
A Semantic Description For Agent
Design Patterns

L. Sabatucci1, M. Cossentino2, and S. Gaglio1

1 Dip. Ingegneria Informatica, University of Palermo, Italy,
sabatucci@csai.unipa.it, gaglio@unipa.it,

2 ICAR-CNR, Consiglio Nazionale delle Ricerche, Palermo, Italy,
cossentino@pa.icar.cnr.it,

Abstract. In last years, multi-agent systems (MAS) have achieved a
remarkable success and diffusion in employment for distributed and com-
plex applications. A fundamental contribution has come by the adoption
of reuse techniques and tools providing a strong support during the de-
sign phase. Even though design patterns have been widely accepted by
industrial and academic organizations as a proper technique for reuse,
their definition still imposes deep concerns on contemporary software en-
gineers. Design patterns are largely sensitive to different contexts where
they are employed, especially on how they are blended with each other.
This work introduces a design language for describing fine-grained pat-
tern formalizations and compositions based on structural semantics. This
formalization as been used in order to describe a couple of design patterns
for agents and their composition.

Key words: Design Patterns, Multi-Agent Systems, Agent Oriented
Software Engineering

1 Introduction

In last decade design patterns have been widely accepted by industrial and aca-
demic organizations, even if their definition and reuse still impose deep concerns
on contemporary software engineers.

The pivotal difficulty stems from the fact that reuse of design patterns in
realistic software systems is often a result of blending multiple patterns together
rather than instantiating them in an isolated manner. The composition of design
patterns can results in an intricate twine of pattern participants and the target
application [14]. Pattern blending may entail significant morphs of the origi-
nal pattern solutions through the merge of structural and behavioral elements.
Also, the lack of explicit documentation for recurring compound patterns leads
to design rationale being irrecoverable [4]. Patterns should be systematically
documented so that they can be unambiguously instantiated, traced and reused
within and across software projects [11, 5].

In our research we deal with design process of agent societies; this activ-
ity involves a set of implications such as capturing the ontology of the domain,



2 L. Sabatucci, M. Cossentino, and S. Gaglio

representing agent interactions (social aspects), and modelling intelligent be-
haviours. In the following, we are going to pursuit a specific goal: lowering the
time and costs of developing a MAS application without forgetting the neces-
sary attention for quality of the resulting software and documentation. We have
always considered design patterns for agents as a fundamental contribution to
the agent-oriented software engineering. In past works we have defined some
reuse techniques and tools based on design patterns [9, 17]; this approach has
been integrated with the PASSI design process [7], a step-by-step requirements-
to-code methodology for developing multi-agent software. Design patterns have
been conceived as a crosscutting design activity occurring during almost all the
phases of PASSI.

Now we concentrate on another aspect of pattern reuse. This paper deals
with formalization of design patterns for agents, by using a semantic approach.
Patterns are represented with semantic networks that can be modeled and trans-
formed by using a set of operators. This formalization is perfectly suitable to be
integrated in a tool that support the designer during the development process
of a multi-agent system.

Section 2 presents motivations for pattern formalization and composition. A
design approach based on the semantic description of patterns is proposed in
Section 3 and a graphic notation, the Pattern Semantic Description is discussed.
Section 4 introduces an expressive yet simple set of operators for unifying, con-
joining, concealing and externalizing pattern elements, illustrating a composition
example. Section 5 reports an analysis on the reusability and expressiveness of
our language. Finally, some concluding remarks are reported in Section 6.

2 Motivation

This section presents an analysis of heterogeneous forms of pattern blending,
which are commonly found in real multi-agent system development. This analysis
provides some motivations for the introduction of our language.

