A Collaborative Tool for Designing and Enacting Design
Processes

M. Cossentino
ICAR-CNR, Consiglio
Nazionale delle Ricerche
Palermo, Italy

cossentino@pa.icar.cnr.it

ABSTRACT

Today several approaches using Situational Method Engi-
neering paradigm exist, each of them proposes methods and
techniques for developing ad-hoc design processes. In this
context heavy efforts were spent in the construction of ap-
propriate tools that could help method engineers in produc-
ing a specific design process and in using it. We developed
a tool called Metameth for supporting the design process
definition and its enactment. Metameth is implemented as
a multi-agent system, where each agent is capable of reason-
ing and adapting itself in order to support the designer in
performing different kinds of design activities.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-

niques— Computer-aided software engineering (CASE); D.2.10

[Software Engineering]: Design—Methodologies

General Terms

Design Process, Supporting tool.

Keywords

Situational Method Engineering, Metameth, expert system,
collaborative tool, CAPE/CAME/CASE tool.

1. INTRODUCTION

According to the Situational Method Engineering (SME)
paradigm [3, 10], design processes are built by assembling
reused parts of design processes called (method) fragments
or chunks. Every kind of system development is usually
aided by tools and several different tools are used in Soft-
ware Engineering; in the same way a SME process requires
the support of adequate tools for the definition of the process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
SAC’09March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/0%5.00.

L. Sabatucci
Dip. Ingegneria Informatica,
Universita degli Studi di
Palermo
Palermo, Italy

sabatucci@dinfo.unipa.it

V. Seidita
Dip. Ingegneria Informatica,
Universita degli Studi di
Palermo
Palermo, Italy

seidita@dinfo.unipa.it

life-cycle, the reuse of fragments and the management of de-
sign process activities (Computer Aided Process Engineering-
CAPE/Computer Aided Method Engineering-CAME tools)
and for aiding the designer during the process development
(CASE tools).

CASE tools are devoted to help the designer in the soft-
ware development process by providing a software support
for a reliable development of activities (like drawing dia-
grams, documenting artefacts, and so on), thus lowering the
risk of errors and enhancing productivity.

Today, in the field of aided software development, Meta-
Case tools achieved large significance, they are able to pro-
vide an automated or semi-automated process for the cre-
ation of CASE tools, basing on a metamodel used to describe
the language, the concepts and the relationships of a specific
methodology.

In the field of Method Engineering a MetaCase tool is used
to describe and to represent a set of methods; such a tool
is sometimes called CAME tool. Several existing CAME
tools (Mentor, Decamerone, MetaEdit+ and MethodBase)
[13, 10, 2, 11] are also based on MetaCase technology al-
lowing the construction or the automatically generation of
CASE tools.

Moving the focus from methods to the whole process, we
can note that Process Engineering shares the same targets
with Method Engineering, they work on the same domain,
but with different aims; Process Engineering mainly aims
at defining processes rather than at modeling their meth-
ods (scope of interest of Method Engineering); both use the
acquired knowledge on existing processes in the same way.

As CAME tools help the method engineer in the creation
and definition of methods and in performing, constructing
and representing them so CAPE tools allow the realisation
of a process model. However a CAPE tool is more complex
and sophisticated than a CAME because it should even offer
a continuous supervising of the activities performed in the
process.

In some previous works [5, 6] it was illustrated the way in
which a Software Engineering Process can be constructed by
adopting (and eventually extending) the Situational Method
Engineering paradigm and we also conducted some experi-
ments towards the production of a CAPE tool that could be
instantiated in a specific CASE tool.

We verified that a CASE tool has often negative effects on
the evolution of a design process because even a small change
in a part of the newly design process, often requires a new

CAPE/CAME

Method
engineers (use
define a instantiate
viewpoint to
v

B — CASE
use

Software
engineers

perceives l

Problem = -
Lm represent

instantiate
to

define a
viewpoint

A

Project specification

Figure 1: SME and Design Process Development
(re-drawn from [14])

version of the tool, with a great effort spent in introducing
new functionalities or modifying the existing ones.

