink(beer) +has{owner,beer]
1 not hasiowner beer) stoo_muchibeer) & limitibeer,L)
+sg(h) +at{robot,P)
s true : at{robat P
+at{robot. P
1 not atfrobot,P)
+delivered(beer, Gtd Orderld)
strue
+stack(beerd)
: awailable(beer fridge)
+stack(beer,N)
: not available(beer fiidge)

,,,,,,,,,,,,, Plans e
+getibeer) Rules

Figure 3. Multi-Agent Structural Description diagram designed for the
domestic robot example

Multi-Agent Structural Description Diagram.

A MASD is an extended UML class diagram. Figure 3
shows the notation elements allowed in a MASD diagram
applied to the domestic robot example. The icon representing
a man with a tie is the agent symbol in our notation.
Moreover, according to the Jason viewpoint, the agents
interact by means of communications. These relations are
represented as arrows from the sender to the receiver agent
labelled with the intention of the sender (the performative).

From the structural viewpoint, the MAS to be developed
for solving the domestic robot problem is composed of
three agents: the owner, the robot and the supermarket. In a
MASD diagram, the body of an agent is usually composed
of four fields containing its initial beliefs (a priori knowledge
about the world), initial goals(goals the agents will attempt
to achieve from the beginning), rules (beliefs coming from a
logical consequence of other beliefs) and plans (the agent’s
know-how). Thus, according to the specifications of the
domestic robot problem, only the owner agent has an initial
goal (get(beer)) because this agent is the only one that can
start the activities of whole system. In turn, the robot has
two initial beliefs concerning the availability of beers in the
fridge and the legal limit of beers the owner can drink. The

rule too_much allows the robot to understand if its owner has
exceeded the limit. The supermarket agent initially knows
the last order ID of the robot.

Each agent according to its task is endowed with some
plans that allow it to fulfil its goals. In a MASD diagram a
plan is defined using the following syntax:

operator functor([terms]) : context

where the operator can be a goal operator (!, ?, !!) or a belief
operator (+, -, -+); functor([terms]) is the trigger event of the
plan and it is the formal representation of a Jason beliefs
or goals; the context defines the conditions in which the
plan can be applicable. It is composed of logical expressions
combined with the operators not (negation), & (conjunction)
and — (disjunction).

Besides, some communications among agents are used
in order to solve the domestic robot problem. For example
the owner agent has to make a request to its domestic
robot in order to get a beer. In the diagram of Figure 3,
this communication is represented by means of an arrow
between the owner and the robot labelled with an achieve
performative. It means that the owner is delegating a
goal to the robot. Instead, the communication between the
supermarket and the robot contains a fell performative that
means the supermarket wants only to inform that the beers
have been delivered.

Multi-Agent Functional Description Diagram.

A MAFD diagram is an extended UML activity diagram.
It provides a detailed description of the behavior of a
MAS highlighting the sequence of activities performed by
the agents. More in details it represents plans, message
exchanging and action executions.

Figure 4 shows the complete MAFD diagram for the do-
mestic robot example. This diagram reports all the possible
plans for each agent, the actions for each plan, the exchanged
messages and all the possible perceptions. In the specific
case, the agent owner triggers the behavior of the MAS
activating the plan related to the fulfillment of the initial goal
get(beer). This plan is composed of a send action that allows
the owner to request the robot to bring a beer. The mes-
sage performative is achieve, and when the robot receives
this message it activates the related plan (has(owner,beer)).
When all the necessary actions to bring a beer are accom-
plished, the robot executes the action hand_in(beer) that
causes to include the belief has(owner,beer) in the belief
base of the owner agent.

The Figure 4 also shows the notation elements allowed
in the MAFD diagram.The main element of the MAFD
diagram is the Jason plan. This is a specialization of a
UML activity. Thus, as usual, it is depicted with a rounded
rectangle and its invocation with a reversed pitchfork (see
also UML 2.3 [23], pag. 359). In this perspective, each plan
may contain other plans and/or simple actions.

