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Abstract. Software agents and multi-agents systems (MAS from now
on) are recognized as both abstractions and effective technologies for
modelling and building complex distributed applications. However, they
are still difficult to engineer. The reason is that when massive number
of autonomous components interact it is very difficult to predict that
the emergent organizational structure fits the system goals or that the
desired functionalities will be fulfilled. Verification approaches try to eval-
uate whether or not a product, service, or system complies with a spec-
ification. However verification approaches are limited by the state-space
of the system under study. This paper proposes an approach based upon
an organizational framework and specifically the capacity concept which
enables to abstract a role know-how and to reduce the state space of
the system under study. A formal framework based on multi-formalisms
language and the specification approach are presented and illustrated
through the specification of a part of the contract net protocol.

Key words: Agent Oriented Software Engineering, Verification, Ab-
straction

1 Introduction

Software agents and multi-agents systems (MAS from now on) are recognized as
both abstractions and effective technologies for modelling and building complex
distributed applications. However, they are still difficult to engineer. The rea-
son is that when massive number of autonomous components interact it is very
difficult to predict that the emergent organizational structure fits the system
goals or that the desired functionalities will be fulfilled. Verification approaches
try to to evaluate whether or not a product, service, or system complies with a
specification. However verification approaches are limited by the statespace of
the system under study. In order to tackle this problem and to verify properties
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for large systems such as MAS there are several techniques. One of these tech-
niques is verification by abstraction. It consists in finding an abstraction relation
and an abstract system that simulates the concrete one and that is amenable to
algorithmic verification [3, 16].
The goal of this paper is to present a verification by abstraction approach dedi-
cated to MAS and specifically organizational MAS and Holonic MAS (HMAS).
This approach is based upon the abstraction of capacities of roles played by
agents within organizations. Organizational approaches are now common within
the MAS domain [11, 20, 2, 4] and propose organizational concepts for MAS and
HMAS modelling. The framework presented in this paper, namely CRIO, is
based upon four main concepts : Capacity, Role, Interaction and Organization.
Agents play roles within organizations and interact between themselves. In or-
der to be played by an agent, a role may require some capacities. A capacity
is an abstraction of a know-how or a service. It is a very useful concept during
the analysis and design of HMAS [18]. The verification by abstraction approach
presented here is based upon this concept. Each capacity abstracts a part of role
behaviours and separate it from it current implementation.
Each concept of the CRIO framework is specified using a formal language namely
OZS [13]. This language composes two formalisms, Object-Z [10] and statecharts
[14]. The formal semantics defined for this notation allows the verification of
properties by using dedicated software environment such as SAL [7].
This paper is organized as follows, section 2 introduces OZS notation. Section
3 presents the CRIO framework, section 4 illustrates the framework and the
abstraction approach using the contract net protocol. Eventually, section 5 con-
cludes.

2 Background

Many specification formalisms can be used to specify entire system but few, if
any, are particularly suited to model all aspects of such systems. For large or
complex systems, like MAS, the specification may use more than one formalism
or extend existing formalism.
Our choice is to use Object-Z to specify the transformational aspects and stat-
echarts to specify the reactive aspects. Object-Z extends Z [17] with object-
oriented specification support. The basic construct is the class which encapsu-
lates state schema and operation schemas which may affect its variables.
Statecharts extend finite state automata with constructs for specifying paral-
lelism, nested states and broadcast communication for events. Both language
have constructs which enable refinement of specification. Moreover, statecharts
have an operational semantic which allows the execution of a specification.
We introduce a multi-formalisms notation that consists in integrating statecharts
in Object-Z classes. The class describes the attributes and operations of the ob-
jects. This description is based upon set theory and first order predicates logic.
The statechart describes the possible states of the object and events which may
change these states. A statechart included in an Object-Z class can use attributes
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and operations of the class. The sharing mechanism used is based on name iden-
tity. Moreover, we introduce basic types [Event ,Action,Attribute]. Event is the
set of events which trigger transitions in statecharts. Action is the set of stat-
echarts actions and Object-Z classes operations. Attribute is the set of objects
attributes.
The LoadLock class illustrates the integration of the two formalisms. It specifies
a LoadLock composed of two doors which states evolve concurrently. Parallelism
between the two doors is expressed by the dashed line between DOOR1 and
DOOR2. The first door reacts to activate1 and deactivate1 events. When some-
one enter the LoadLock he first activate the first door enter the LoadLock and
deactivate the first door. The transition triggered by deactivate1 event execute
the inLL operation which sets the someoneInLL boolean to true. Someone which
is between the first and the second door can activate the second door so as to
open it.