In this paper we present Metameth, the tool we devel-
oped for supporting the design process definition and its
enactment; the main contribution of this tool is that it is
contemporaneously a CAPE and a CASE tool in the sense
that once a new design process is created with the aid of
the CAPE tool this latter can be instantiated in the spe-
cific CASE tool also able to offer intelligent support for the
design phases.

The intelligent support provides features like automatic
compilation of some artefacts, validation of the design and
syntax checks.

We will detail all the techniques we used for making Meta-
meth a collaborative tool during the design phase; in section
2 we will describe the whole Metameth project presenting its
main functionalities and main components also describing
the expert system that is one of the core components of the
tool. Section 3 introduces a case study that derives from the
application of the whole approach. In Section 4 some related
works are illustrated and finally some conclusions are given
in Section 5.

2. METAMETH PROJECT OVERVIEW

The construction of ad-hoc design processes with the SME
approach involves a specific stakeholder, the method engi-
neer (we already referred to him as process designer), whose
tasks are to define and describe the new process in a way
that could allow new system designers (users of the newly
designed process) to use it and to solve a specific problem
[14, 3](see Figure 1). The new system designers’ work is
supported by tools (CASE tools) for producing system spec-
ifications, in the same way the method engineer’s work is
supported by tools.

The CAME tools supply aid in method fragments con-
struction and definition and in their integration; in our work
we also needed a CAPE for defining the whole process (not
merely method fragments) and for managing process activ-
ities. Once the design process is created this tool should
be instantiated in a CASE tool that is customized for the
specific process.

Metameth allows the composition of different processes
starting from a repository of fragments and the related no-
tations that were defined in [12, 5].

Each fragment, we retrieve from the repository, is com-
posed of a workflow that structures all the activity to be
done for producing a work product, each work product is
devoted to define, refine or quote at least an element of the
metamodel; the metamodel gives to the process the aware-
ness on the kind of contribution each of its element produces.

All the previous elements have an effective “implementa-
tive” counterpart that is: an XPDL file for implementing
the workflow part of the fragment, a set of design rules that
orchestrates the composition rule for each work product, an
Activity agent that interacts with the designer in order to
support him during the design phase and finally a set of
format transformations supporting the role of the Activity
agent when it helps the designer in interfacing with a specific
design tool (see later section 2.2).

In the past two experiments were made: the creation of
a CASE tool as plug-in for Rational Rose [7] that featured
several checks in the design semantics and the automatic
composition of several design diagrams. Code generation
was also supported by a pattern reuse tool and good results
had been obtained about that. The second was a situational
method engineering experiment [9] whose result was an agile
process (Agile PASSI) and the related CASE tool based on
MetaEdit+ (by the MetaCase company) [15]; MetaEdit+
flexibility in modeling the semantic and notation of single
method fragment proved to be very useful. We extended
MetaEdit+ features by including the automatic composi-
tion of some diagrams (mostly based on reverse engineering
of code for documentation purpose) and pattern reuse sup-
port. The development of such a tool although simple and
not totally engineered had a high cost and was not easily re-
producible for future experiments of design process construc-
tion above all because of the great dependency the CASE
tool presents towards the design process it is supporting.

From this experiences we deducted the need for the sup-
port of a more flexible tool that could easily help in building
whatever process we would decide to build. For this reason
we decide to start the construction of a new tool (Metameth)
satisfying the needs for automatic support for fragments
repository maintenance, process composition, and process
enactment. One of the most relevant limits of our previous
tools was the impossibility of easily sharing the different de-
sign phases in the design team (collaborative work was not
supported) and the resulting artefacts (editable model files).
To overcome this limitation we decided to explicitly support
distributed design processes as one of our main goal. Being a
method engineering tool it should have obviously supported
several different design processes.

Finally, for a better support to the designer’s work, the
tool was designed for including the possibility of automat-
ically composing (portion of) diagrams, performing syntax
checks on notational aspects of the design and the consis-
tency checks about some design issues like the correct in-
stantiation of the most important elements of the system
metamodel.

2.1 The Metameth Architecture

Figure 2 shows the architecture of Metameth by focusing
on the flow of work performed in a SME process that can
be inferred from Figure 1; we decided to separate the defi-
nition phase of the new processes from its enactment, this
choice was a direct consequence of: (%) the clear separation
between method engineer’s work and designer’s one and (ii)

the decision of using an approach based on the concept of
workflow for the definition, and then the execution, of the
process .

