
A MAS metamodel-driven approach to process
composition

M. Cossentino1,2, S. Gaglio1,3, S. Galland2, N. Gaud2, V. Hilaire2, A.
Koukam2, and V. Seidita3

1 Istituto di Calcolo e Reti ad Alte Prestazioni, Consiglio Nazionale delle Ricerche,
Palermo, Italy

cossentino@pa.icar.cnr.it
2 Systems and Transport Laboratory (SeT) - Belfort, France

stephane.galland,nicolas.gaud,vincent.hilaire,abder.koukam@utbm.fr
3 DINFO - Università degli studi di Palermo, Palermo, Italy

gaglio,seidita@dinfo.unipa.it

Abstract. The construction of ad-hoc design processes is more and
more required today. In this paper we present our approach for the
construction of a new design process following the Situational Method
Engineering paradigm. We mainly focus of the selection and assembly
activities on the base of what we consider a key element in agent design
processes: the MAS metamodel and its elements.

1 Introduction

Multi-Agent systems metamodels (MMMs henceafter) and the composition of
new design process achieved greater attention in the last years in the agent com-
munity for different reasons. As regards MMMs it is evident that their study
enabled a deeper understanding of underlying design processes while, at the
same time, the growing importance of Model Driven Engineering approaches
required a great effort in the study and modelling of systems on the basis of
their metamodels. Besides, the need for a continuous evolution of design pro-
cesses in order to meet new requirements, support new developing platforms
and paradigms increased the effort spent on the study of techniques that could
ensure an affordable way for the production of the right new design process in
a specific situation and development context for solving a specific class of prob-
lems. In this field, Situational Method Engineering (SME) [1], provides means
for constructing ad-hoc Software Engineering Processes (SEP) following an ap-
proach based on the reuse of portions of existing design processes (often called
method fragments). Our work is mainly focused on the use of SME [2–4] for the
construction of customized multi-agent oriented design processes with the sig-
nificant difference that we use the MMM for defining the structure of the system
we will build by adopting the new SEP.

In this paper, we mainly focus on the importance of the definition of the
MMM in the selection of method fragments that will constitute the new SEP.



2 M. Cossentino et al.

This article introduces our approach to SME application and report an experi-
ment of creation of a new process (called ASPECS4) this is not a classical toy
problem but rather we are dealing with the construction of a large processes for
the design of agent-oriented systems. The scope of this process will be the de-
sign of dynamic hierarchical societies of agents; we aim at using the process and
the related implementation platform for realizing open, dynamic holonic systems
(Janus [5]]) and solving complex problems requiring a huge number of agents.
The MAS metamodel of this new process [5] is mainly composed by elements
coming from the PASSI [6] and CRIO [7] existing design processes and supports
Janus as an implementation platforms of holonic agents.

The paper is organized as follows: the next section gives a brief description of
the proposed approach. Section 3 lists the requirements from which we started for
developing the new process and quickly overview the resulting ASPECS design
process. Section 4 reports the experiment done. And finally some conclusion
statements are provided in section 5.

2 The Proposed Approach

Fig. 1. The proposed design process composition approach.

The proposed design process composition approach shown in Figure 1 is
organized in three main phases: process analysis, process design and process de-
ployment.
Process Analysis deals with requirements elicitation and analysis of the process
to be developed. It produces a set of elements mainly a portion of the MMM
affecting the Method Fragments Selection and Assembly activities. Finally in
the Process Deployment phase the new SEP is instantiated, used to solve a
problem and then evaluated. The results of the evaluation are useful for defining