The Digital Business Ecosystem [10] consists of a research project supported
by the European Commission’s 6th Framework Programme IST Thematic Pri-
ority. In particular, the Sicilian DBE project supports Sicilian micro and middle
size companies in order they can access to advanced information and communica-
tion technologies to grow their business. We have realized a multi-agent system,
the Sicilian Digital Business Ecosystem Simulator (SDBE Sim), that simulates
the business evolution of companies, in which several design patterns for agents
have been used and combined to achieve system requirements of scalability and
adaptation. Figure 1 shows two design slices in which two patterns have been
used and combined. In Figure 1.a the internal architecture of the Company agent
is shown. This agent simulate the core business of a company. The agent pro-
vides the user a GUI where simulation data can be edited. Other agents, for
example the ISESearcher agent, may request company’s business data by using a
FIPA Request communication protocol [12]. According to agent autonomy fea-
ture the Company agent may decide whether to give back its data or to refuse.



A Semantic Description For Agent Design Patterns 3

ISESearcher.
GetCompanyData

Listener

Decision

SendAgree

SendRefuse

BusinessDataListener

[refuse]

[accept]

result

[failure]

[success]

Send
Inform

Send
Failure

Interacting Agents Company Agent

Update 
Business 

Data

Get
GUI Data

(a)

+ action()
- DF_ID : AID

DFInitiator + onStart()
+ searchDF()
+ registerDF()
+ unregisterDF()
+ takeDecision()

- service_descr : Action
CompanyAgent

+ action()
+ handleAgree()
+ handleRefuse()
+ handleInform()
+ handleFailure()

- receiver : AID
BusinessDataListener

+ action()
- resource

GetGUIData

+ action()
 

Update
BusinessData

 
 - getData : AgentAction

RequestMessage

 
- motivation : Predicate

FailureMessage

 
 

ResultMessage

(b)

 GenericAgent (1)

 Request (2)

(1,2)

(2)

(1)

(1)

(2)

Fig. 1. Two PASSI design slices of the SDBE case study. (a) Task Specification for
the Company agent. A number of agent’s tasks and interacting agents were omitted
for simplification reasons. (b) A Single Agent Structure Description diagram that il-
lustrates the implementing class structure of the same agent. This diagram has been
decorated with references to patterns that have been employed.

If the agent accepts the request, it must read user’s data from the GUI and
eventually update its core business. After this update, the agent may reply to
the request message. Figure 1.b reports the Jade [2] implementing structure for
the Company agent. This class diagram contains a class for the agent, and an-
other class for each agent’s task. In addition three message classes, are shown,
that are used during conversations. This class diagram is useful to illustrate the
employment of design patterns for implementing this agent. The GenericAgent
pattern as been used to give the Company agent the abilities to interact with the
system Directory Facilitator. This is fundamental for agents that want provide
services to the community. This pattern has introduced the searchDF, registerDF,
unregisterDF methods in the agent class, and a new DFInitiator task class. The
Request pattern has been used, in order to give the agent the ability to partici-
pate to communications by using the FIPA Request protocol [12]. This pattern
has introduced the service description attribute in the agent class that contains
a reference to the action to execute to provode the service. The registerDF is
modified in order to register the agent’s service and a new method takeDecision

is introduced to encapsulate the decision process in order to evaluate whether
accept or refuse incoming requests. Finally, the BusinessDataListener task class
and three message classes are introduced in the structure in order to handle
incoming communications.

The attachment of a number in the CompanyAgent class implies that the re-
spective method or attribute is part of the implementation of the corresponding



4 L. Sabatucci, M. Cossentino, and S. Gaglio

pattern. Each number represents a specific pattern and the aim of this represen-
tation is to illustrate how various pattern realizations affect internal members of
a single class. The result of the application of these two patterns, is a typical pat-
tern composition that occurs when implementing an agent that offers services to
a community. In the composition each pattern introduces specific agent abilities
and features, and some of these are influenced by more than one pattern at the
same time. This creates a synergy of pattern functionalities and responsibilities
that are merged together in a new pattern structure. The remaining part of this
pattern illustrates how pattern compositions may be formalized and employs in
the agent paradigm.