Metameth main sub-systems are reported in Figure 2 and
a great part of them was not developed from scratch. The
most relevant activity on them concerned their integration
and the enablement of their information exchanges; the most
relevant (open source) components we adopted are:

- JaWE and Shark (by Enhydra), Jade and Jess (a rel-
evant portion of its services are required by the Activity
Agents that need reasoning capabilities)

- The Metamodel Editor required by the adopted de-
sign process is depicted in form of an ontology by using the
Protégé tool;

- Rule Editor that is the tool we built for describing Jess
rules starting from a template;

- Knowledge Base. The Jess system operates on a knowl-
edge base storing all the information about the design. This
means that all instances of a specific design concept and all
of its relationships with the other concepts will be stored.
The concrete result of this approach is that the complete
model of the designed system is stored in the knowledge
base and can be accessed by the inference engine.

- Design Model Editor. Metameth ideally supports any
design model editor with the unique limit that it has to im-
port/export design models in a format that could be trans-
formed in first order logic facts (used by the JESS inference
engine). In the current status of the project we decided to
adopt the Rational System Developer tool that supports the
XMI exchange format.

Metametht main architectural components concur in sup-
porting our approach as follows: once the method engineer
(see Figure 2) has modelled the process ? he can use a graph-
ical tool (JaWE) to produce its XPDL translation (XPDL
is the process specification language adopted by WFMC).
The method engineer can specify, for each activity, addi-
tional information, such as the user that will be responsible
to manage it and the involved stakeholders. The next step is
the specification of the semantics of the metamodel elements
(by using Protégé and the composition rules for work prod-
ucts delivered within the process (these rules are specified
by using Jess rules).

Once the design process has been entirely described us-
ing the XPDL language (process aspects) and Jess rules
(reproducing metamodel semantics and composition rules),
the method engineer (hence the process administrator us-
ing workflow glossary) may instantiate it using the process
execution module.

This module was developed using a multi-agent system in
order to take profit of the possibilities offered by the Jade
platform (agents mobility and semantic communications).
Agents’ mobility was an interesting feature for our purposes
since it permitted us to reduce the complexity of client plat-
forms. Each designer only needs to install a package contain-
ing the Jade platform (a Jar file) and an agent responsible to
start the communication with the workflow engine (so that
this latter is aware of the address in the network of each
designer). Agents devoted to support the different activities
will move to the designer’s host when requested and there-

IFor the definition of workflow as well for its description in
terms of XPDL language, we referred to the WFMC speci-
fications [1].

2This part of the work in not (still) integrated Metameth.

fore a dynamic configuration of the client platform is easily
achieved. The main elements of the part of Metameth used
for enacting the design process are:

- A Controller agent that is interfaced with the workflow
execution engine and is responsible for the execution of the
process (it loads and starts the process).

- One or more Stakeholder agents, one for each designer
that collaborates in the process; the designer can accept,
start, and decline the activities assigned to him during pro-
cess definition. After a login session, the user may verify his
activity list and can start/ refuse or delegate an activity.

- A ProcessModel agent used to wrap the Jess expert sys-
tem that holds the knowledge base where the instantiated
system model is stored.

- One or more Activity agents that interact with the de-
signer by showing messages, proposing choices, and allowing
the user to introduce data and open the diagram editor used
for documenting the activity.

The ProcessModel agent is aware of the instantiated pro-
cess and is responsible for managing the related design in-
formation; all the information about designed models are
stored in a knowledge base in the form of a set of facts and
rules. As already discussed, these elements are based on an
ontology (metamodel) that describes all the concepts of the
domain specific language.

As regard the flow of information, in this case the Process-
Model agent (see Figure 2) gets information about the cur-
rent state of the process from the Knowledge base through a
XMI file and translates them to a RDF file for communicat-
ing with the Activity agent. When the designer accepts to
perform an activity, an Activity agent moves to his platform
and it becomes responsible for coordinating all the opera-
tions related to the specific activity (also in collaboration
with the ProcessModel agent and the design model editor).

The Activity agent generates and sends to the Design-
Model editor the design file with a XMI file and can receive
from it the project file after the designer has changed it.