4 ASPECS: Agent-oriented Software Process for Engineering Complex Systems.



Lecture Notes in Computer Science 3

new requirements for the next SEP (if any) or improving the designed one. It is
worth to note that we consider the process of defining a new design process as
an iterative and incremental one.
Process Requirements Analysis is the first activity a method designer undertakes
in his work. It has inputs coming from the type of problem to solve. The new pro-
cess has in fact to be tuned for a specific solution strategy to a class of problem,
and the development context that is a description of the available resources such
as human, tools, languages, available skills, and competencies that are available
in the SEP enactment group.
These inputs are used to define the process life cycle that establishes the struc-
ture the designer has to follow during method fragments assembly activity, the
system metamodel concepts and the other process elements (available stakehold-
ers, required activities or work products) used for selecting the method fragments
from the Method repository.
The metamodel contains all the concepts that can be used to design and describe
the system under study. It defines domain-specific concepts, solution concepts
and all the concepts that specifically address the characteristic of the particular
system a designer is developing, together with all of their relationships. Each
concept of the metamodel must be designed/defined at least in one fragment of
the process whereas it can be refined or cited in several other fragments. In this
way we can use the list of metamodel concepts for the method fragments selec-
tion from the repository [8][9]. For each activity, the designer firstly selects the
concepts of the metamodel to be designed (for instance scenarios or functional
requirements) and then he uses this information in order to retrieve the most
useful method fragments for the assembly activity. The method fragments are
extracted from existing design processes or created from scratch.
The method fragments assembly activity results in the new SEP. This activity
consists in putting together the selected method fragments following the struc-
ture of the identified process life cycle. This activity is still one of the most
important unsolved points in the SME field and some proposal have been done
in [10][11]. It is a very complex work where the method designer has to collate
all the elements gathered in the previous activities and to merge them using his
experience and skills.
During Process Deployment the system designer adopts the new process with
the help of a CASE tool for solving a specific problem. After that the designed
system is used and experimented, an evaluation activity occurs in order to mea-
sure and evaluate the new process and the gathered information can be used as
a new process requirement for a next iteration.
In the construction of the ASPECS methodology we applied the process that
has been described before with a specific study on the procedure adopted for
the definition of the MAS metamodel and the method fragments selection. We
regard this part of the work as one of the main scientific contributions of our
approach and therefore we are going to detail it. In this paper the main focus is
on the early construction of a core part of the MAS metamodel and then on its
use as a guide towards the selection and assembly of process fragments. The pro-



4 M. Cossentino et al.

cedure we defined (Figure 2) starts from the identification of the core part of the
MAS metamodel and is done by evaluating the contributions that could come
from existing design processes or development platforms (in our case they were
PASSI, CRIO, JANUS). In fact it is logical to expect that people already skilled
with the concepts related to some existing process or platform prefer to reuse
them rather than to build everything from scratch. Parts of those metamodels
have been reused in order to satisfy the new process requirements that will be
described in the experimental part of the paper (section 4), by now, just to ex-
emplify, it is sufficient to consider that we reused part of the PASSI metamodel
because we aimed at obtaining a FIPA-compliant communication structure. In
the following subsections we detail the most important steps of this process:
the new MAS metamodel construction and the new process design phase where
fragments are retrieved from repository and assembled.

2.1 Core MAS metamodel definition

Fig. 2. Details of the process requirements analysis and process design phases presented
in Figure 1.

As already said, in this work we composed the new metamodel on the basis
of portions of metamodels coming from PASSI, CRIO and Janus. In so doing
we are aware that defining the core MAS metamodel means defining a relevant
part of the ’philosophy’ that will be behind the new design process. For this
reason we performed this activity during meetings involving stakeholders. We
tried to deduct the list of elements by the portions of the cited processes that
could satisfy the new process requirements. Of course this was not sufficient
and it was therefore necessary to add new concepts for dealing with the specific
case. For instance a lot of work has been done (while building the ASPECS
process) in the definition of the agent societies organizational structure as well
as on the specification of possible roles that could be played by agents in an
holon (Head, Representative, Part/Multipart and StandAlone). These are crucial
choices that conditioned the entire process and they have been largely debated
before adoption.

The work for designing the new process based on the defined core metamodel
can be represented as a cycle composed of three subphases as illustrated in Figure



Lecture Notes in Computer Science 5

2: (i) prioritization of MAS Metamodel Elements (MMMEs); (ii) identification
and assembly of method fragments defining the MMMEs; (iii) extension of the
metamodel until the complete process is defined. The process is detailed in the
following algorithm:�
//Subphase 1: MAS metamodel elements prioritization
1. Select a metamodel domain (in the order: problem, agency, solution) and consider the

resulting metamodel as a graph with nodes (MMMEs) and directed links (relationships)
2. Define List_elements as a list of MMMEs and associated priority p: List_elements (MMME, p

);
a. p<-1;
b. List_elements <- null;

3. Produce a linearization of the MMMEs nodes according to a topological sort in
List_elements, p is the index of each node in the list

// Subphase 2: Assembly of fragments related to the core MAS metamodel
4. Select/Build fragments for defining (i.e. instantiating) the selected MMME(s) by doing:

a. i<-1;
b. Selected_el<-List_elements.select(i);
c. if Selected_el.count>1 then select one element according to the easiest

identifiability of reusable fragment or new fragment creation
d. select/build fragment for element Selected_el.

