
Agent Design from the Autonomy Perspective

Massimo Cossentino1 and Franco Zambonelli2

1 Istituto di Calcolo e Reti ad Alte Prestazioni
Italian National Research Council

Viale delle Scienze Ed. 11
90128 Palermo, Italy

cossentino@pa.icar.cnr.it
2 Dipartimento di Scienze e Metodi dell'Ingegneria

Universita di Modena e Reggio Emilia,
42100 Reggio Emilia, Italy

franco.zambonelli@unimore.it

Abstract. The design and development of multiagent systems can take
advantage of a 'multi-perspectives' approach to system design, separately
focusing and the design and evaluation of one (or of a few) speci�c fea-
tures of the system-to-be. In this paper, we introduce the basic concepts
underlying the multi-perspectives approach. Then, we take a speci�c look
at agent autonomy and try sketch to a new speci�c perspective to deal
with it.

1 Introduction

Despite of the today already demonstrated advantages of multiagent systems
(MASs) and of an agent-oriented approach to software development [18, 15, 10,
12], software developers must be aware that the design of a MAS tends to be
more articulated than the design of a traditional object-oriented system. In fact,
in the design of a MAS, one should take into account novel issues such as [3]: the
proactive and reactive behavior of autonomous agents; dealing with social and
ontological aspects of inter-agent communications; controlling dynamic interac-
tion with an physical or computational environment; understanding the trust
and security problems connected to a potentially opened system.

During the design of a MAS, the designer is forced to pass through several
di�erent levels of abstraction looking at the problem from many di�erent points
of view. The result is a series of models that re
ect this multi-faced structure. As
a natural consequence, the process used in a�ording the di�erent models should
not be linear but multi-dimensional. In other words, the most natural way of
tackling the complexity of developing and representing MASs, and taking an
e�ective advantage of agent-based paradigm, consists in a 'multi-perspectives '
approach to the system design [14, 5].

Such an approach implies representing the system-to-be according to several
di�erent 'perspectives '; each one of them promoting an abstract representation
of the system, and enabling the evaluation of one or a few features of the system,



2 Cossentino and Zambonelli

thus highlighting some features and aspects of current interest, while hiding some
others that are not interesting from that speci�c point of view.

In a previous paper [5] we already presented some perspectives that could
e�ectively support and reduce the complexity of a MAS design process. In
this paper, after having better introduced the concepts underlying the 'multi-

perspectives ' approach to the system design, we take a speci�c look at agent
autonomy. In particular, we will try to outline the characteristics of a new spe-
ci�c perspective explicitly conceived to deal with agent autonomy and related
issues.

2 Di�erent Perspectives for MAS design

Other works already exist where agents and MASs have been looked at from a
multi-level or multi-perspective point of view.

In [5], we discussed �ve di�erent perspectives in analyzing the system design.
Two of them (knowledge and computer) come from the Newell's classi�cation
[14], later expanded by Jennings [11] with the inclusion of the social level. Two
further perspectives (architectural and resource) come from classical software
engineering concepts. However, in our opinion, looking at a MAS from di�erent
perspectives should not simply result in a series of di�erent not-related subsys-
tems, or in a partial descriptions of the whole system. Rather, the real outcome
should be a more detailed description of the system in terms of a well-de�ned
aspect.

When the designer looks at the system in order to study some speci�c prob-
lem, (s)he thinks about it as 'something' of speci�c. He can be concerned about
the distribution of the software in the available hardware platforms in order to
optimize the performances, or can be interested in de�ning the rules of inter-
action of the agent society. For this reason we intentionally call these di�erent
points of view 'perspectives' and not 'levels' or 'abstractions' because we want to
stress the concept that the perspective is the representation of the system when
the spectator is interested only in a speci�c conceptual area of the multi-faced
agent system.

In order to better express our concepts we will now brie
y present the key
issues of some perspectives, followed by a discussion on the 'structure' that is
behind a perspective. This will serve as introduction to the section where the
autonomy perspective is presented and analyzed.

2.1 Review of Some Perspectives

To clarify our concepts, let us brie
y sketch a few known perspectives that can
be of use in MAS design.