Activity agents offer several services to the designer:)
auto-composition used when a work product can be auto-
matically modified/created or updated; %) notation inter-
pretation, used to map notational elements (e.g. use cases,
classes, activities, etc.) into elements of the metamodel, iiz)
semantic validation used to verify the semantic consistence
of the whole project. This is done by communicating with
the ProcessModel agent and exchanging Jess facts and RDF
file for respectively describing the composed diagrams and
updating the knowledge base.

The metamodel described using Protégé is inserted in the
knowledge base by exchanging an RDF file between the
two modules and the design rules are stored in the Rules
database by sending to it a Jess Rules file from the Rule
Editor.

Metameth intelligent part main task is to assist the de-
signer during the design activities and to provide him with
the right helps for lowering the risk of errors and for speeding
up his work.

The construction of the expert system was based on the
observation of the actions a designer performs during his
work in order to establish which of them could be comput-
erized and for which of them it could be provided aids in
the form of messages and warnings. The set of identified ac-
tions for which support was provided is the following (more
details can be found in [8]):

PROCESS
DEFINITION

PROCESS
EXECUTION

XMI

Expert System

Metamodel | | || mpr Agent
—>| Editor

(Protege)

Rule Jess
Editor rules
Méthod

Engineer,

Jess Facts y|

(RDF)
Activity DesignModel Ne—
Agent XMl —»_ Editor

Figure 2: Metameth Overview

(i) GUI action - using a GUI the tool interacts with the
designer and supports him during his work.

(i) WP composition - the set of operations a designer
performs while working on a specific work product; he can
create or update (edit, modify) a work product and he could
need information about the output produced by other arte-
facts. An interesting case occurs when the output of an
activity produces an information that affects the status of a
document produced in another activity; when this happens,
the tool supports the automatic creation or update of the
affected work product.

(i) Rule Check - the tool supports the design through
the generation of warning/error messages and eventually by
proposing solutions after the execution of syntactic and se-
mantic checks on work products.

Each of the above listed action category has a correspon-
dence to a set of rules allowing the Jess module to perform
the reasoning capabilities of the ProcessModel agent; we
classified these rules in five categories: wvalidation rules and
semantic interpretation rules that perform the Rule Check
actions, and auto-composition rules, update rules and im-
port rules that perform the WP Composition actions. These
rules are enabled by the representation in form of Jess rules
of the system metamodel and its composition rules. It is
therefore easy, to check the correctness of facts in the knowl-
edge base (representing the instantiated system model) and
to validate some properties of the produced work products.

2.2 Interaction with external tools

Metameth does not specify an unique tool for the con-
struction of design artefacts as it happens in other approaches.
For sure, binding Metameth to a specific editor could have
simplified the development phase, but, on the other hand
this would limit the possibility of supporting other nota-
tions. Therefore a generic approach was required for allow-
ing the interaction with multiple editors. This was challeng-
ing to realize, because of the difficulty to manage different
kind of external applications, each one with different prin-
ciples and specific API to consider. In order to simplify
this task, the possible interactions between Metameth and
a generic external tools have been classified in:

- opening of the tool;

- creation of a new project/document;

- introduction of a custom widget (button, menu, or tool-
bar);

- population of an empty document with data from the al-
ready designer model (from the knowledge base);

- setting a specific layout for elements of the document;

Delsigner

Workflow XPDL (* Controller '\
L—» Editor _ Agent /
(JaWE) Proj
Manager
VAN = ?

- on application closure, transferring of document data to
the Metameth internal model (in the knowledge base).

Rational System
Developer
StartupPlugin StartupConfig
s
— + readPluginToLaunch()
+ openModel()
—TT + createDiagram() —
+ openDiagram()
T
Plugin OpenModel
Configuration
+ readUMLModel()
+ loadEMX()

+ readDiagramType()

[L CreateDiagram

— ——
ActivityAgent EMXWorkspace

+ startApplication()

+ createPuginConfiguration()

+ importEMX() —
+ exportEMX() RDFWorkspace
+ openRDF()
+ saveRDF()