3 Semantic Description For Pattern Structures

Last years revealed the importance of semantic description of data, especially in
certain context, such as the web. The semantic descriptions are generally based
on the use of ontologies in order to structure informal description in hierarchical
relationships of concepts on which it is possible to operate logical reasoning [19].
The remaining sections describe a fine-grained design approach to support the
pattern solution definition that is based on a set of constituents that can be
combined in order to define the structure and the behavior of the solution. In
order to discuss the language we give some definitions:

Pattern Description Element (PDE). An atomic constituent of a pattern
that describes the structure or the behavior of the solution. They are: (i)
participants, (ii) collaborators, (iii) events and (iv) actions.

Language Element (LE) Element of the target programming language used
for implementing the pattern. Language Elements are expressed by using
elements of the meta-model. In our repository for agents, examples of LEs
are: agent, organization, communication, role and task.

Affected System Element (ASE) Element of the system that is influenced
by the pattern application. A typical example of ASE is a business class that
is assigned to a participant of the pattern. Its structure is modified because
it must be compliant with PDE constraints.

PSEs are the constituents of a pattern solution. The definition of pattern
solutions encompasses alternant levels of stability: some PDEs (Pattern Descrip-
tion Elements) are precisely described and do not require further details through
the pattern instantiation, whereas some others are only sketched and their con-
crete definition is delayed to the pattern instantiation phase. The structure and
behaviour of those PDEs depends on the application context and on the other
patterns to which they are going to be composed. This kind of PDE supports the
generalization and reuse of patterns in very distinct contexts where the nature
of the problem may be different.

Participant. Participant are placeholders for assigning responsibilities to ASEs.
This pattern constituent is similar to the classic ”role” element, introduced



A Semantic Description For Agent Design Patterns 5

in [13] and detailed in several pattern formalization approaches [16][15]. Par-
ticipant is a more general concept because roles can be played by classes only,
whereas every element of the MAS meta-model (for instance an Agent or a
Task, or even a Communication) may be a participant of the pattern. Re-
sponsibilities assigned to a participant will be taken by LEs that are assigned
to this participant.

Collaborator. A collaborator is a concrete element of the pattern, totally de-
fined in every its feature. It is used in order to introduce in the system an
element that generally mediates other pattern’s elements with a standard
behavior. Its behavior is standard, and except for special situations, does
not require a further specialization. A collaborator owns a type, which refers
to a LE (Language Element). Therefore, a collaborator may be an instance
of any element of the MAS Meta-Model.

Event. An event encapsulates an abstract circumstance that is the cause of trig-
gering a specific behavior, involving one or more pattern elements. Typically
the context that generates an even is external to the pattern. It is an non
deterministic condition (from the point of view of the pattern) generated by
the specific need of a participant. The event execution may be considered
as a service request operated by the participant in order to produced the
desired behavior.

Action. Together with events, actions have a fundamental role in the definition
of the behavior of a pattern. An action encapsulates what happens when an
event occurs. Actions must not be considered as merely methods. In the agent
paradigm, actions may correspond to agent’s abilities or tasks depending by
implementing issues.

For problems of space, in this paper we mainly focus on the static structure
of the paper. Even if the formalization approach also supports the dynamic
description and composition this is only shortly discussed.

3.1 The Pattern Semantic Description Diagram

Semantic networks are often used as a form of knowledge representation. They
represent declarative graphic representations that are expressed with models of
interconnected nodes and arcs. Semantic networks generate machine-readable
dictionary that can be used either to represent knowledge or to support auto-
mated systems for reasoning about knowledge [18].

Several graphical notations exist for representing a semantic network. The
UML class diagram is often used in order to represent concepts and their relation-
ships. This diagram is perfectly suitable for our aims, but we have introduced the
two stereotypes participant and collaborator in order to immediately distinguish
participants and collaborators. Relationships are used to connect participants
and collaborators, thereby creating a semantic network.

The class diagram that uses these stereotypes to describe the semantic struc-
ture of a pattern is named Pattern Semantic Description (PSD) diagram. An ex-
ample of this diagram is shown in Figure 2, that illustrates the Request pattern.