The architectural perspective looks at the software as a set of functionalities to
be implemented in a classical, software engineering approach [1]. This is clearly
quite an abstract perspective: its elements exist in the mind of the designer,



The Autonomy Perspective 3

since they are abstractions of the system representing the functionalities and
their logical implementation.

The social perspective is characteristics { although not exclusive { of MASs.
Many authors adopt a social or an organizational metaphor to describe MASs,
and accordingly exploit some kind of social perspective in MAS design [13, 20].
Such perspective focuses on agents as individuals of a society (or members of an
organization) that interact with each other to pursue social or sel�sh goals, as
imposed by the designer.

The knowledge perspective is a highly detailed point of view. In such a per-
spective, the single agent and its functional and behavioral details (that induce
some speci�c implementation), are conceived as entities that are able to manipu-
late some sort of external knowledge, with the goal of procuding/spreading new
knowledge [14, 9].

The resource perspective is oriented toward the reuse of existing design or
implementation resources (e.g. architectural patterns in software architectures
or detailed design patterns for components and their tasks [8]). It represents
agents/components/architectures in terms of some kind of mental bottom-up
process, and deals with the process of recycling an existing agent (or parts of it)
and eventually adapting it to match the necessity of a new problem.

The computer perspective is the more physical, touchable point of view. It
relates to the spreading of �les that constitute the software in the available
hardware platforms and to the computational and storage load imposed by the
processes in charge of executing the software system. This perspective therefore
considers the deployment issues arising from the interplay between the hardware
and the software system [14].

Depending on the speci�c application problem and on the speci�c charac-
teristics of the MAS to be designed, only a portion of the above perspectives
are likely to be of use. As it is common in software engineering problems, the
designer should �nd the correct trade-o� between the number of di�erent de-
scriptions of the system, the need to ensure their coherence and the consequent
increasing number of concepts that (s)he has to manage. While introducing a
new perspective could allow the identi�cation and tracking of a potential risk in
the system development, the uncontrolled use of this technique could produce
the undesirable relapse of inducing the designer to consider so much variables
that he could loose the perception of the system as a whole.

2.2 General Outline of a Perspective

In our work we refer to the concept of perspective instead of level also because
we want to emphasize the unity of the system thought as a representation of the
problem-solution couple that evolves from the early stages of the requirements
elicitation to the �nal coding and deployment activities. The system can be rep-
resented in the sequence of models and phases of a design methodology with
their resulting artifacts. Looking at this unit with di�erent scopes we obtain a
perspective of it that shows some elements (under one of their possible facades)



4 Cossentino and Zambonelli

hiding what is out of the particular focus. In very general terms (and abstract-
ing from the presence of agents and MASs) one can characterize a perspective
as made of design elements that are composed abiding to some constraints in
order to build a system conceived to operate in a speci�c context. The designer
assembles these elements according to a (design) rationale that establishes the
composition strategy by processing the inputs required by the perspective. In-
puts, elements, context, rationale, and constraints are de�ned as follows:

1. Inputs. They de�nes the information that will be evaluated by the designer
at design-time according to the prescribed design rationale. This will also be
likely processed by the system (at run-time) in order to achieve its design ob-
jectives. Typically, these are static elements of the design either introduced
and engineered by the designer or pre-existing in the environment. These in-
puts, belong to two di�erent categories: goals/requirements/features of the
system, and input data available for the system. Depending on the adopted
perspective, the �rst type of inputs can be design goals, architectural con-
cerns, cooperation/collaboration paradigms and so on. Input data (the sec-
ond category) could be �les, records, computational resources, or any type
of abstract knowledge.

2. Elements. These are the elementary computational components of the per-
spective (e.g., depending on the perspective, these could be functions, agents,
behaviors, software components, etc.). These elements are de�ned/re�ned by
the designer acting according to the design rationale. Using them like bricks
the designer will composes new pieces of the system completing the de�nition
of its appearance from the speci�c perspective point of view.

3. Context. Each element of the perspective is thought to be applied in some
operating scenarios (and bringing elements outside their natural operational
context could cause a system failure). Environmental considerations a�ecting
the system design can be enumerated among context concerns; for example
we should consider speci�c characteristics or constraints of the environment
that could in
uence the computational capabilities of the systems compo-
nent.