RDFtoEMX

Figure 3: Metameth subsystem - The interaction
with an external tool

Depending on the external tool, not all these features are
available because of limitations given by the offered APIL.
This section illustrates an example of interaction with an
UML editor, the Rational System Developer by IBM. Fig-
ure 3 illustrates the subsystem aimed at providing the inter-
action with the Rational System Developer. The Activity
Agent is responsible of controlling the external tool. Classes
inside the package are specific of the Rational System De-
veloper API that is used by Metameth. Two classes, Open-
Model and CreateDiagram, are registered as plugins, and
automatically start when the Rational System Developer
is opened. They represent the bridge between the editor
and Metameth, interpreting commands and operating data
transformations. When a new diagram is created, the Cre-
ateDiagram class receives a command where the “Name”
value defines the name of the artefact to be created and the
“DiagramKind” value specifies the kind of diagram. The
OpenModel class is responsible to generate a diagram from
an existing model. It opens the model and populates the
diagram, giving to elements the appropriate layout. The
RDFtoEMX class is responsible of the transformation from
the Metameth internal model (that is expressed in Jess facts
that are exportable in RDF format), to the Rational System
Developer model, that is stored in EMX, a language based
on XMI. When the work is terminated, the inverse trans-
formation, from EMX to RDF is operated directly by the
ActivityAgent by an XSLT.

3. CASE STUDY

This section illustrates an example of Metameth use: the
CASE tool instantiation for a specific design process. In
this experiment we used Metameth for supporting an exist-
ing design process (PASSI [4]), we did not construct a new
one by using SME, but this did not effect the relevance of
the case study since the process is defined from scratch in
Metameth just as it would happen for a totally new project.

The starting step is the definition of the PASSI process;

IR Pelze] (25=2 [0] l[=]<
-] O[] [P o) [a7

|[= systemr =5 Agentsoc (=G Agentim =& CodeMo
13 equirem fetyMode| plement del]
entModel 1 tionMode|

A

Arbitrary expression

| Domaing| =S Agentsid [=5 Roleside (=5 Agentstr =5 Taskspe
> equirem entificati ntificatio uctureEx cification a
entDescrl on n loration|

ntoDescri ntologyD’ ription

= Domamo‘

=

= namamo‘

[RoleDescI

S \
L_ption escriptio

=5 MultiAge
nistructd
ef

= SingleAg
entStruct,
Defin

 Route
— L]

S BR=E-5 -k

Figure 4: PASSI definition with JaWE.

Table 1: The rules instantiated for PASSI.

Auto Semantic Semantic Syntactic

Composition Interpretation Validation \/Zlidation Update Tor.
DRD 0 2 3 3 3 11
AID 7 4 15 3 5 34
ASE 5 3 8 3 2 5
RID 0 4 11 3 2 20
TSP 1 4 7 3 3 18
DOD 0 6 10 4 1 21
Ccob 2 6 6 2 1 17
RD 5 7 5 4 1 22
MASD 4 4 5 3 1 17
MABD 2 1 7 6 1 17
SASD 4 4 3 3 1 15
SABD 6 0 4 3 1 14
DC 2 1 4 5 1 13
TOT. 33 43 80 45 23 224

some screenshots (taken during the process definition activ-
ity performed with the JaWE editor) are shown in Figure 4.
After completing the process description, an administrator
module is used for detailing the process definition. For each
activity of the workflow it is necessary to specify: (i) the
stakeholder that is responsible to work on it, and (%) the
external application used to support the production of the
specified artefacts.

In order to complete the process design definition, each
activity requires the definition of a set of rules: (i) auto-
compositions are rules describing how to automatically build
parts of the artefact that depend on the work executed in
previous activities; (%) semantic interpretation rules define
how to extract semantic information from the artefact (for
instance in this case study, if a package is found in a specific
diagram, it has to be considered as an agent and use cases
within it as requirements under the responsibility of that
agent); (4i1) semantic validation rules define semantic con-
straints to hold (as prescribed in the metamodel definition);
(iv) syntactic validation rules define notational constraints
to hold; finally (v) update rules are used to automatically
compile some artefacts or maintain coherence among differ-
ent models (for instance in case an element is renamed).

