
From PASSI to Agile PASSI: tailoring a design process to meetnew needs

Antonio Chella
University of Palermo

Dipartimento di
Ingegneria Informatica (DINFO)

Viale delle Scienze, 90128 -Palermo- Italy
chella@unipa.it

Massimo Cossentino, Luca Sabatucci, Valeria Seidita
Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)

Consiglio Nazionale delle Ricerche(CNR)
Viale delle Scienze, 90128 -Palermo- Italy

cossentino@pa.icar.cnr.it,
sabatucci@csai.unipa.it
seidita@csai.unipa.it

Abstract

From several years we are developing robotic multi-
agent systems according to well defined design methodolo-
gies. These methodologies evolved over time because of the
changes in the operating environments (robotic hardware
and software platforms) and specific missions accomplished
by our robots. In the last three years we used PASSI (Pro-
cess for Agent Societies Specification and Implementation)
obtaining good results but, the growing experience and day
by day accelerating changes in requirements suggested us
to find a new and more versatile approach. In this context
we developed the Agile PASSI methodology discussed in this
paper; it is an agile process built up capitalizing all the ex-
periences done with PASSI and its supporting tools some of
which have been adapted and reused in the new process.

1 Introduction

Robotic applications require a great attention toward do-
main specific problems like knowledge representation, envi-
ronment exploration (with cameras, laser beams or other de-
vices), actions planning, and coordination with other robots;
the complexity of these issues often brings researchers in
the field to devote a limited amount of time and effort to
following a rigorous design process also if they are aware
that it could produce an efficient documentation for fur-
ther maintenance and better the quality of the result. Look-
ing at most recent experiences in software engineering (ag-
ile processes [22][3] and extreme programming [16]) we
could remark that some of the motivations of the above
discussed situation can be found in the limits imposed by
traditional software engineering design process. They are
usually time consuming and the amount of produced docu-
mentation although useful is probably too large and detailed

for the needs of several developers. In the past, we devel-
oped some robotic systems by using PASSI [23][11]; re-
sults were interesting[14] and the quality of design-related
software attributes was remarkably high but the paradigm
was not so fast and flexible as developers would like to.
One of the main critics we registered was related to some
kind of anxiety that was induced in stakeholders involved
in the process while producing the diagrams of the first it-
eration; they rather would like to have a more direct way to
experiment some code-level aspects of the application (for
example they usually aimed at soon implementing new al-
gorithms characterizing their application).

In order to encompass these limits, we decided to
produce and agile version of PASSI. In so doing we
took advantage of studies about agent-oriented meta-
methodologies[26][24][17] that starting from the method
engineering approach born in the object-oriented context
[7][21][27], allow the composition of a new methodology
by reusing fragments of existing ones and, when necessary,
introducing new, specifically created, parts in the process.
In the next section we will discuss our work by presenting
its theoretical background and the specific needs we identi-
fied for a robotic systems development process. In section 3
the previous presented needs will be used to make the strate-
gic choices that define the skeleton of Agile PASSI that is
then presented, more in details, in section 4. Experiences
obtained by applying the new methodology are described in
section 5 and some conclusions are drawn in section 6.

2 Theoretical Background

In studying the solutions presented in this paper, we
considered a specific problem, the rapid development of a
robotic application accepting very low compromises on the
quality of the design and its documentation. This brought us
to identify the need for an agile methodology that could be

1



supported by some design tool. Taking profit of our previ-
ous experience with the PASSI methodology[13], patterns
reuse[14], and related design tools[26][12][23], we con-
ceived an agile version of PASSI by reusing some of its
parts (called method fragments) and building up the new
required portions of the process. This corresponds to apply-
ing the method engineering approach that will be discussed
in subsection 2.3 to the composition of this process. Several
differences exist in using the method engineering approach
in its original field (object-oriented systems) and in MAS
(multi-agent systems). All of these issues will be discussed
in the following sub-sections.