4. Rationale. What the overall system will be obviously depends on the mo-
tivation underlying how each of the system element is composed with the
others. Some design choices depend on speci�c strategies (for example re-
specting the holonic architecture) that can easily be formalized, others come
from the designer skills and experience (it is a matter of fact that a system
designed by a student is commonly less e�ective than the solution provided
by a senior designer). In this work we will refer to the design rationale try-
ing to include this untouchable contributions coming from experience and
skill in form of guidelines. As a result, we think about the rationale always
as a set of (someway) formalized rules, algorithms, conventions, best prac-
tices and guidelines that will guide the designer work. Of course, identifying
and representing such a set of motivations strictly depends on the adopted
perspective, on its inputs and elements.



The Autonomy Perspective 5

5. Constraints. These de�nes the rules according to which the various elements
of the system can be assembled for instance to compose a complex service
or reach a global application goal. These rules are of course particularly
important in all contexts where a complex service or a global application
goal derives from the composition/interplay of the activities of the various
components of the system, and where such a global goal can be obtained
only by strictly respecting some composition rules. Also in this case, the
speci�c adopted perspective in
uences the way in which these constraints
are identi�ed and expressed.

3 The Autonomy Perspective

A very distinguishing characteristic of MAS is their being composed of au-
tonomous components, capable of proactive actions and of decisional capabil-
ities. For this reason, and because the autonomy dimension in not something
that 'traditional' software engineers are used to deal with, we think that the
adoption of a speci�c autonomy perspective in MAS design may be needed.

Here we will try to sketch what an autonomy perspective in MAS could look
like, by discussing it (according to the characterization of the Subsection 2.2) in
terms of inputs, elements, context, rationale and constraints.

3.1 Inputs

The presence of some initial hypothesis, 'inputs ', is a common element of all
the design activities. Such inputs will help the designer to devise and repre-
sent an appropriate architecture for the system-to-be. When adopting a speci�c
perspective to design, of course, a limited set of 'inputs ' will be of interests.

In an autonomy perspective, whose focus in on analyzing a system from the
viewpoint of the autonomous capabilities of a number of proactive, task-oriented
and decision-making components, the design inputs of most interest are: 'system
goals ' and 'domain ontology '. They correspond, under the autonomy point of
view, to the two fundamental needs of each perspective, i.e., the functionalities
a�ecting the achievement of the design objectives in the speci�c perspective and
the data to be processed by the system, respectively. In fact, the analysis of
system goals guides the actual design activity in identifying the basic elements
(i.e., autonomous goal-oriented agents) of the system-to-be. The analysis of the
domain ontology helps identifying what knowledge will be available to system
elements for them to achieve their functionalities (i.e., their goals).

While a variety of other 'inputs ' can be available to the designer of a MAS
(e.g., speci�c non-functional requirements or speci�c models of knowledge ac-
quisition) this will not play a role in an autonomy perspective, and have to be
taken into account in other speci�c perspective (e.g., a computer perspective or
a knowledge perspective).



6 Cossentino and Zambonelli

3.2 Elements

Clearly, the elements of interests in an autonomy perspective for MAS design
are autonomous agents, intended as proactive decision-making components com-
bining speci�c proactive abilities (behaviors/roles) with available knowledge in
order to reach goals inspired by their vocation.

The factors that mostly a�ect the autonomous behaviours of an agents and
that should be taken into when modeling agents from the autonomy perspective
are:

{ Agent's vocation
{ Agent's knowledge
{ Agent's (behavioral) abilities
{ Available resources

The agent's vocation is characterized by two interesting aspects (external and
internal). The �rst one descends from the agent creator (the designer) point of
view and it addresses the reason for which the agent has been created. This has a
direct in
uence on the other aspect (the internal one): the will and consciousness
that is put in the agent itself; in a BDI agent this could correspond to agent's
desires, while in the PASSI approach [6] this is the requirement(s) that has to
be ful�lled by the agent.

Agent's knowledge (at least some speci�c portion of it) is one of the elements
of autonomy perspective since it contributes to agent autonomy by building up
the consciousness the agent has of its operational scenario, and in most cases
the strategy it will initially adopt is an a-priori one that is updated when new
information about the situation will be available.