6 L. Sabatucci, M. Cossentino, and S. Gaglio

In this figure we have introduced a graphic notation in order to reduce the space:
participants are shown by using ovals, whereas collaborators are shown by using
boxes. This description is designed to assert propositions about the structure of
pattern solutions (assertional networks [18]). Participants and collaborators are
the concepts of this network. In particular, collaborators are concepts whereas
participants are classes of concepts. Relationships express semantic connections
among these concepts. In a PSD relationships can not freely connect any kind
of concepts; they are precisely ruled by the MAS meta-model [1, 3, 8].

The information in a PSD is a set of conditions that should be contingently
true in order to apply the pattern in the system where the problem occurs. The
aim of PSD diagrams is twofold:

– they are human readable, so that designers can easily understand and apply
the rationale of each pattern solution;

– the use of a limited set of concepts and relationships allows the realization
of a parser for automatic interpretation of patterns, thus resolving syntactic
ambiguities.

3.2 An Example of Pattern for Agent

The pattern, we consider here, is the Request pattern, from our repository, briefly
introduced in Section 2. This pattern has been conceived for giving agents the
ability to initiate and participate to communications that are compliant to the
FIPA Request protocol.

This communication is useful in several circumstances. The delegation of a
task is a typical scenario useful to illustrate the aim of this pattern. It occurs
when an agent has to perform an action (for example, an interaction with a
physical resource) but it is not able to do it or it has not sufficient permissions.
So the agent can ask to another agent of performing that action (because of
agents autonomy, the involved agent can refuse or accept the request according
to its personal goals).

The analysis of the description of the protocol, reported below, has been the
core for the identification of the participants of this pattern (Figure 2)[M1]. The
elements that are included in the description of the protocol but are outside the
definition of the pattern are the two agent roles: initiator and participant. Any

Request
Communication

FIPARequest 
AIP

Request 
Message

Request 
Initiator 

Task

Request 
Listener 

Task

Agent 
Role Init

Agent 
Role Part

is conpliant to

generates

Success
Message

Failure
Message

generates

generates

initiates participates

owns owns

Action

refers to

refers to

Decision

owns
participant

collaborator

Fig. 2. Pattern Semantic Description diagram for the Request pattern



A Semantic Description For Agent Design Patterns 7

couple of agents may participate in this protocol by simply playing these two
roles. This is the reason for which we defined these two roles as participants
of the pattern: (i) Agent Role Init is responsible to begin the communication
and (ii) Agent Role Part is responsible to maintain a listener for the request
communication. Designer must specify the couple of agents to assign to these
participants. Other elements that can not be encapsulated in the pattern defi-
nition are: (i) the Action, that is requested by the initiator to the participant
by using the communication and (ii) the Decision task used to encapsulate the
decision process to activate when the agent receives the request.

Figure 2 also shows the collaborators of this patterns. The Request Com-
munication is the description of the kind of communication among initiator and
participant. This must be compliant to the FIPA Request protocol [12], whose
description is given in the FIPARequest AIP collaborator. Several Messages are
included for information exchange. In addition, two tasks are defined as collabo-
rators: (i) the Request Initiator Task is responsible to send the request message
and wait for a reply, and (ii) the Request Participant Task is responsible to wait
a request message and to reply with a result.

4 Operators for Pattern Blending

This section presents the operators for pattern composition based on the fine-
grained pattern elements. These operators can be used in order to modify the
structure of the pattern solution that is represented by a semantic graph in PSD
diagrams. The following list briefly describes all the static composition operators.
Their concrete usage will be later discusses in a detailed example.

Unification The unification is used to express overlapping compositions. The
rationale behind this operator is to operate fusions of couples of static ele-
ments with a consequent merging of responsibilities. The result is to overlap
the structure of two patterns using the two elements as pivots for the oper-
ation. This produces strong changes in the resulting pattern structure.

Conjunction The conjunction operates a conservative pattern blending. The
rationale behind this operator is to create a synergy among the responsibil-
ities of two patterns, by maintaining them separated. The two elements are
linked by a new element, introduced in the structure. Only marginal changes
are visible in the resulting structure of the involved patterns, promoting the
traceability of the involved elements.