2.1 Requirements of a robotic design methodol-
ogy

Our systems are deployed on mobile robots moving at
a relatively low speed (only a few meters per second) and
usually performing missions related to the use of cogni-
tive capabilities (for example we designed systems for mu-
seum guide, surveillance and environment discovery appli-
cations). Our primary requirement is related to not distract-
ing developers from their main goal (tuning some kind of
new algorithm) with a long design process. This does not
mean that we could accept a straight coding approach since:
(i) our applications rapidly grow up in dimension and (ii)
we have a specific concern about documenting the know-
how reached in our laboratory in order to deliver it to new
students that will collaborate in our future researches. An-
other wish is related to the possibility of quickly reusing
contributions coming from other projects in order to restrict
the effort related to the development of a new application to
the solution of its novelty aspects. Dealing specifically with
robotics, this problem is less complex than it could seem
since great parts of the system could be reused both from the
algorithmic (general navigation solutions like path planning
and obstacle avoidance) and structural (communications,
resource sharing and data caching) points of view. As re-
gards the response time of the developed systems, our real-
time constraints are not very tight (as already said, ground
robots move relatively slow) but nonetheless the possibil-
ity of explicitly designing concurrent actions and time re-
lationships among them is highly desirable in order to op-
timize the performance of a system that because of the use
of low efficiency agent platforms (Java-based) could other-
wise bring to an unacceptable decay in performance. We
think that all of these issues could be satisfied by: (i) using
an agile process (see subsection 2.2) that supports a light
(manual) design phase while encourages the reuse of ex-
isting contributions in form of patterns and (automatically)
produces a consistent documentation at different level of ab-
stractions. This methodology has to be supported by a de-
sign tool in order to limit all operations done by hand that

contribute in slowing down the process and could introduce
mistakes in the final result.

2.2 Agile Processes

Classic software development methodologies are well
disciplined and heavily oriented to make a process pre-
dictable and have a great stress on planning. As a reaction
to this way of developing software,in the last years a new
kind of methodologies, called lightweight in a first time but
now known as agile, has been developed. An important
difference between the two kinds of methodologies is the
smaller quantity of documentation produced in the second
case, in fact agile methodologies are code-oriented being
source code the key element of documentation. The large
quantity of high level documentation we create while per-
forming a classic methodology induces some limitations in
facing changes; a very powerful way to take under control
continuous changes is modeling through little increments,
producing working portion of code as soon as possible, and
then iterating to include other features. The concept of iter-
ative development has a fundamental consequence that is to
continuously realize working subsystem that have not (yet)
all the functionalities of the final system but when tested
and integrated, they will provide the requested features. In
each iteration, this approach provides a base on which we
can plan the following increments. Finally we can say that
agile methodologies are not complete methodologies but
they are a supplement to the already existing ones, they be-
gin where the other fault or better where the other needs
changes in order to perceive their objective. Our attempt
is, now, to reexamine PASSI, using principles and tech-
niques of Agile Methodologies [22][3], in order to create
a lightweight methodology, simple, easy to use and prin-
cipally based on code production rather than on documen-
tation (that is still requested, but when it can be automati-
cally produced). In our work we followed the fundamental
strategies of the Agile Manifesto: (i) Individuals and in-
teractions over processes and tools, (ii) Working software
over comprehensive documentation, (iii) Customer collab-
oration over contract negotiation, (iv) Responding to change
over following a plan. We also considered the sequence of
activities defined in one of the most used agile methodolo-
gies, Extreme Programming[16]: (i) Planning, (ii) Design-
ing, (iii) Coding, and (iv) Testing. As it will be presented
later, this sequence will constitute the center of the proposed
methodology.

2.3 The methodology construction process

In order to build our new design process taking advan-
tage of the experiences done with existing methodologies
(and specifically with PASSI) we adopted the method engi-

2



-Name : String

-Knowledge : Ontology

Agent

-name : String

Task

Ontology

Concept

-Act

Action Predicate

-Name
-Exchanged Knowledge : Ontology

-Content Language

Communication

-Name : String

AIP

-Comm_act : Performative

Message

1

*

Implementation Task

1

1

Implementation Agent

1
1

1

1..*

Requirement

1..*

1

Non Funct. Req.