The expected result of the autonomous agent design is a combination of the
agent's abilities to achieve some goal. Usually this is obtained with the correct
coordination of some agent's behaviors and their speci�c duties (in terms of
knowledge to be processed, options to be selected and so on). The analysis of
the di�erent agents (behavioral) capabilities is therefore one of the desiderata
for the computational autonomy perspective.

The availability of speci�c type or resources (whether computational or phys-
ical) is another factor that in
uences the autonomous action of an agent. An
agent could decide to adopt an alternative plan according to the possibility of
using some kind of resource. Not all the resources provided in the environment
are interesting for this perspective. Only their subset that has a direct in
uence
on the agent autonomy should be included and the others should be hidden in
order to limit the representation complexity.

It can be useful to remark that while the listed elements play a relevant role
in characterizing the agent autonomy some others could be neglected; this is
the case of agents communications (with the underlying transport mechanism,
content language and interaction protocols), mechanism of knowledge updating,
implementation architectures, and so on.

In order to clarify our concepts, let us abstract the execution of an au-
tonomous agent as a movement in some abstract 'actions space' (Fig. 1). The



The Autonomy Perspective 7

mission of the agent (i.e., its vocation), for which it exploits all necessary knowl-
edge, ability, and resources, is to move step by step in the action space (i.e., via
a sequence of autonomous actions) until it reaches the goals positioned in this
space. Clearly, depending on the actual decision-making of the agents, the goals
can be reached by following various paths (i.e., via di�erent combinations of its
possible actions).

A concrete example of this generic agent and its actions space could be a
robotic agent that is devoted to the exploration of some environment in order to
collect information about its topology (walls, doors) and the position of furniture
elements in it. It could move around following di�erent paths and, using its
sensors (laser, infra-red, sonar or even vision), it can discover the presence of
di�erent objects that it will classify according to its (a-priori) knowledge. In this
simple example, the very goal of the agent it to fully explore the building, and
autonomy of the agent is mainly used to let it decide in which way to explore
the building, room after room. In other words, in this example, the abstract
trajectory the agent has to follow to reach its goal (as from Fig. 1) equates to a
physical trajectory in space.

Thus, from the autonomy perspective, what is of interest is not the activity
of collecting data and knowledge about objects in the environment, but mostly
the activity of moving in such environment.

Fig. 1. An autonomous agent in an abstract trajectory towards its goal

3.3 Context

Each system is designed to solve one or more problems and this situates it
in the context (usually referred as the problem domain) where those problems
take place. Such a characterization particularly applies to agent, which have the
peculiar characteristics of being entities situated in an environment, that is, of
having an explicit representation of the context and of acting in it.



8 Cossentino and Zambonelli

A common expedient used by designers to represent the context and the
system interaction is the description of some operating scenarios. This could
bring an enormous number of elements to the attention but only the part of them
really a�ecting the speci�c perspective should be considered and the remaining
other should be neglected.

The context in which agents of a MAS situates (whether a virtual compu-
tational environment like an e-commerce marketplace or a physical one like a
building to be explored) introduces in the system design some constraints. These
could be rules of the environment itself (e.g., an agent should pay for the good
he won in an auction) or possible environment con�gurations that could e�ect
the agent activities (e.g., fog could limit vision of a robotic agent). Moreover,
the data an agent can acquire from the environment can be of some relevance
too.

Since autonomous agents could be not deterministic, and since the agent
decisional process is something that could not always be easily deducted from a
black-box external observation of the agent behavior, a perspective on resources
centered around the autonomy concept should take into account this aspect.
In particular, when the focus is on the autonomous actions of the agents, the
characteristics of the environment (and of the data that can be found there) of
interest are those that can somewhat in
uences the agents decisional process.
In other words, by taking into account the fact that the agent executes in an
environment, that may in
uence it and may be in
uenced by it, an autonomy
perspective would prescribe to identify what in the environment and its data
could comes to interplay with the dimension of autonomy of the agent.

Going back to our explorer robotic agent, the topological and physical char-
acteristics of the building) to be explored could a�ect the activities of the agent.
A very large open site may enable an agent to explore in detail all possible ob-
jects in it. A site with objects in not accessible position will prevent him to do
his work in a complete satisfactory way.