Concealing This unary operator has been conceived to modify the nature of a
participant into a collaborator. The responsibilities assigned to a participant
are imposed to the elements of the system that participates to the pattern.
Concealing a participant means that all its responsibilities are delegated to
a collaborator. They are no more visible outside the pattern. The visible
effects of this operation are i) to allow mixed composition (unification and
conjunction) among participants and collaborators ii) to internally set some
responsibilities in order to assign a standard behavior and iii) to reduce the
complexity of the pattern.



8 L. Sabatucci, M. Cossentino, and S. Gaglio

DF 
Communication

FIPARequest 
AIP

register
Service

Request 
Listener 

Task

DF handler

is conpliant to

contains

search
Service

contains

initiates

owns

Action

refers to

refers to

Generic

registerDF unregisterDFsearchDF

ownsownsowns

plays

Service

owns

is

participant

collaborator

Fig. 3. The pattern semantic description for the GenericAgent pattern.

Externalization This unary operator has been conceived to modify the nature
of a collaborator into a participant. The rational behind this operator is
to delay the assignment of these responsibilities till the instantiation phase,
exactly like for participants. The visible effects of this operation are i) to
allow mixed composition (unification and conjunction) among participants
and collaborators and ii) to change the standard behavior of a pattern, by
delegating some aspects of its structure to elements of the system.

In order to discuss the usage of these operators in the static context, a compo-
sition of the GenericAgent pattern with the Request pattern is illustrated. The
result of the composition is a new pattern, the SequentialShareResource, that
solves the classical problem of providing a service to the remaining part of the
society. A service is an action performed by an agent when requested by another
agent. Service provisioning is subject to certain conditions (pre-condition, post-
condition, grounding) to be verified. In particular this pattern provides the other
agents with an access to a physical resource that the agent may manipulate; the
specific characteristic of this access is that resource parameters are read/affected
each time an access request occurs. A typical example of service that depends on
a resource has been given in Section 2. The Company agent provides information
on its business, but this depends on the user’s data introduced by a GUI. The
solution proposed by this pattern is to sequentially execute three activities: (i)
the verification of the conditions under which the service may be provided, (ii)

Server conjoins Generic with AgentRolePart

Generic

registerDF

unregisterDF

searchDF

owns

ownsowns

Request
Communication

Request 
Listener 

Task

Agent 
Role Part

participates

owns

Decision

owns
Conjunction

Server

registerDF

unregisterDF

searchDF

owns

ownsowns

Request
Communication

Request 
Listener 

Task

Agent 
Role Part

participates

owns

Decision

owns

plays

Fig. 4. An example of conjunction among participants for the SequentialShareResource
pattern.



A Semantic Description For Agent Design Patterns 9

ServerRole conceals AgentRolePart

Concealing

Server

registerDFsearchDF

ownsowns

Request
Communication

Agent 
Role Part

participates

plays
Server

registerDFsearchDF

ownsowns

Request
Communication

Server Role

participates

plays

Fig. 5. An example of concealing of participant for the SequentialShareResource pat-
tern.

the update of the status of the physical resource and (iii) the execution of the
service-action.

The first component of this blend is the GenericAgent pattern, that has been
conceived as a root for giving an agent the ability of interacting with the yellow
pages service of the platform. The agent resulting from this pattern is able to
register/unregister services to/from the yellow pages and to search them in.

The second component of the blend is the Request pattern, already discussed
in Section 3.2. This pattern is used to implement a FIPA Request communica-
tion. By using this pattern an agent can request to another agent to perform
some actions.

The composition process details (for the static part) are described in the
following list:

– The first operation in this composition is a conjunction among the Client
participant of the GenericAgent pattern and the AgentPartRole participant
from the Request pattern. The rationale of this operation is to assign an
agent, the Server, to play the AgentPartRole. Figure 4 shows the result of
this operation: after the conjunction the Server participant plays the Agent
Role Part.