LoadLock

someoneInLL : B

INIT

¬ someoneInLL

inLL
∆someoneInLL

someoneInLL′

outLL
∆someoneInLL

¬ someoneInLL′

behavior

ClosedOpened

DOOR2

ClosedOpened

DOOR1
deactivate1/inLL

activate1

deactivate2/outLL

activate2[someoneInLL]

The notation for attribute modification consists of the modified attributes
which belongs to the ∆-list. In any operation sub-schema, attributes before their
modification are noted by their names and attributes after the operation are
suffixed by ’.
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The result of the composition of Object-Z and statecharts seems particularly
suited in order to specify MAS. Indeed, each formalism has constructs which
enable complex structure specification. Moreover, aspects such as reactivity and
concurrency can be easily dealt with.

3 CRIO

The CRIO metamodel presented in figure 1 is the basis of the framework we
present in this paper. A more complete description of the metamodel related
to a MAS methodology is given in [6]. The metamodel introduces two levels of
abstraction.
The abstract level is concerned with the analysis of a problem in organizational
terms. In order to describe the analysis the concepts chosen are role, interac-
tion, organization and capacity. The adopted definition of role comes from [9]:
”Roles identify the activities and services necessary to achieve social objectives
and enable to abstract from the specific individuals that will eventually perform
them. From a society design perspective, roles provide the building blocks for
agent systems that can perform the role, and from the agent design perspective,
roles specify the expectations of the society with respect to the agent’s activity in
the society”. However, in order to obtain generic models of organizations, it is
required to define a role without making any assumptions on the agent which will
play this role. To deal with this issue the concept of capacity was defined [18]. A
capacity is a pure description of a know-how. A role may require that individ-
uals playing it have some specifics capacities to properly behave as defined. An
individual must know a way of realizing all required capacities to play a role.
Interactions are sequences of actions which consequences have influences over
the future behaviours of roles. These interactions abstract interactions between
agents and are described by the interaction concept of the CRIO metamodel.
The context of these interactions is given by an organization. An organization
is then a description of a set of roles and theirs interaction.
The concrete level describes the solution in terms of groups instantiating orga-
nizations. Entities belonging to groups, agents or holons, have capacity imple-
mentations required by the played roles. For each concept of this metamodel. A
formal description using the OZS notation is given. These specifications define a
framework that can be used to formally describe a MAS model. In this paper we
will not give the specifications of group and holon which are not necessary for
the example. The following types are defined and have to be refined : [Attribute],
[Event ] and [Action] these types define respectively the sets of attributes, stim-
ulus and actions of roles. The first concept specified is the role. The role class
defines an empty behavior schema. It is to be refined to specify the behavior
of the role. It will be specified by using a statechart. A role is also composed
of a set of attributes, a set of events it can react to and a set of actions. The
role is also defined by a set of capacities required by the role and the conditions
that have to be met in order to play and leave the role. The constraint states
that whatever stimulus (resp action) of the stimulus (resp actions) set it must
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Fig. 1. CRIO meta-model

be present on at least one transition of the statechart defining the role behavior.

Role

behavior

attributes : P Attribute
stimulus : P Event
actions : P Action
requiredCapacities : F Capacity
obtainConditions, leaveConditions : Condition

∀ s ∈ stimulus,∃ e ∈ behavior .ρ •
(∃ t ∈ e.transitions • t .label .event = s)

∀ e ∈ behavior .ρ •
(∀ t ∈ e.transitions • t .label .action ⊆ actions)

An interaction is specified by a couple of roles, orig and dest , which are respec-
tively the origin and the destination of the interaction. The roles orig and dest
interact by the way of operations op1 and op2. These operations are combined
by the ‖ operator which equates output of op1 and input of op2. In order to
extend interaction to take into account more than two roles or more complex
interactions involving plan exchange one has to inherit from Interaction.
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Interaction

orig , dest : Role
op1, op2 : Action

op1 ∈ orig .action
op2 ∈ dest .action

3(orig .op1‖dest .op2)