However, from the autonomy perspective, the data that are really of interest
are the topological information about the environment, because these will in
u-
ence the way the robot will �nd its way through the building. For instance, the
presence of a ground slope that the agent cannot safely walk through may re-
quire him to take speci�c exploration choices or, which it the same, to modify the
physical (and abstract) trajectory of its autonomous decisions. Other informa-
tion like the color of walls or the style of furniture are not generally relevant for
this perspective. Sometimes, it may be the case that the system requirements
calls for a curious robot, capable of deciding to explore some speci�c objects
more in detail using all of its sensing capabilities and possibly requiring it to
step back to analyze relations with already analyzed objects. In such a case,
further characteristics other than the topology of the environment may come
into play in
uencing the agent autonomous actions.



The Autonomy Perspective 9

3.4 Rationale

We already discussed that, during his activity, the designer aims at reaching some
goals for the system; all of his choices will be guided by a precise strategy (one
of the many possible ones) that he considers the best solution to the problem.
In the context of an architectural perspective (looking at the best architectural
solution) of a system devoted to provide the control of some active network
routers this mean using many small well specialized agents that will not overload
the network traÆc rather than multiple instances of the same big all-purpose
agent. In the case of an autonomy perspective, the rationale that is behind all
the design activity is the decisional process used by agents (and imposed to them
by the designer) to reach their goals. In the context of cooperative agents like the
ones used in Adelfe [2], this means looking for a cooperative solutions while in
other approaches and agent could prefer to face the problems by itself. At the end
the decisional process will decide in which way the perspective elements (tasks,
roles, . . . ) will be composed to satisfy the agent's vocation (another element of
this perspective)

Considering the robot example, the decisional process is �rst of all character-
ized by the chosen cognitive architecture that will select the plan (for example
a subsumption machine) and the strategy imposed to it by the designer. Let us
suppose that the robot is not exploring the environment in order to collect new
data about its topology but it is looking for bags forgotten by public in an air-
port. The mission is almost the same (�nding new objects in the environment)
but the decisional process could be di�erent. For example, a new line of chairs is
not considered an interesting element while a bag left alone in a crowded place
could be a potential danger and therefore it requires an immediate attention by
the robot that could even warn security personnel of the discovery.

In this case, the rationale determines how the path to the goal (as described
in Fig. 1) is to be formed, and how it can be in
uenced by external factors.

In other words, it determines the way an agent �nds a path toward its goal,
and may also determine the way an agent may not be allowed to �nd a path,
because this clashes with some requirements (giving attention to a not dangerous
new line of chairs slows the surveillance of the assigned area) or because this is
not made possible by the structure of the available resources.

3.5 Constraints

In a MAS, several agents execute in the same environment, towards the achieve-
ment of individual goals that may either contribute to a global application goal
or that may be sel�sh goals. Whatever the case, the autonomy of agents does
not imply that agents can do whatever they want independently of the actions
of other agents. Rather, since agents live in the same universe, the 'trajectories'
they follow should be disciplinated and not 'clash" with each other. In other
words, in a MAS, the autonomy of agents should be somewhat reduced or 'ad-
justed' in order for the whole system to proceed correctly, by disciplining the



10 Cossentino and Zambonelli

abstract trajectories that each agent would follow toward the achievement of the
task.

A typical example of this is in the concept of 'social laws' introduced by
Moshe and Tennenholtz [16, 13], which perfectly suit our example of mobile
robots exploring an environment. There, each robot in a group of mobile robot
{ each having the sel�sh goal of exploring an environment { is disciplined in
its movements (that is, in its autonomy) via the superimposition of social laws
(traÆc laws in the speci�c example) that prevent it for planning motion actions
that would somewhat disturb the movements of other robots.

Another example is the concept of 'organizational rules' introduced in the
latest version of the Gaia methodology [19]. There, in the analysis phase of a
MAS, the modeling of the internal activity of each agent in a MAS (including
the goals and tasks of each agent) has to be coupled with an explicitly modeling
of the external rules that the system as a whole has to ensure. Clearly, such
'organizational rules' have to be somewhat enacted in the subsequent agent
design by limiting the autonomy of those agent that would otherwise be at risk
of breaking the organizational rules.