5. Assembly the fragment in the new process (eventually modify it if required)
6. Select the next metamodel domain (if any) and repeat from 2
//Subphase 3: MAS Metamodel Extension
7. If the process is not completed (i.e. not all design activities from requirements

elicitation to coding, testing and deployment have been defined)
a. Introduce new MMMEs according to criteria discussed below
b. Repeat from 1.� �

It is worth to note that the previously defined algorithm is based on the
following assumptions:

– MMMEs are organized in three domains: problem, agency, solution. In the
first domain we put elements belonging to the model of the problem in terms
of requirements, in the agency domain we collect elements defining an agent-
based solution to the problem defined in the previous domain, in the solution
domain we list elements related to the implementation of the solution in one
or more available platforms.

– In each method fragment, four different actions can be done on (one or
more) MMMEs: new MMME definition (instantiation), creation of new rela-
tionships among MMMEs, existing MMME quotation, existing relationship
quotation.

– Each method fragment has a concrete, tangible output in form of one (or
more) workproduct(s) belonging to the same work product type such as
structural/behavioral diagram, text document, composite document.

The extension of the core MAS metamodel towards the completion of the process
obtained by composing fragments, is a crucial activity that should be strongly
affected by the awareness of the new process requirements and the relationships
among requirements and MMMEs. In extending the initial core metamodel some
other criteria should be considered: First, opportunity of reusing some existing
fragments could lead to the introduction of MMMEs related to them. This is a
kind of bottom-up criterion that privileges the reuse of well known and tested
fragments. Second, as a consequence of adopting a Model Driven Engineering



6 M. Cossentino et al.

(MDE) approach, we agreed that: (i) the three identified MAS metamodel do-
mains should have been regarded as the three different MDE models; (ii) ele-
ments belonging to a domain should have a correspondent element in the follow-
ing one (correspondence is 1-to-1 and it is realized by the transformation from
one model to the other). The second rule can have some exceptions related to
specific cases when an element is regarded as a design abstraction useful at one
specific level but it is not forwarded to the next one.

3 The ASPECS process: requirements and results

This section presents the requirement under which the ASPECS process has
been developed and the resulting process itself with the aim of short-circuiting
the beginning and the end of the process we discussed so far.

3.1 Requirements for the construction of ASPECS

The design of the ASPECS methodology has been constrained by a set of re-
quirements that according to the inputs of the process requirements analysis
phase presented in Figure 1, can be classified as follows:
(i) Problem Type: the scope of the new design process was defined to be the
development of very large MASs for the solution of complex problems suitable
for an hierarchical decomposition.
(ii) Development context : the development of the ASPECS methodology can be
seen as a joint work of people coming from two different experiences: people
working at the SET laboratory who had a strong background in the design and
implementation of holonic systems with a strong accent on organizational aspects
of MASs (CRIO process) and one new lab member who was the main author of
a process (PASSI, [6]) for the design of MASs where agents were mostly peers
and whose important features were: the use of ontologies, a requirements-driven
agent identification, the adoption of patterns and tools for supporting design/-
coding activities. Participants to this project soon agreed to preserve some key
elements of their backgrounds and skills in order to enable an easier transition to
the new design process. As regards agents implementation, in the SET lab, the
development of a new coding platform Janus was undergoing and its adoption
in the new design process was, of course, highly desirable.
(iii) Organization maturity : several experiments of development of holonic sys-
tems have been previously performed in the lab but each single project adopted
a different implementation solution or design strategy so that a unique con-
solidated design process was not available (CRIO only covered a part of the
process). Conversely, as regards the experiences coming from PASSI, a complete
documentation of the process was available, a large number of projects have been
already developed and a large experience of usage of the process and the related
guidelines/tools was available.