0..*

1..*

1 *

1 *

Figure 1. The multi-agent system meta-model
adopted in Agile PASSI

neering paradigm [7][21][27]. According to this approach,
the development methodology is built by assembling pieces
of the process (method fragments) [25][8][9] from a repos-
itory of methods. In this way we could obtain the best pro-
cess for our specific needs. We chose this approach because,
in the last years, it proved successful in developing many
object-oriented applications for example information sys-
tems [28] and is now collecting a growing interest from the
agent community[18]. Some relevant differences exist be-
tween the approach we used in building Agile PASSI and
similar approaches explored in the object-oriented context;
the most relevant one is that in the OO context the construc-
tion of method fragments (pieces of methodology), the as-
sembling of the methodology with them and the execution
of the design rely on a common denominator, the univer-
sally accepted concept of object and related model of the
object oriented system. In the agent context, there is not
an universally accepted definition of agent nor it exists any
very diffused model of the multi-agent system. Referring
to a MAS meta-model we mean a structural representation
of the elements (agent, role, behavior, ontology,. . . ) that
compose the actual system with their composing relation-
ships. Sometimes we can see that these concepts, for ex-
ample the behavior, are used, by different authors and in
different methodologies, with slightly distinct meaningsor
granularity. We built Agile PASSI by referring the MAS
meta-model represented in Figure 1. There the concept of
agent represents the entity performing the system function-
alities. Each functionality descends from one or more re-
quirements elicited during meetings with clients, users, de-
velopers and designers and then represented in a conven-
tional use case diagram. Agent knowledge is described in
term of instances of the domain ontology, that is a compo-
sition of concepts (entities and categories of the domain),

predicates (assertions about elements of domain) and ac-
tions (that agents can perform in the domain, so affecting
the status of concepts). In Agile PASSI we think to an agent
as composed of tasks representing a portion of its behavior
and embodying its capabilities of pursuing a specific goal.
An agent uses communications to realize its social relation-
ships and asking for collaborations from other agents. Each
communication is composed of messages expressed in an
encoding language and refers to an element of the ontol-
ogy, besides the flow of messages is ruled by an interaction
protocol (AIP).

Agile PASSI has been constructed according to the pro-
cess described in Figure 2: before building the new method-
ology, we selected the elements that compose the meta-
model of the MAS we will build and extracted all the
method fragments from the PASSI methodology [5][4]. In
this work we consider a method fragment as composed by
(see also the FIPA method fragment definition [2]):

1. A portion of process

2. One or more deliverables (artifacts like (A)UML/UML
diagrams, text documents and so on). Some precondi-
tions (like the required input data or guard condition)

3. A list of concepts (related to the MAS meta-model) to
be defined/designed/refined by executing the specific
method fragment.

4. Guideline(s) that illustrates how to apply the fragment
and best practices related to that A glossary of terms
used in the fragment

5. Other information (composition guidelines, platform
to be used, application area and dependency relation-
ships useful to assemble fragments) complete this def-
inition.

In defining and assembling our fragments we used a CAME
tool (Computer Aided Method Engineering tool, MetaEdit+
by Metacase in our experiment) that offers a specific sup-
port for the composition of a methodology from existing
fragments or by creating new ones. The composition and
selection of method fragments has been done by pursuing
two main goals: (i) including all the fragments needed to
design the elements listed in the MAS meta-model and (ii)
producing an agile process that could fulfill the already dis-
cussed requirements for a robotic oriented design process;
the result will be described in section 4.

3 Agile PASSI Architecture

In this section we will start from the analysis of PASSI
(that is our reference methodology) and then by consider-
ing the requirements for the new methodology described in

3



Method

Base

Method

Fragments

Extraction
MetaEdit

add-in

Design-Coding

tools

(MetaEdit, Agent

Factory)

Specific

Problem

Deployment

PASSI

MAS Meta-Model

Agile Passi

MAS Model

Running agents

Figure 2. The Agile PASSI construction process

subsection 2.1 we will select some portions of PASSI (i.e.
method fragments) and then use them to assemble the new
agile methodology.

3.1 PASSI description

PASSI drives the designer from the analysis requirement
to the implementation phase during the construction of a
multi agent system. The design work is carried out through
five models composed by twelve sequential and iterative ac-
tivities used to produce the MAS specification.