Organization

roles : P Role
interactions : P Interaction

∀ i∈ interactions•
(i .orig ∈ roles ∧ i .dest ∈ roles)

An organization is specified by a set of roles and their interactions. Interac-
tions happen between roles of the concerned organization. It is to say that for
each interaction of the interactions set the roles of the interaction must belong
to roles set of the organization. Moreover, each role must be part of at least one
interaction.
The capacity class specifies the concept of capacity. This concept is described by
a name, a set of attributes taken as input by the capacity and a set of outputs
produced by the capacity. The requires and ensures sets of constraints specifies
what must be true before the capacity can be called and after the capacity is
called. This property is expressed with the constraint that whenever the capac-
ity is called and the requires constraints are true then eventually the ensures
constraint will be true.

Capacity

name : String
inputs : F Attribute
outputs : F Attribute
requires : F Constraint
ensures : F Constraint

capacityCall(name) ∧ (
∧

r∈requires) ⇒ 3(
∧

e∈ensures e)

A capacity implementation is specified by the CapacityImpl class. This class
has an implements attributes that specifies which capacity it implements. The
behaviour schema specifies how the capacity is implemented.

CapacityImpl

implements : Capacity

behaviour

With this framework one can specify a MAS or HMAS solution using organi-
zational concepts. The next section describes a part of the contract net protocol
specified using this framework.



Title Suppressed Due to Excessive Length 7

4 Contract NET example

4.1 Specification

In this section the contract net protocol [19] is specified with the CRIO frame-
work. We adopt the FIPA description of the contract net protocol [12]. The
organization describing the contract net protocol is sketched in figure 2. This
organization is composed of two roles : initiator and participant. The initia-
tor is the manager who is interested in delegating a task. The participants are
the members of the network which can receive the call for proposal and make
propositions to the initiator.

*

Contract Net

Initiator Participant
1

Fig. 2. Contract Net organization

The Initiator class specifies the Initiator role. It inherits from the role class
of the CRIO framework and adds the following attributes : proposals which is
a set of Proposal, best which is the best proposal selected by the initiator and
criteria which is a set of functions which help to sort the different proposals.
The role requires a capacity which is named ChooseBestBid . The behavior of the
initiator role specified by the behavior schema consists of three states. The first
and by default state is idle. Whenever the taskToBeDistributed event occurs, it
means that initiator will delegate a task, the initiator sends a call for proposal
(cfp(t) action) for a specific task t and enters the waitingBids state. In this
state the initiator receives proposals and after a predefined timeout the initiator
select among the bidders and send the corresponding answers. It then enters the
waitingResult state waiting to receive a result from the chosen bidder. After the
result is sent or a timeout has occurred the initiator returns to idle state.
The criterion used by an Initiator to choose a proposal are specified by a set
of functions. Each function ranks with an integer a proposal as defined by the
Criterion type. The criteria set is a set of such functions. It specifies a multi-
criteria ranking for the proposals.

Criterion == f : Proposal → N
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Initiator
Role

proposals : F Proposal
best : Proposal
criteria : F Criterion

ChooseBestBid ∈ requiredCapacities

behaviour

result or timeout(wr)

idle waitingBids

waitingResults

taskToBeDistributed/cfp(t)

timeout(wb)/selectBidders;sendAnswers

selectBidders
best ′ = capacityCall(ChooseBestBid(proposals, criterion))

sendAnswers

The ChooseBestBid capacity inherits from the Capacity class. It inputs are a
set of proposals and a set of criterion. It produces as output a proposal, which is
the best according to the criteria, among the proposals in input. The proposals
input set must not be empty in order to select one. It is the constraint stated
in the requires set and the ensures set states that the best proposal is the best
according to the criteria set.