These requirements concurred to the definition of the process we describe in
the next subsection.



Lecture Notes in Computer Science 7

3.2 The resulting design process

ASPECS combines an organizational approach with an holonic perspective. Its
target scope can be found in complex systems and especially hierarchical complex
systems. The principle of ASPECS consists in exploiting the intrinsic hierarchical
structure of complex systems to analyze and decompose them. The process of
ASPECS consists in four phases that are briefly described below.

The Analysis phase is based on the identification of a hierarchy of organi-
zations, which the global behavior may represent the system under the chosen
perspective. It starts with requirements analysis and requirements are identified
using classical techniques such as use cases. Domain knowledge and vocabulary
associated to the target application are then collected and explicitly described
in the problem ontology. Each requirement is then associated to an organization,
that represents a global behavior able to fulfill the associated requirements. The
context of each organization is defined by a set of concepts of the problem on-
tology. The organization identification gives raise to a first hierarchy of organi-
zations, that will then be extended and updated during the iterative process to
obtain the global organization hierarchy representing the system structure and
behaviors. The identified organizations are decomposed into a set of interact-
ing sub-behaviors modeled by roles. The goal of a role is to contribute to the
fulfillment of (a part of) the requirements of the organization within which it
is defined. In order to design modular and reusable organization models, roles
should be specified without making any assumptions on the architecture of the
agent that may play them. To meet this objective, the concept of capacity was
introduced. A capacity is an abstract description of a know-how, a competence
of an agent or a group of agents. The role requires certain skills to define its
behavior, which are modeled by capacity. The capacity can then be invoked in
one of the tasks that comprise the behavior of the role. In return, an entity that
wants to access a role, should provide a concrete realization for each of capac-
ities that the role requires. The capacity also allows, in the modeling process,
to make the interface between two adjacent levels of abstraction in the organi-
zational hierarchy of the system. A role at level n requires a capacity that is in
turn provides by an organization at level n − 1. The analysis phase ends with
the capacity identification activity that aims at determining if a role requires a
capacity and then adapting its behavior description. At this step a new iteration
may possibly start. If all capacities required by roles at the lowest level of the
hierarchy are considered to be manageable by atomic easy-to-implement entities,
the process may stop.

The Agent Society Design phase aims at designing a society of agents, whose
global behaviour is able to provide an effective solution to the problem described
in the previous phase and of satisfying associated requirements. The objective
is, now, to provide a model of the agent society involved in the solution in terms
of social interactions and dependencies among entities (holons and/or agents).
Previously identified elements such as ontology, roles and interactions, are re-
fined. At the end of the design phase, the hierarchical organization structure is



8 M. Cossentino et al.

mapped to a holarchy (hierarchy of holons) in charge of its execution. Each of
the previously identified organizations is instantiated in forms of groups. Corre-
sponding roles are then associated to holons or agents. In multiagent systems,
the vision of holons is much closer to the one that MAS researchers have of Re-
cursive or Composed agents. This last activity also focuses on composed holons
and aims at describing their two main aspects : their government and the set
of application-dependant organizations they contain. The objective consists in
describing the various rules used to take decisions inside each composed holon.
Rules governing holons’ dynamics in the system are also described to support
a dynamic evolution of the system holarchy. All of these elements are finally
merged to obtain the complete set of holons (composed or not) involved in the
solution. In this way, the complete holarchy of the solution is described.

The Implementation phase aims at implementing the agent-oriented solution
designed in the previous phase by adapting it to the chosen implementation
platform, in our case, Janus. Based on Janus, the implementation phase details
activities that allow the description of the solution architecture and the produc-
tion of associated source code and tests. It also deals with the reuse of previously
developed solutions. A set of organizational patterns may have been used during
the two previous phases. The code reuse activity aims at integrating the code of
these patterns and adapting the source code of previous applications inside the
currently designed application.

The Deployment phase is the final one and aims at detailing how to deploy
an application over various Janus kernels. This phase starts with the descrip-
tion of the deployment configuration and details how the previously developed
application will be concretely deployed; this includes studying distribution as-
pects, holons physical location(s) and their relationships with external devices
and resources and tests. This activity also describes how to perform the inte-
gration of parts of the application that have been designed and developed with
other modelling approaches (i.e. object-oriented ones) with parts designed with
ASPECS.