In the MAFD diagram, six types of actions may be
represented: external actions (actions that modify the en-
vironment); internal actions (actions that do not change
environment); send actions (a particular internal action that
activates a communication among agents); finally we have
introduced three dummy actions, beliefs deletion, belief
addition (representing the agent mental notes) and fest
action (representing the Jason test goal action used by
an agent to retrieve information during plan execution).
These last actions are represented by means of an ellipse
with a stereotype indicating the type of dummy action. In
addition, a plan can be parametrized using an input pin
according to the specification of UML 2.3 (see [23], pag.
415). Pins are used to specify parameters passed to plans.
For instance, plan at(robot, P) has the pin P=fridge when
it is invoked the first time by the robot under the context
available(beer,fridge)¬ too_much(beer). A similar nota-
tion has been already proposed in [24] but without any
specific reference to the Jason language.

Besides, in the MAFD diagram it is possible to repre-
sent two kinds of resources by means of a UML object
node:message and belief. Messages can be sent executing
the specific internal action(send). For this reasons, in a
MAFD diagram each send action is linked to the message.
These messages contain a performative (for example: tell,
achieve, askone etc.) and the content. In turn, beliefs may
be generated by external actions and perceived by agents
(see, for instance, the belief has(ownerbeer) generated by
the external action hand_in(beer) in the biggest plan of robot
in Figure 4 and perceived by the owner agent).

This diagram is quite complex, its difficulty is comparable
to that of the coding phase of a Jason agent. However it is
to be noted that the MAFD diagram has been conceived for
substituting the code; the work is done only once during
the related modeling activity where one can use higher level
concepts having a better overall view of the MAS. Obviously
this diagram could be partly developed and after the involved
elements can be completed during the coding phase, the
design is free to act as he prefers; what we want to underline
is that the complexity of this diagram does not increase the
complexity of developing a Jason MAS.

C. The Single-Agent Level Diagram

At the single-agent level, one diagram for each agent
defined in the MASD diagram is designed. In our notation,
we have introduced the Single Agent Structural Description
(SASD) diagram in order to highlight the internal structure
of an agent.

As it can be seen by the Jason metamodel (Figure 1),
an agent is usually composed of plans, rules, goals and
beliefs. A SASD diagram provides a description of the agent
elements that is more detailed than the MASD diagram one.
In a SASD diagram, particular attention is paid to plans. A
plan contains a set of tools the agent may apply to change the

world and achieve its goals. Usually, carrying out a complex
plan requires not only simple actions to be executed but also
intermediate goals to be reached. Thus, from the structural
perspective a plan may be composed of external and internal
actions, achievement and test goals and mental notes.
Figure 5 shows the SASD designed for the robot agent of
the domestic robot example. On the left top corner, the initial
beliefs and the rules of the robot agent are reported. The
remaining part of the diagram explicits the plans the agent is
composed of. For instance, it is possible to note that, in order
to satisfy the has(owner,beer) goal the robot is endowed with
three plans applicable in different circumstances. The first
plan on the left of the diagram, is applicable only if the
agent robot knows there are beers available in the fridge and
the owner has not exceeded the legal limit of beers for the
day. This plan contains several simple actions (open(fridge),
get(beer)) with an obvious meaning and two achievement
goals that the robot must fulfil in order to reach the fridge
and the owner respectively. We omit the description of the
remaining part of the diagram for space concerns.

IV. CONCLUSIONS AND FUTURE WORKS

This paper deals with the creation of a notation for
developing Jason multi-agent systems. Jason is a platform
allowing the implementation of BDI agents and it provides
a programming language for cognitive agents by managing
concepts like goal, plan, belief, event and so on.

Our aim is to create an agent oriented design process
for developing such a kind of agent systems. This paper
represents a first step towards pursuing this objective; we
decided to join the strength of Jason to that of a CASE tool
for supporting design. The methodological approach and all
its activities for doing that are out of the scope of this paper
but they were at the basis of our work.

First of all we deduced the Jason metamodel that provided
us an overview of the elements that must be designed. This
was a consequence of the fact that we exploit the MDE
philosophy about metamodeling: every model produced by
a design process is an instance of a metamodel containing
all the constructs to be managed during design.

The notation we created is composed of all the elements
that allow us to instantiate four different diagrams. The
diagrams we propose are: the Goal Structural Description
(GSD) diagram that expresses the structural decomposition
of the system goals, the Multi Agent Structural Description
(MASD) diagram describing the system in terms of agents,
their plans and interactions, the Multi Agent Functional De-
scription (MAFD) diagram depicting the system dynamical
behaviour, the Single Agent Structural Description (SASD)
diagram highlighting the internal structure of each agent.