– After the conjunction the designer can delegates a concrete agent of the
system to be the Server of this new pattern (since it is a participant). This
agent will play the AgentPartRole in the request communication. Therefore
this role can be converted to a concrete element of this pattern: designer is

ServiceAction unifies GenericAgent.Action with Request.Action

Request
Communication

Request 
Message

is conpliant to

generates
Action

refers to

DF 
Communication

FIPARequest 
AIP

register
Service

is conpliant to

contains
Action

refers to

Server Serviceowns

is

Unification

Request
Communication

Request 
Message

is conpliant to

generates

refers to

DF 
Communication

FIPARequest 
AIP

register
Service

is conpliant to

contains

Service
Action

refers to

Server

Service
owns

is

Fig. 6. An example of unification among participants for the SequentialShareResource
pattern.



10 L. Sabatucci, M. Cossentino, and S. Gaglio

not required to specialize this element. For this reason the AgentPartRole
is concealed by the Server Role, a new collaborator of the pattern. This
operation is shown in Figure 5.

– The third operation is an unification between the Action from GenericAgent
with the Action from the Request pattern. The meaning of this operation is
to specify that the action registered to the yellow pages by the Server agent
is the same action that the agent provide to the community. This unification
is shown in Figure 6.

– Finally, we also introduced a new participant in the structure, the UpdateRe-
source pattern, that is a task responsible for accessing the resource and up-
date its state. Since the access to the resource is variable, depending by the
nature of the resource, this element is defined as participant. Figure 7 shows
the resulting structure of the new pattern after all these operations.

Request
Communication

FIPARequest 
AIPRequest 

Initiator 
Task

Request 
Listener 

Task

Client 
Role

Server Role

is conpliant to
generates

generates

generates

initiates

participates

owns

owns

Update 
Resource

owns

Decision

owns

Serverplays

Request 
Message

Success
Message

Failure
Message

refers to

refers to

Service 
Action

Service

owns

is

participant

collaborator

Fig. 7. The pattern semantic description for the SequentialShareResource pattern.

5 Discussion

This section discusses the pattern reuse process, and some results obtained by the
application of the pattern composition technique to three different case studies
are reported.
The reuse process encompasses four phases for introducing patterns in a system:

1. Meta-model definition or importing. This phase defines the domain where
patterns can be employed. The Meta-Model defines a set of rules to be con-
sidered during next phases. Concepts and relationships in a PSD must be
compliant to the Meta-Model. The definition of a meta-model is a complex
activity but several reusable meta-models already exist.

2. Pattern structure and behaviour definition. In this phase the pattern is mod-
elled by using a fine-grained description based on PDEs. Pattern modellers
define the core semantics of patterns, in order to formalize their descrip-
tions. This phase of the reuse process is supported by the Pattern Semantic
Description diagram for representing the structure of the proposed solution.



A Semantic Description For Agent Design Patterns 11

GenericAgentRequest

Publish 
Subscribe

ContractNet

Sequential
ShareResource

Parallel
ShareResource

Market

Explorer

Planner

ThreeLevels
Knowledge

Holonic Society

Query

Supply 
Chain

is composed by

Monitor

Fig. 8. Composition relationships among patterns in our repository.

3. Pattern composition. Patterns can be also defined by using pattern blending
that allows for creating pattern synergies to solve more specific problems.
This phase is supported by four operators: unification, conjunction, exter-
nalization and concealing.

4. Pattern instantiation. This is the final phase of the pattern lifecycle, where
designers are involved in applying patterns to under development systems.

Discussion in this section is focussed on the pattern instantiation phase. The
semantic approach for describing patterns, as introduced in Section 3, can be
manually employed to introduce solutions in systems, or can be automatically
interpreted by a tool that may generate the desired solution. Subsection 5.1 illus-
trates some statistics obtained by manual reuse of patterns from our repository.
Finally, Subsection 5.2 introduces a tool, we are developing, that obtains benefits
from the semantic approach.

5.1 Reusability of Pattern Blends

Our repository is by now composed of 22 patterns for agents. We have already
formalized 14 of these patterns in order to evaluate our language. Patterns we
have represented and composed with our approach are shown in Figure 8. Only 4
of these are atomic patterns: (i) GenericAgent, (ii) Request, (iii) Query and (iv)
ContractNet. The remaining 10 patterns in Figure 8 are obtained by composition.
This situation is represented by relationships ”is composed by”.