Fig. 3. A part of the ASPECS Problem and Agency domains core metamodel.



Lecture Notes in Computer Science 9

4 Building ASPECS

In this section we describe the actual process we adopted for building ASPECS.
We report the initially created core metamodel, the definition of the precedence
order of the metamodel elements, the selection/assembly of method fragments
and the extension of the metamodel with the consequent selection of new frag-
ments in an iterative process. This process is the instantiation of the general
process described in section 2 and complements the theoretical part of this pa-
per with the experiment we did in composing ASPECS.

4.1 The core metamodel

A part of the initial core metamodel defined for the ASPECS process can be
seen in Figures 3(a) and 3(b). It has been composed by reusing the following
elements from the above-described metamodels:

– From PASSI: Requirement, Scenario, Ontology, Ontology Element, Concept,
Predicate, Action, Agent, Role (renamed AgentRole in Figure 3(b)), Com-
munication and Message.

– From CRIO: Capacity (renamed Abstract Capacity in Figure 3(b)), Role
(renamed AbstractRole), Interaction and Organization

– From Janus: elements from Janus only belong to the implementation model
that has not been reported here for the sake of conciseness.

Some interesting issues raised from the composition of these elements in the
new metamodel are explained below:

– Elements coming from CRIO have been integrated in the new model with
only minor changes in their definitions as can be seen in section 4.3 for
Organization and Interaction definitions.

– Two different concepts (Role in PASSI and CRIO) had the same name but
different definitions. Essentially, the CRIO Role concept is an analysis level
concept while the PASSI Role is mostly a design abstraction. We found a
solution to the problem by positioning each of the two elements in the domain
it belonged to in its original approach and introducing a transformation
relationship between them (i.e. the CRIO AbstractRole is transformed in
the PASSI AgentRole when moving from Problem to Agency domain).

– PASSI Requirement is usually related to the agent concept. This represents
the fact that in PASSI agents are responsible for satisfying requirements.
In the ASPECS process this responsibility is given to the organization as it
comes from the CRIO process. Therefore the two concepts have been related
and their definitions have been consequently modified.

– The PASSI Agent element as already discussed is no more related to Re-
quirements but it becomes an abstract entity used to give AgentRoles a
individuality (shared knowledge and capacity). Holon realizes agents in a
concrete way and it is the Solution domain abstraction corresponding to the
JHolon implementation class supported by Janus.



10 M. Cossentino et al.

– Ontology has the same structure of the PASSI corresponding concept but
it is now positioned in the Problem domain. This is the consequence of a
precise choice: adopting ontological exploration of the problem domain as a
tool for deepening the understanding of the problem to be solved.

– Capacity has been introduced as an agency domain abstraction for repre-
senting what the role is capable to do. It is related to Service that is one
possible realization of the Capacity. This means that several different ser-
vices can implement the same Capacity. This structure required a change in
the original PASSI specification of Service although maintaining its general
meaning.

From these and other similar considerations we built the core metamodel for the
ASPECS process. It has not been an easy and short activity but rather it has
been performed during several meetings, involving debates with other people not
directly belonging to the team of ASPECS developers but involved in previous
experiences of usage of agent-oriented methodologies and related platforms.

In the next subsection we discuss the prioritization of the MMMEs that is the
order we expect to instantiate these elements in the fragments that will compose
the new design process.

4.2 Prioritization of MAS metamodel elements

The priority order of the MMMEs has been defined by applying the already dis-
cussed heuristics; the resulting list is: (i) Requirement, (ii) Ontology and all the
related elements: Concept, Action, Predicate, (iii) Organization, (iv) Abstract-
Role and Interaction, (v) Scenario, (vi) RolePlan and RoleTask (not reported in
Figure 3(b) because of space concerns) (vii) AbstractCapacity.