The notation has been created as a UML 2.3 profile and it
can be used through the tool we defined by using Metaedit+.
This tool is a good prototype that allowed us to experiment
our notation in different case studies but it does not offer

owmer

I Stant MAS
L

get(beer)
rrrrr

®
has(owner beer)

[
drinkibeer)
ras (dner beer @ S

<<ExtAction>>
sip(beer)

@ drink {beer) ’_H

rabot

<<Message>>

achieve

hasfowper beer)

<<Message>>
telt
too muh beer

Stop MAS
<<Belief>>

-has(owher,beer)

supermarket

hasfavmer beer)

4 fridge) &
Chibeer)]

[avallabletbeg
not too mi

atfrobot P)
P= fiidse[]

not Jese

obot P Contexd

<<ExtAction>>
step_towards

atfrobot Py H_‘
®

<<ExtAction>>
open(idge) N

<<ExtAction>>
getibeer)

<<ExtAction>>
close(fridge

p= wwnerl:@ alfebol P

<<ExtAction>>

<<Belief>>
has{owner beer)

hand_infbeer)

<<add>>
consured

P= (ndqel:%

<<Message>>
achieve
ordar(beer5)

<<belief>>
atifapot fridge)

stockfpeer) @

Fermover> <ZaTY
availabla(beer fiidge)

lorder(Product Gtd)[sourceiAg)]

Fémove>> < AT
Jast_order_id(Orderld)
<<ExtAction=>
deliver(Product Qtd)

atobotP)

77777777 <<Belief>>
stack(beer)

stockipeerpy @

“<removess
availabla(beer fiidgs)

<Belief->

ok (beer.0)

<<Belief>>

at(robot owner)

<<Messages>
tefl
i | deliverediProduét,Gtd,orderld)

_Otd, O 1
[]

<<add>>

available(beer fiidge)

@ hasownerbeer) |

Figure 4. Multi-Agent Functional Description diagram designed for the domestic robot example

any specific support for methodological issues like sequence
of design activities, coherence checks and so on.

As a future work, we plan to create an Eclipse plug-in for
supporting all the activities of the process devoted to design

Jason MAS by exploiting our notation.

Acknowledgment: This research has been partially sup-
ported by the EU project FP7-Humanobs and by the FRASI

project managed by MIUR (D.M. n593).

REFERENCES

[1] M. Wooldridge and N. Jennings, “Intelligent Agents: Theory
and Practice,” The Knowledge Engineering Review, vol. 10,

no. 2, pp. 115-152, 19

[2] M. J. Wooldridge, Introduction to Multiagent Systems.

95.

John

Wiley & Sons, Inc. New York, NY, USA, 2001.

(3]

(4]

[5]

(6]

(7]

F. Bellifemine, A. Poggi, and G. Rimassa, “Jade - a fipa2000
compliant agent development environment,” in Agents Fifth
International Conference on Autonomous Agents (Agents
2001), Montreal, Canada, 2001.

INGENIAS, “Home page,”
http://grasia.fdi.ucm.es/ingenias/metamodel/.

M. Winikoff, “Jack™ intelligent agents: An industrial
strength platform,” Multi-Agent Programming, pp. 175-193,
2005.

V. Morreale, S. Bonura, G. Francaviglia, F. Centineo, M. Puc-
cio, and M. Cossentino, “Developing intentional systems with
the practionist framework,” in Industrial Informatics, 2007
5Sth IEEE International Conference on, vol. 2. 1EEE, 2007,
pp. 633-638.

R. H. Bordini, J. F. Hiibner, and M. J. Wooldridge, Program-
ming multi-agent systems in AgentSpeak using Jason. Wiley-
Interscience, 2007.