All patterns in this repository have been manually reused in three different
case studies reported in Table 1. We have chosen these applications because
they are from heterogeneous application domains: (i) SBE Sim is a software
that simulates business evolution of Sicilian micro and mid-size companies, (ii)
CiceRobot [6] is a robotic application able to give guided tours of the Agrigento’s
Regional Archaeological Museum and (iii) Iron Manufacturer is an application
for supporting a B2B scenario involving an iron manufacturing company. The



12 L. Sabatucci, M. Cossentino, and S. Gaglio

number of different application contexts, proves the feasibility of our patterns
and their compositions.

Table 1 reports that 8 patterns have been reused in at least two case studies.
The most used patterns are theGenericAgent, the Request, and the Query that
are generally easily to combine with other ones.

Table 1. Statistics of pattern usage in our case studies

SDBE Sim CiceRobot
Iron 

Manufacturer
TOT

ContractNet

Explorer

GenericAgent

Holonic Organization

Market

Monitor

Parallel ShareResource

Planner

Publish-Subscribe

Query

Request

Sequential ShareResource

Supply Chain

ThreeLevels Knowledge

TOT

1 1 2

1 1

4 5 5 14

1 1 2

1 1

1 1 2

1 1

3 3

1 1 2

9 4 7 20

9 7 21 37

3 1 2 6

1 1

1 1

30 23 40

5.2 A Tool for Pattern Reuse

In previous section we proved that

– a framework is provided for representing declarative knowledge on design
pattern, that is based on a semantic network,

– the syntax and semantics of the network are clearly defined

Under these conditions, pragmatics of the network are defined by several rules
which are problem-independent. This allows us to formulate control algorithms
to handle the described structures. In particular we are developing a tool with the
following requirements: (i) complete control of the entire pattern reuse process,
from meta-model definition to pattern definition, composition and instantiation;
(ii) verification of pattern syntax and semantics; (iii) management of pattern
applicability pre and post conditions; finally (iv) automatic generation of code
and documentation for the multi-agent system generated by using pattern com-
position.

The latter requirement of this tool has been already completed, and discussed
in [17]. This component of the tool uses an aspect oriented approach for weaving
together different contribution to the final workproduct. These contributions are
generated separately by aspect weavers who are specialized to realize code for
a specific aspect of the system. Typical aspect weavers are: (i) the architecture
weaver who is responsible to define the basic structure of an agent, its capabil-
ities and the its basic life-cycle activities; (ii) the role weaver is responsible to
manage complex agent activities, both internal processes than social behavior;



A Semantic Description For Agent Design Patterns 13

(iii) the communication weaver is responsible to give agents the ability to inter-
act by using communications; (iv) the protocol weaver generates the structure
for managing agent interaction protocols; and finally (v) the ontology weaver
is responsible to generate agent knowledge structure. All these aspect weavers
must collaborate in order to generate a unique source code.

The other requirements, we are facing for the development of the tool, are
related to the pattern formalization problem. A semantic definition of patterns
is easily representable in a formal language. We already defined this language,
that we named POLaR (Pattern Ontology Language for Reuse) but it was not
discussed in this paper for limit of space. Anyway the production of the parser
for the POLaR language is under construction. A portion of the BNF code used
to represent the syntax of this language is shown in the following:

<Pattern_Descr> ::= <Pattern_Header> "{" <Pattern_Definition> "}"
<Pattern_Definition> ::= { < Element_Clause > }
<Element_Clause> ::= <Participant>

| <Collaborator>
| <Event>
| <Action>

<Collaborator> ::= collaborator <Identifier> is <Element_Descr> ";"
<Element_Descr> ::= <Element>

| <Operator>
<Operator> ::= <Unification>

| <Conjunction>
| <Promotion>
| <Externalization>

6 Conclusion

This paper presented an innovative formalization technique for describing and
composing design patterns for agents. The technique is based on a semantic
analysis of the pattern solution and introduces a graphic notation to represent
pattern’s concepts and their relationships. The proposed formalization has been
conceived for dealing with composition, presenting a set of operators to manage
different pattern blending styles. The peculiarity of the approach is the fine
grained level chosen for fronting with the composition, which makes it possible
to combine pattern elements in the resulting composite pattern. We have applied
our approach in three agent oriented applications, thus obtaining encouraging
results in terms of reusability and expressiveness. In addition we introduce a
tool we are developing in order to automatically compose and instantiate design
patterns and to automatically generate implementing code and documentation.