ChooseBestBid
Capacity

inputs = F Proposal , F Criterion
outputs = {best : Proposal}
requires : {inputs 6= ∅}
ensures : @bid : inputs•

∃ i ∈ [1..#criteria]•
criterion(i , bid) < criterion(i , best)
∧ ∀ j ∈ [1..#criteria] \ i • criteria(j , bid) = criteria(j , best)

The ChooseBestBidImpl class specifies a possible implementation of the ChooseBestBid
capacity. It inherits from CapacityImpl and has two attributes a proposal which
is the selected best proposal and bids which is a set of proposals. The behaviour
schema specifies that at first the best proposal is initialized by the first proposal
and after that each proposal is compared in sequence with the best found. If it is
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better than the current best according to the min operation it becomes the new
best and the capacity implementation iterates through the bids sequence. The
min operation returns the best proposal among two proposals. head and tail
operations return respectively the first and the rest of the proposals sequence.

ChooseBestBidImpl
CapacityImpl

best : Proposal
bids : F Proposal

implements = {ChooseBestBid}

behaviour

comparingBidsidle

[|bids|!=0]/best:=min(best,head(bids));bids:=tail(bids);

/best=head(bids);bids=tail(bids);

[|bids|=0]

min
prop1?, prop2?, res!Proposal

prop1? ≺ prop2? ⇒ res! = prop1?
prop2? - prop1? ⇒ res! = prop2?

head
sequence? : seqProposal
res! : Proposal

res! = sequence?(1)

tail
sequence?, res! : seqProposal

sequence? = head(sequence?) ∪ res!

4.2 Verification

The specification of the contract net example was given as input to the SAL
environment [7] which is a suite of model checkers and theorem provers. It was
compared with the same specification but without the capacity concept. It means
that the initiator role integrates the behaviour that choose the best proposal.
The SAL environment integrates a path finder which generates traces from the
semantics of the specification. The basic behaviour is to generate a ten steps trace
of the system. The table 1 sums up the time in seconds taken by the different
computations. The first line corresponds to the construction of the structure
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used by the path-finder and the second line is the generation of a ten steps
trace. One can see that, even on the simple example described in this paper, the
version with capacity is more efficient than the version without capacity. Indeed,
the version without abstraction is more than four times longer than the one with
capacity.

Version with abstraction Version without abstraction

Construction of the structure 0.15 0.63

Trace generation 1 0.23
Table 1. Execution time comparison

We were able to verify the following property for the ChooseBestBidImpl
class.

@bid : inputs•
∃ i ∈ [1..#criteria]•
criterion(i , bid) < criterion(i , best)
∧ ∀ j ∈ [1..#criteria] \ i • criteria(j , bid) = criteria(j , best)

This property corresponds to the ensures set of the ChooseBestBid capacity. In
order to verify this property we have used a k-induction scheme as described in
[8]. It means that we have to prove that the property holds for initial states and
is preserved under each transition. The SAL bounded model checker associated
with induction proved this property. The ChooseBestBidImpl capacity imple-
mentation verifies then the ChooseBestBid capacity.
Concerning the specification of the Initiator role with the ChooseBestBid ca-
pacity we have proven the following property using the symbolic model checker.

behavior .state = waitingBids ⇒ 3(behavior .state = idle)

We were then able to prove that the given specification satisfies the two proper-
ties that an Initiator always return to the idle state and the chosen proposal is
allways the best one.

5 Related works and Conclusion

In this paper we have presented a framework of organizational concepts with
a formal semantics which allow the use of abstraction during proofs. The ab-
straction is based on the capacity concept which abstracts a role know-how.
The description of the capacity enables the abstraction of this know-how from
the real implementations. The proofs of properties at the organization level are
then less complex. This approach enables one to tackle the limitation of formal
methods concerning the complexity of verification. These claims are illustrated
through the contract net protocol specification example.
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Formal methods have been widely used in the MAS field see [1] for a short
survey. Among these approaches many use modal logics to specify and make
proofs about MAS. Proofs using modal logics theories can be non trivial. In [15]
a compositional approach is used for the verification of MAS. Compositional
approaches are based on the following principle : if each component behaves cor-
rectly in isolation, then it behaves correctly in concert with other components.
One has thus to prove each component and then the composition relationship in
order to prove properties concerning the whole system. We have used an orga-
nizational framework which seems appropriate for MAS and HMAS modelling.
For the future we plan to build a software environment which will help the spec-
ifier in his tasks of building and verifying specifications. Moreover, we plan to
integrate this formal verification approach within the ASPECS methodological
process [5, 6] which enables the analysis and design of MAS and HMAS.
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