This list covers all the elements of the Problem domain and the choice done
reflects both the ASPECS design process requirements and some new decisions:
Requirement, Ontology and Scenario were the sinks of the graph. Requirement
is the first element because of the idea of following a PASSI-like requirements
identification phase. Ontology soon follows since we aimed at using the ontolog-
ical exploration of the domain as a tool for deepening the understanding of the
problem. Scenario is positioned later because of its specific meaning: we suppose
that text descriptions of user-system interaction stories (sometimes known as
scenarios) are provided as an input to our design process. When we talk about
scenario here we mean a formalization of this textual descriptions including a
detailed list of roles (AbstractRoles) involved in the Interaction(s). Obviously
this new and formal description can be done only after the definition of Abstrac-
tRole and Interaction. Organization is positioned early in the list since we aim
at maintaining the PASSI philosophy of an initial agentification of requirements.
AbstractRole and Interaction are positioned soon after Organization. RolePlan
and RoleTask will not be discussed here because of space concerns but their
positioning in the list is again a consequence of the adopted heuristics. Finally
AbstractCapacity is introduced since its inputs are now satisfied. Similarly we



Lecture Notes in Computer Science 11

obtained a priority order list for the MMMEs elements of the following domains
(Agency and Solution).

After this step we are ready to start with the selection of fragments from
the repository or the construction of new ones in order to define the elements
according to the prescribed order. This process will be discussed in the next
subsection.

4.3 Definition of an initial draft of the process

In performing the fragments selection activity, we refer to our repository of frag-
ments [8] that includes fragments extracted from PASSI, Agile PASSI, TROPOS,
and Adelfe. Since several MMMEs required by this novel approach (for instance
Holon) are not present in the repository, we expect to produce several new
method fragments, hoping of reusing and modifying some existing ones when
possible.

According to the previous discussed list of MMMEs, the first method frag-
ment of the process is supposed to draw a model of system requirements by
starting from text usage scenarios. This is exactly what the first fragment (Do-
main Requirements Description) of PASSI does and it was thus reused. The
definition of the Ontology is again done in an existing PASSI fragment and it
has been reused as well. The next MMME to be defined is Organization. In
this fragment we aim at creating a relationship between each organization and
the requirements it is responsible for. This is very near to the work done in the
PASSI Agent Identification fragment that can therefore be easily adapted to cope
with this new situation. The resulting fragment will be labelled Organization
Identification. The next fragment is devoted to define instances of AbstracRole
and Interaction. These two elements are defined in a static view and then used
to depict the dynamics of the system in the following view (where Scenario is
designed). The resulting fragments will be Interaction and Role Identification
(newly defined fragment adopting a class diagram where elements are instanti-
ated), Scenario description (reused PASSI Role Identification fragment, a series
of sequence diagrams describing roles interaction during scenarios). RolePlan
and RoleTask are defined in a RolePlan fragment that is obtained by reusing
the PASSI Task Specification diagram. Finally Capacity Identification is reused
from the CRIO process and it adopts a static view to define capacities and relate
them to organizations and roles.

In a similar way we defined the remaining part of the process. In this dis-
cussion we omitted the details of each fragment and the difficulties found in
defining the new ones as well as modifying the reused ones while adapting them
to cope with the new specific issues. This choice draws from the specific scope of
this paper that is concerned in demonstrating the role of the MAS metamodel
elements as a guide towards the definition of the new design process rather than
other aspects of this whole work. In the next section we discuss some examples of
extension of the initial core MAS meta-model done in order to refine the initial
sketch of the process.



12 M. Cossentino et al.

4.4 Completion of the process and extension of the core metamodel

We view the construction of a new design process as an iterative-incremental
activity that can be decomposed in the following steps: (i) Construction of a
process stub (including several fragments, for instance up to reach the phase
size). (ii) Test of the process portion. (iii) Evaluation of results. (iv) Next iter-
ation planning in terms of new process requirements to be addressed, changes
to be done in the existing process stub, and new parts of the metamodel to be
included in the process.