(8]

(91

(10]

(11]

[12]

(13]

(14]

[15]

Agent: robot

--Initial Beliefs-- !
available(beer fridge)
limit{ beer,10} |
--Rules--

too_much(B}

has{owner,beer)

B

available(besr fidge) & not
tog_muchbeer

[P=fricge]

Y
has(owner,beer)

o available(beer fdge)

has{ avmer,beer)

has{owner beer)

Too_much(been) &
Cimit(beer L}

<<ExtAction=>

g

send(supermarket,achieve orderibeer))

<<IntAction>>

<<IntAction>>

send(owner tell (msg (b))

H

A7) A7) open(idge)
‘ at(robot) ‘ ‘ at(robot) ‘
<<ExtAction>>
get(beer)
j - \
@ A(abot) @ A(robot B BT
I [closeffidge)

P=tijige
atirobot,F)

@dehveved(heev@td‘nrderID

L nat atfrobat F) J k

at(robot P) J

<<ExtAction>>

stock(beer,N)

stock(beer)

L -

|

{

hand_in{beer)

N =0 & nat
fridge)

) k available{beer fioge))

<zadds>
consumedibeer)

atlrobot Py

<<ExtAction>>
step_toward

Figure 5.

J.-P. Tolvanen and M. Rossi, “Metaedit+: defining and using
domain-specific modeling languages and code generators,”
in OOPSLA ’03: Companion of the 18th annual ACM SIG-
PLAN conference on Object-oriented programming, systems,
languages, and applications. New York, NY, USA: ACM
Press, 2003, pp. 92-93.

I. H. and L. D. A., “Case environments and metacase tools,”
1997.

C. Iglesias, M. Garijo, J. Gonzélez, and J. Velasco, “Analysis
and design of multiagent systems using mas-commonkads,”
Intelligent Agents 1V Agent Theories, Architectures, and Lan-
guages, pp. 313-327, 1998.

S. A. DeLoach and M. Kumar, “Multi-agent systems engi-
neering: An overview and case study,” ch. XI, pp. 317-340.

L. Padgham and M. Winikof, “Prometheus: A methodology
for developing intelligent agents,” in Agent-Oriented Software
Engineering IlII, ser. LNCS, F. Giunchiglia, J. Odell, and
G. Weiss, Eds. Springer, 2003, vol. 2585, pp. 174-185,
3rd International Workshop (AOSE 2002), Bologna, Italy,
15 Jul. 2002. Revised Papers and Invited Contributions.

J. Pavon, J. J. Gomez-Sanz, and R. Fuentes, “The INGENIAS
methodology and tools,” in Agent Oriented Methodologies.
Idea Group Publishing, 2005, ch. IX, pp. 236-276.

L. Padgham and M. Winikoff, “Prometheus: A pragmatic
methodology for engineering intelligent agents,” in Proceed-
ings of the OOPSLA 2002 Workshop on Agent-Oriented
Methodologies. Citeseer, 2002, pp. 97-108.

J. Rumbaugh, “Notation notes: Principles for choosing nota-
tion.” Journal of Object-Oriented Programming, vol. 9, no. 2,
pp. 11-14, Mat 1996.

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

add RSt EY
available(beer,N) available(beer fridg available(beer fridg hasiowner,beer)

Single-Agent Structural Description diagram for the robot agent of the domestic robot example

D. C. Schmidt, “Model-driven engineering,” Computer,
vol. 39, no. 2, pp. 25-31, Feb. 2006.

A. Rao, “AgentSpeak (L): BDI agents speak out in a logical
computable language,” Agents Breaking Away, pp. 42-55,
1996.

M. d’Inverno and M. Luck, “Engineering agentspeak (1): A
formal computational model,” Journal of Logic and Compu-
tation, vol. 8, no. 3, p. 233, 1998.

A. Rao and M. Georgeff, “Bdi agents: From theory to
practice,” in Proceedings of the first international conference
on multi-agent systems (ICMAS-95). San Francisco, 1995,
pp. 312-319.

R. Bordini and J. Hiibner, “Bdi agent programming in agents-
peak using jason (tutorial paper),” Computational logic in
multi-agent systems, pp. 143-164, 2006.

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. My-
lopoulos, “Tropos: An agent-oriented software development
methodology,” Autonomous Agents and Multi-Agent Systems,
vol. 8, no. 3, pp. 203-236, 2004.

“Designing mas organizations with the support of a uml case
tool,” in Proceedings of the Fourth European Workshop on
Multi-Agent Systems (EUMAS’11), 2011.

UML, “Object Management Group,” OMG UML Specifica-
tion v. 2.3, 05-05- 2010.

V. da Silva, R. Noya, and C. de Lucena, “Using the uml
2.0 activity diagram to model agent plans and actions,” in
Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems, 2005.