Table 1 summarizes the number of rules that we created
for each category and for each activity of the PASSI design
process. A total of 224 rules have been defined for the 13
activities. Semantic validation is the category that contains
most of these rules. Just considering the number of rules
per activity, the Agent Identification activity required the
greatest number of rules, especially because several semantic
validation rules are necessary for it. Transformation rules
are not considered in Table 1 since all PASSI artefacts are

a) <<ag?ent>>
lient

Cli
participate
_ auction
_ open
Supplier transaction N
\

\

<comm! u nicate>

<commun|cate>

\l:

\V <<agent>>
Supplleer(
— overview advemze
aucllon auctlon
Supplier

Responsible manage

supplier
data

§_uranl_le_
seller ‘mediator
Cllem : SupplierDpt : Client

actiyate

enter prolductlorder data

—_—

|
|
|
|
|
| j
1 contract price/time
| 1

| | |
|

Figure 5: Two subsequent PASSI activities.

UML diagrams so these rules were reused from existing ones.

After this phase the administrator can (i) instantiate the
PASSI process for one ore more projects, (i) and monitor
the execution of each instance. Designers access the list of
activities assigned to them by using the UserAgent applica-
tion; this latter in turn, receives the list of activities from
the AdministratorAgent that extracts that from the process
specification. More specifically, the list is synchronized with
the design process state of progress, in according to the flow
of activities defined in the previous phase as a workflow. If
the generic activity A is not completed, all A antecedents
are available for working, but all descendants are not in the
list.

When a designer selects an activity from this list, the cor-
responding ActivityAgent tool is executed. This is responsi-
ble for correctly executing the activity: (i) interacting with
external tools, (i7) providing the auto-composition of arte-
facts, (4i1) verifying syntax and semantics of produced arte-
facts, and finally (iv) providing a semantic interpretation of
artefacts.

Figure 5 reports two diagrams of a PASSI project con-
cerning the design of a system supporting the supply chain
of a manufacturing company.

The first diagram (shown in Figure 5.a) is an UML Use
Case diagram representing the Agent Identification phase
(in this diagram use cases are clustered in packages repre-
senting agents in terms of their functional responsibilities),
whereas the second diagram (Figure 5.b) is a Sequence dia-
gram related to the Role Identification phase. It is worth to
consider that in PASSI: (i) the Roles Identification activity
immediately follows the Agent Identification one, (ii) they
are logically related, and (i) they are based on conventional
UML diagrams.

Figure 5.a shows a diagram where the subsystems repre-

sent two autonomous agents, and use cases represent respon-
sibilities. Actors are traditional human stakeholders that
communicate with the system, while communicate relation-
ships between use cases indicate some dependencies (agents
have to interact in order to execute functionalities). Figure
5.a shows two actors: the Supplier of the company and the
Supplier Responsible, a clerk of the company responsible to
manage relationships with external suppliers. Two agents
are also shown, the Client and the SupplierDpt, that rep-
resent interfaces for their correspondent actors; the Client
agent may have multiple instances, depending by the num-
ber of active suppliers: this agent is responsible to interact
with the Supplier, and it allows him to participate to auc-
tion started from the manufacturing company. On the other
hand, the SupplierDpt agent is responsible to manage active
auctions and to inform participants of auction results.

Table 2: Results of the semantic interpretation.

Element MM Element
Supplier Actor
SupplierResponsible Actor
.5 SupplierAgent Agent
‘é SupplierDptAgent Agent
ES) Open transaction Responsibility
§ Partecipate auction Responsibility
‘\E Overview auction Responsibility
g Advertize auction Responsibility
< Manage supplier data | Responsibility
.| Authentifier Role
E:L;i Supplier interface Role
% S| Seller Role
= 2[Mediator Role

When each of the activities is completed, the ActivityA-
gent executes the syntax and semantic validations that in
our example we will suppose do not fire error/warning mes-
sages. Semantic interpretation gives the results shown in
Table 2. Notational elements from Figure 5.a are correctly
interpreted as instances of the system metamodel elements
and then stored in the knowledge base.

As already said, Roles Identification is the subsequent
activity prescribed by the PASSI design process and one
example of resulting diagram is represented in Figure 5.b.
The sequence diagram illustrates a possible scenario for the
system-to-be. Actors are users of the system, whereas par-
ticipating objects represent roles that agents may play in
the scenario. Each object is identified by an instance name
that represents the role, whereas the class name is a ref-
erence to the agent. The sequence diagram in Figure 5.b
illustrates the interactions occurring when a Supplier wish
to put up raw materials for a supplier auction. Three roles
have been introduced for the Client agent (authentifier, sup-
plier_interface and mediator) whereas the SupplierDpt agent
only plays the seller role.