14 L. Sabatucci, M. Cossentino, and S. Gaglio

References

1. C. Atkinson and T. Kiihne. The essence of multilevel metamodeling. Uml 2001:
The Unified Modeling Language: Modeling Languages, Concepts, and Tools: 4th
International Conference, Toronto, Canada, October 1-5, 2001: Proceedings, 2001.

2. F. Bellifemine, A. Poggi, and G. Rimassa. Jade - a fipa2000 compliant agent de-
velopment environment. In Agents Fifth International Conference on Autonomous
Agents (Agents 2001), Montreal, Canada, 2001.

3. C. Bernon, M. Cossentino, M. Gleizes, and P. Turci. A study of some multi-agent
meta-models. Agent-Oriented Software Engineering V: 5th International . . . , Jan
2005.

4. J. Bosch. Specifying frameworks and design patterns as architectural fragments.
In Proceedings of TOOLS ’98, page 268, Washington, DC, USA, 1998. IEEE Com-
puter Society.

5. F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and P. S. Yu. Automatic code
generation from design patterns. IBM Syst. J., 35(2):151–171, 1996.

6. A. Chella, M. Liotta, and I. Macaluso. CiceRobot: a cognitive robot for interactive
museum tours. Industrial Robot: An International Journal, 34(6):503–511, 2007.

7. M. Cossentino. From requirements to code with the PASSI methodology. In Agent
Oriented Methodologies, chapter IV, pages 79–106. Idea Group Publishing, Hershey,
PA, USA, June 2005.

8. M. Cossentino, S. Gaglio, L. Sabatucci, and V. Seidita. The passi and agile
passi mas meta-models compared with a unifying proposal. In In proc. of the
CEEMAS’05 Conference, pages 183–192, Budapest, Hungary, Sept. 2005.

9. M. Cossentino, L. Sabatucci, and A. Chella. Patterns reuse in the PASSI method-
ology. In ESAW, pages 294–310, 2003.

10. Digital Business Ecosystem. http://www.digital-ecosystem.org. onsite.
11. A. H. Eden, A. Yehudai, and J. Gil. Precise specification and automatic application

of design patterns. In Proceedings of ASE ’97, page 143, Washington, DC, USA,
1997. IEEE Computer Society.

12. Foundation for Intelligent Physical Agents. FIPA Interaction Protocol Library
Specification, 2000.

13. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
od Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley Publishing Company, New York, NY, 1995.

14. I. Hammouda and K. Koskimies. An approach for structural pattern composition.
In Proceedings of SC 2007, Braga, Portugal, March 2007.

15. E. Kendall. Role modeling for agent system analysis, design, and implementation.
In IEEE Parallel and Distributed Technology, volume 8, pages 34 – 41, IEEE, Apr-
Jun 2000. IEEE Computer Society.

16. D. Riehle. Describing and composing patterns using role diagrams. In K.-U. Mätzel
and H.-P. Frei, editors, 1996 Ubilab Conference, pages 137–152, Zürich, Germany,
June 1996.

17. L. Sabatucci and S. Gaglio. Separation of concerns and role implementation in the
passi design process. In 5th International Conference on Industrial Informatics
(INDIN 07), 2007.

18. S. Shapiro. Encyclopedia of Artificial Intelligence. John Wiley & Sons, Inc. New
York, NY, USA, 1992.

19. E. Sirin and J. Hendler. Semi-automatic Composition of Web Services using Se-
mantic Descriptions. WSMAI 2003, 2003.