Briefly the models and phases of PASSI are:

1. System Requirements Model. It is composed of four
different activities and produces a description of the
functionalities required from the system and an ini-
tial decomposition of them according to the agent
paradigm. The four activities are: (i)the Domain
Description, where the system is described in terms
of functionalities; (ii) the Agent Identification where
agents are introduced and the already identified re-
quirements assigned to them; (iii) the Role Identifica-
tion where agents’ interactions are described by using
traditional scenarios; (iv) Task Specification where the
operation plan of each agent is draft.

2. Agent Society Model. It is a model of the social in-
teractions and dependencies among the agents of the
solution. In the Domain Ontology Description the ele-
ments occurring in the system domain are represented
in term of concepts, predicates, activities and relation-
ship among them. In the Communication Ontology
Description the focus is on the agent’s communica-
tions that are explained in term of ontology, language
and protocol. In the Role Description distinct roles

played by agents in the society the tasks involved in
each role are detailed.

3. Agent Implementation Model. It is a model of the so-
lution architecture (specific for a FIPA compliant agent
platform) in terms of classes and methods required. It
is composed of two streams of activities (structure def-
inition and behavior description) both performed at the
single-agent and multi-agent level of abstraction.

4. Code Model. It is a model of the solution at the code
level. It is largely supported by patterns reuse and au-
tomatic code generation.

5. Deployment Model. It is a model of the distribution
of the parts of the system across hardware processing
unit. Deployment Configuration describes the alloca-
tion of agents in the units and any constraint on migra-
tion and mobility.

This great number of steps may take a long time to obtain
the first prototype code. Also, the methodology is iterative
both among the models and in the whole life cycle; this
configures PASSI as a traditional methodology in which the
coding phase is positioned somehow late in the process.

3.2 The Agile PASSI Skeleton

In subsection 2.1 we already represented the needs that
arose from our experience in designing robotic systems, we
now want to link them to the strategic choices that defines
the skeleton (main aspects) of Agile PASSI. The identified
requirements and related decisions are:

1. The need of a short process, devoted to the frequent de-
livery of code; this logically brought us to conceiving
an agile process.

4



2. Another need regards the production of a complete
documentation that could allow a good transfer of ac-
quired knowledge in our laboratory; as a consequence
we decided not to cut too much the different views pro-
posed by PASSI but rather, obtaining most of them by
some kind of reverse engineering of code. The specific
nature of these documents arises from the following
points.

3. In order to better deal with the dimension of the sys-
tems that we usually produce, we think that three dif-
ferent representations are necessary: (i) a structural
view of the system at the multi-agent (social) level
of abstraction (it will be called MASD, Multi-Agent
System Definition), (ii) a similar view representing the
finer grained single-agent details level (whose name is
SASD, Single-Agent System Definition), (iii) a repre-
sentation of agents communications in order to study
social relationships and to let the designer to follow
the flow of information at run-time. All of these dia-
grams should provide zero-cost information produced
(as already said) by an automatic tool.

4. The opportunity of reusing the growing number of ex-
periences, algorithms and parts of projects, strength-
ened the role that pattern reuse already played in con-
ventional PASSI[14].

5. Although our systems cannot be considered hard real-
time, the opportunity of representing time constraints
and concurrent executions has been faced by a behav-
ioral description of the system agents in form of activ-
ity diagram (MABD, Multi-Agent Behavior Descrip-
tion).

6. Lastly, we decided to take advantage of our experi-
ences with PASSI by reusing a couple of its features
that we consider very successful: (i) the identification
of agents as a set of functionalities expressed in form
of use cases, and (ii) the central role of ontology de-
scription in describing and analyzing the agent solu-
tion.

All of these arguments brought us to identify the parts
of PASSI (method fragments) that could be reused (or even
adapted for the new methodology); after a detailed analysis
we concluded that mainly five PASSI activities should be
selected: Domain Requirements Description (DRD), Agent
Identification (AId), Domain Ontology Description (DOD),
Code Reuse (CR), Testing.

The PASSI methodology starts with a traditional system
requirement analysis (Domain Requirements Description,
DRD). In this phase the designer explores the functionalities
of the system drawing a hierarchical series of use case dia-
grams. During theAgent Identification (AId) activity, use

cases of the previous phase are grouped under the respon-
sibility of different agents that assume the responsibility of
supplying that functionality. The Agent Identification phase
has been maintained in Agile PASSI too, because it allows
an early appearance of agents in the process and this grants
to start thinking soonat agent.