When this activity is completed too, the ActivityAgent
executes the semantic interpretation again, and the model
is enriched with new elements shown in Table 2.

Some concluding remarks: PTK (PASSI toolkit) was de-
veloped in six person-months (PMs hence after) and its com-
pletion required about another person-year for a total of 18
PMs of effort. By using Metameth the development of the
PASSI workflow and the definition of the Protege’ ontol-
ogy required 1 PM, whereas the definition of rules (sum-
marized in Table 1) required other 2 PMs, for a total of 3

PMs for completing the customisation of the tool for sup-
porting PASSI. In addition, each major change in the PTK
tool implied an average effort of 3 PMs, whereas the intro-
duction of a new activity in Metameth usually requires one
person-week only.

4. RELATED WORKS

Several tools operating in the same field of action of Meta-
meth today exist. Each of them provides support to the
method engineer’s work in different ways and presents dif-
ferent features; for space reason we limit our analysis to the
most complete we know: Metaedit+ [15], it gives the possi-
bility of implementing a domain specific modelling language
and using it in a ad-hoc created CASE tool. Metaedit+ is at
the same time a CAME tool and a CASE tool, it is the only
tool we know that allows the instantiation of a CASE tool
starting from the definition of a precise modelling language
but it does not offer support for managing a design process.

Metaedit+ is based upon a meta-modelling language, GO-
PRR and it can supply documentation and code generation,
besides it allows multiple users and presents the principle
advantage of supplying an easy way for creating and using
each kind on notation but there is no intelligent system sup-
port, no consistency checks on documents, and no semantic
and syntactic checks on the produced artefact.

Other existing tools allow to manage the method frag-
ments definition and assembly and to instantiate a CASE
tool, they provide some kind of checks on the produced arte-
fact but none of them is assisted by an intelligent system for
supporting the designer.

The Metameth tool tries to collect the advantages of the
known approaches in the fact that it allows the definition
of a domain modelling specific language (in form of an on-
tological metamodel) and the instantiation of a CASE tool
that is specific for each process. Moreover it exhibits some
other features:

(i) the tool is aware of the prescribed design process and fa-
cilitates in following the prescribed flow of design activities;
(i) the flow of information exchanged among the different
components of the tool (mainly the model graphic editor
and the expert system) is fluently enabled by a set of for-
mat transformations that are transparent to the designer as
well as the expert system,;

(#i1) the presence of an expert system allows sophisticated
checks on design models consistency, completeness and re-
spect of semantic rules defined in the metamodel;

(iv) the automatic composition of some artefacts (again en-
abled by the expert system) by exporting in the proper way
portions of knowledge from the expert system allows the de-
signer to save time, to focus on essential tasks and increases
the quality of the results.

(v) The tool allows the participation of several designers
working on the same project at the same time and an easy
condivision of produced artefacts among them.

(vi) the extension of the tool to support different design
model editors (and therefore different modelling notations)
as well as other tools (text editors and other specific analysis
tools) is possible and only conditioned by the coordination
of the domain specific ontological metamodel with the mod-
elling notation (this is realized by means of the semantics
understanding rules).

5. CONCLUSIONS

In this paper we presented the tool (Metameth) we devel-
oped for supporting the development and the enacting of a
design process following the paradigm of Situational Method
Engineering. Situational Method Engineering (SME) pro-
vides means for creating ad-hoc design processes by assem-
bling pieces of process (the fragments) coming from existing
ones.

SME is supported by CAME tools allowing the definition,
retrieval from repository and assembly of fragments; besides
when a new design process is created a specific CASE tool
has to be instantiated from the CAME tool in order to give
the right support for each created process.

This is the key point of the work we propose in this paper:
a tool able to support the method engineer and that can be
instantiated as a specific CASE tool also allowing intelligent
support to the designer.