4 Conclusions and Future Works

The number of di�erent issues that a designer is forced to face in the develop-
ment of a MAS may require adopting a multi-perspective approach to system
design. In particular, among a number of perspectives that can be conceived,
a speci�c perspective focusing the issue of agent autonomy may be required to
e�ectively tackle the peculiar characteristics of agents and of their being au-
tonomous entities interacting in a complex world.

Having sketched the key characteristics of an autonomy perspective for MAS
system design, as we have done in this paper, is only a �rst step. Further work will
be required to make such a perspective applicable to a variety of current agent-
oriented methodologies, such as PASSI [6], GAIA [17, 19], TROPOS [4]or MASE
[7]. In addition, it will be important to verify on real-world applications the
extent of applicability of the autonomy perspective and its possible limitations.

References

1. L. Bass, P. Clements, and R. Kazman. Software Architectures in Practice (2nd
Edition). Addison Wesley, Reading (MA), 2003.

2. C. Bernon, M.P. Gleizes, S. Peyruqueou, and G. Picard. Adelfe, a methodology
for adaptive multi-agent systems engineering. In Proceedings of the Third Interna-
tional Workshop Engineering Societies in the Agents World (ESAW-2002), Madrid,
Spain, September 2002.

3. G. Booch. Object-oriented Analysis and Design (second edition). Addison Wesley,
Reading (MA), 1994.

4. J. Castro, M. Kolp, and J. Mylopoulos. Towards requirements-driven information
systems engineering: The tropos project. In To appear in Information Systems,
Elsevier, Amsterdam, The Netherlands, 2002.



The Autonomy Perspective 11

5. M. Cossentino. Di�erent perspectives in designing multi-agent systems. In LNCS,
editor, Proceedings of the AGES '02 workshop at NODe02, Erfurt, Germany, Oc-
tober 2002.

6. M. Cossentino and C. Potts. A case tool supported methodology for the design of
multi-agent systems. Las Vegas (NV), USA, June 24-27 2002. The 2002 Interna-
tional Conference on Software Engineering Research and Practice, SERP'02.

7. S. A. DeLoach, M. F. Wood, and C. H. Sparkman. Multiagent systems engineer-
ing. International Journal on Software Engineering and Knowledge Engineering,
11(3):231{258.

8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison
Wesley, 1995.

9. C. Iglesias, M. Garijo, J. C. Gonzales, and J.R. Velasco. Analysis and design of
multi-agent systems using mas-commonkads. In Intelligent Agents IV: Agent The-
ories, Architectures, and Languages, volume 1365, pages 313{326. Springer Verlag,
1998.

10. N. R. Jennings. An agent-based approach for building complex software systems.
Communications of the ACM, 44(4):35{41, April 2001.

11. N.R. Jennings. On agent-based software engineering. Arti�cial Intelligence, 117,
2000.

12. J. Kephart. Software agents and the route to the information economy. Proceedings
of the National Academy of Science, 99(3):7207{7213, May 2002.

13. Y. Moses and M. Tennenholtz. Arti�cial social systems. Computers and Arti�cial
Intelligence, 14(3):533{562, 1995.

14. A. Newell. The knowledge level. Arti�cial Intelligence, 18, 1982.
15. H.V.D. Parunak. Go to the ant: Engineering principles from natural agent systems.

Annals of Operations Research, 75:69{101, 1997.
16. Y. Shoham and M. Tennenholtz. Social laws for arti�cial agent societies: O�-line

design. Arti�cial Intelligence, 73, 1995.
17. M. Wooldridge, N. R. Jennings, and D. Kinny. The gaia methodology for agent-

oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems, 3(3):285{315, 2000.

18. M.J. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2):115{152, 1995.

19. F. Zambonelli, N. R. Jennings, and M.J. Wooldridge. Developing multiagent sys-
tems: The Gaia methodology. ACM Transactions on Software Engineering and
Methodology, 12(3):417{470, July 2003.

20. F. Zambonelli, N.R. Jennings, and M.J. Wooldridge. Organizational abstractions
for the analysis and design of multi-agent systems. In Proceedings of the 1st In-
ternational Workshop on Agent-Oriented Software Engineering, volume 1957 of
LNCS, pages 253{252. Springer Verlag, 2001.