In the case of the ASPECS methodology, we performed the first significant
test activity after completing the System Requirements phase. This test consisted
in using the new process stub for designing a couple of simple applications. This
allowed us to familiarize with the process and to appreciate its qualities. We
only proposed one minor change: the explicit introduction of non functional re-
quirements in the early stages of the process (this implied an extension of the
metamodel). After that, according to the 4-steps process discussed at the be-
ginning of this subsection, we designed a new portion of the metamodel, more
specifically, the core part of the Agency domain metamodel (see Figure 3(b)). We
are not going to detail the work done on this part of the process, we will only
discuss one interesting point: the extension of the initially defined core meta-
model represented in Figure 3(b) to cope with some new process requirements
identified during the iteration. After completing this portion of metamodel, the
corresponding process stub and included method fragments, we started per-
forming some tests and during them we realized that the new process had some
limits: it was not possible to represent not FIPA-compliant agent interactions
(for instance environment mediated). They had not been initially listed among
the new process requirements but they were already supported by the Janus
platform and sometimes used in previous projects developed in the lab. Another
issue arise from the consideration that it was not possible to design simple (non
holonic) agents like the conventional PASSI ones. This has been seen as a limit
since it limits the possibility of integrating in the same design complex holonic
hierarchies with simple agents devoted to deal with minor parts of the problem.
In order to solve these issues we changed and extended the core metamodel by
including a Conversation and an AtomicAgent MMMEs.

The extended metamodel has been fully realized by a set of fragments and
then the process stub tested and evaluated as already described. The work con-
tinued in an iterative way until the complete process was defined and thoroughly
tested5.

5 Conclusion

Based on the Situational Method Engineering, this paper has reported an ex-
periment of creation of a new process called ASPECS. The proposed approach
5 A complete description of the ASPECS process can be found at: http://set.utbm.fr/

index.php?pge=352&lang=fr



Lecture Notes in Computer Science 13

starts from the identification of the new process requirements in terms of devel-
opment context, problem type. The requirements are used for defining an initial
core version of the MAS metamodel. The elements of this metamodel are then
ordered in a precedence list and in this order the fragments that are able to
deal with, are retrieved from the repository and assembled in the new process.
The resulting MAS metamodel of ASPECS [5] is mainly composed by elements
coming from the PASSI [6] and CRIO [7] existing design processes and supports
Janus as an implementation platforms of holonic agents. In previous works ap-
plying SME, the method engineer usually selects a set of method fragments that
he considers as the best for fitting a particular situation and then modify or
adapt them the most reusable part according to his own experience. In contrary
to these approaches, the approach described in this paper aims at being as much
free as possible from the designer skills providing a set of reusable guidelines for
fragments selection and assembly.

References

1. Harmsen, A., Ernst, M., Twente, U.: Situational Method Engineering. Moret Ernst
& Young Management Consultants (1997)

2. Brinkkemper, S., Welke, R., Lyytinen, K.: Method Engineering: Principles of
Method Construction and Tool Support. Springer (1996)

3. Ralyté, J.: Towards situational methods for information systems development:
engineering reusable method chunks. Procs. 13th Int. Conf. on Information Systems
Development. Advances in Theory, Practice and Education (2004) 271–282

4. Henderson-Sellers, B.: Method engineering: Theory and practice. In: ISTA. (2006)
13–23

5. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: A holonic meta-
model for agent-oriented analysis and design. In: 3rd Int. Conf. on Industrial
Applications of Holonic and Multi-Agent Systems, HoloMAS’07. Number 4659 in
LNAI, Regensburg, Germany (September 2007) 237–246

6. Cossentino, M.: From requirements to code with the PASSI methodology. In: Agent
Oriented Methodologies. Idea Group Publishing, Hershey, USA (2005) 79–106

7. Hilaire, V., Koukam, A., Gruer, P., Müller, J.: Formal specification and prototyping
of multi-agent systems. In: Engineering Societies in the Agents’ World. Number
1972 in LNAI (2000)

8. Seidita, V., Cossentino, M., Gaglio, S.: A repository of fragments for agent systems
design. Proc. Of the Workshop on Objects and Agents (WOA06) (2006)

9. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent
design methodologies: from standardisation to research. International Journal of
Agent-Oriented Software Engineering (IJAOSE) 1(1) (2007) 91–121

10. Mirbel, I., Ralyté, J.: Situational method engineering: combining assembly-based
and roadmap-driven approaches. Requirements Engineering 11(1) (2006) 58–78

11. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modelling based assembly tech-
niques for situational method engineering. Information Systems 24 (1999)