In addition to the CAME features we provided our tool
with the possibility (CAPE tool characteristics) of managing
the whole process by orchestrating the activities it is com-
posed of. The tool also enables the collaboration of different
stakeholders in these design activities and helps in reducing
the time the method engineer spends for producing the spe-
cific CASE tool.

In the future we will introduce more features above all in
the process definition part where we are planning to provide
some kind of support for the design rules modeling and we
will integrate the CAME we developed for interfacing the
method engineer with the repository we constructed.

6. ACKNOWLEDGMENTS

Part of this work makes use of results produced by the
PI2S2 Project managed by the Consorzio COMETA, a project
co-funded by the Italian Ministry of University and Research
(MIUR) within the Piano Operativo Nazionale “Ricerca Sci-
entifica, Sviluppo Tecnologico, Alta Formazione” (PON 2000-
2006).

7. ADDITIONAL AUTHORS

Additional authors: S. Gaglio (Dipartimento di Ingegne-
ria Informatica, Universitd degli Studi di Palermo, email:
gaglio@dinfo.unipa.it).

8. REFERENCES

[1] The workflow management coalition.
http://www.wimc.org/.

[2] S. Brinkkemper, M. Saeki, and F. Harmsen. A Method
Engineering Language for the Description of Systems
Development Methods. Proceedings of the 13th
International Conference on Advanced Information
Systems Engineering, pages 473476, 2001.

[3] S. Brinkkemper, R. Welke, and K. Lyytinen. Method
Engineering: Principles of Method Construction and
Tool Support. Springer, 1996.

[4] M. Cossentino. From requirements to code with the
PASSI methodology. In Agent Oriented Methodologies,
chapter IV, pages 79-106. Idea Group Publishing,
Hershey, PA, USA, June 2005.

[6] M. Cossentino, S. Gaglio, A. Garro, and V. Seidita.
Method fragments for agent design methodologies:
from standardisation to research. International

(10]

(11]

(12]

(13]

Journal of Agent-Oriented Software Engineering
(IJAOSE), 1(1):91-121, 2007.

M. Cossentino, S. Galland, S. Gaglio, N. Gaud,

H. Hilaire, A. Koukam, and V. Seidita. A mas
metamodel-driven approach to process composition. In
Proc. of the Ninth International Workshop on
Agen-Oriented Software Engineering (AOSE-2008),
2008.

M. Cossentino, L. Sabatucci, and A. Chella. Designing
jade systems with the support of case tools and
patterns. Special Issue on JADE of Telecom Italia
Journal EXP of September., 2003.

M. Cossentino, L. Sabatucci, V. Seidita, and

S. Gaglio. An expert system for the design of agents.
In Proceedings of International Workshop on Agent
Supported Cooperative Work at the IEEE The Second
International Conference on Digital Information
Management (ICDIM’07), 2007.

M. Cossentino and V. Seidita. Composition of a New
Process to Meet Agile Needs Using Method
Engineering. Software Engineering for Large

Multi- Agent Systems, 3:36-51, 2004.

A. Harmsen, M. Ernst, and U. Twente. Situational
Method Engineering. Moret Ernst & Young
Management Consultants, 1997.

M. Saeki, K. Iguchi, K. Wen-yin, and M. Shinohara. A
Meta-Model for Representing Software Specification &
Design Methods. Proceedings of the IFIP WGS. 1
Working Conference on Information System
Development Process, pages 149-166, 1993.

V. Seidita, M. Cossentino, and S. Gaglio. A repository
of fragments for agent systems design. Proc. Of the
Workshop on Objects and Agents (WOA06), 2006.

S. Si-Said, C. Roland, and G. Grosz. Mentor: A
computer aided requirements engineering environment.
In In Proceedings of the 8th international Conference
on Advances information System Engineering, volume
1080, pages 22—43. Lecture Notes In Computer
Science. Springer-Verlag, May 20 - 24 1996.

J.-P. Tolvanen. Incremental method engineering with
modeling tools: Theoretical principles and empirical
evidence (ph.d. thesis). Jyvskyl Studies in Computer
Science, page 301, 1998.

J.-P. Tolvanen and M. Rossi. Metaedit+: defining and
using domain-specific modeling languages and code
generators. In OOPSLA ’03: Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
pages 92-93, New York, NY, USA, 2003. ACM Press.