The Domain Ontology Description (DOD) is another
fundamental phase in this methodology. While the AId is
useful for an exploration of the system functionalities, the
definition of the system ontology allows a domain analy-
sis at a conceptual level that easies the comprehension of
the agent solution (but sometimes of the problem itself) and
produces a more accurate design. The elements of the sys-
tem domain are identified and classified as concepts, pred-
icates and actions. Concepts often becomes part of the
agents’ knowledge, while predicates and actions represents
the content data of communications.

No more design oriented fragments are now selected
from conventional PASSI. In order to accept the principles
of the Agile Manifesto, the next phase facets with theCode
Implementation for agents of the system. This phase, con-
sidering the original PASSI methodology, arrives quite soon
in the process, and it is largely supported by a tool (Agent
Factory) for automatic compilation of agent structures, pat-
terns reused and automatic code generation. The main fea-
tures of this tool are:

• Automatic completion from diagrams: the tool ana-
lyzes the Agent Identification and Domain Ontology
diagram and generates a first skeleton of the agent
classes required for the implementation.

• Pattern Reuse: patterns may be introduced in the cur-
rent project from a repository so enhancing the func-
tionalities of one or more agents in a very low time
and obtaining very affordable solutions.

• Automatic code generation: the results of the previous
steps are weaved and the tool generates the code for
the multi-agent system. This code consists in a skele-
ton of the agent and their task classes; this skeleton is
completed by methods body coming from the reused
patterns. Some experiments have shown a percentage
of code reuse that is about 50-60%. Remaining parts
of the code have to be added manually by the program-
mer.

The Testing phase plays a fundamental role in all the
agile processes because it represents the only way of con-
trolling the correctness of the system and its adherence to
requisites. A test suite developed specifically for agent
verification completes our development scenario[10]. Test
plans are prepared before the coding phase in according
with specifications and the AgentFactory tool is also able

5



Test Plan

Pattern

Reuse

Coding

Test

MASD

SASD

COD

Planning
Sub Domain Requirements

Description

Code

MABD

Requirements

S.D.R. diagr.

Code

Testing

Agent

IdentificationDomain

Ontology

Description

DOD

A.Id. diagr.

Agent Society

Figure 3. The Agile PASSI process

of generating driver and stub agents for speeding up the test
of a specific agent.

4 Agile PASSI description

Starting from the method fragments identified in the pre-
vious subsection and considering the requirements for the
new methodology, we assembled the new Agile PASSI pro-
cess described in Figure 1 with a SPEM (the Software Pro-
cess Engineering Meta-model specification by OMG)[1] ac-
tivity diagram. There we can distinguish four models:

• Requirements, a model of the system requirements that
is composed of two steps (Planning and Sub-Domain
Requirement Description),

• Agent Society, a view of the agents involved in the so-
lution, their interactions and their knowledge about the
world. It is composed of two steps (Domain Ontology
Description and Agent Identification).

• Code, a solution domain model at code level

• Testing, planned before the code phase and performed
soon after it

According to the UML profile proposed by the SPEM spec-
ification, in Figure 1 we used three different icons to rep-
resent activities to be done in the process (WorkDefinition

in SPEM) and artifacts to be produced (UML models or
text documents); specifically, a WorkDefinition (like the
one used to model ”‘Planning”’) is represented by a cou-
ple of hexagons connected with a line, an UML model (like
”‘Aid. Diagram”’) is represented by an icon with four small
squares and a text document (like ”‘Code”’) is represented
by a typed sheet; the remaining symbols belong to normal
UML activity diagrams notation.

4.1 Requirements model

It is composed of two workdefinitions: planning and sub-
domain requirements description. In the first one we privi-
lege communication among development team components
in order to plan one or more iterations, through a risks and
requirements analysis, with the aid of so called user stories
(that are typical of XP programming). During this phase
the development team decides which activities have to be
performed and the order they should be done; the result is
a division of the problem in several sub-problems faced in
sequential iterations (as prescribed to be in agile methodolo-
gies). The resulting iterativity and incrementality are repre-
sented in the model by the two main cycles. In the second,
common UML use case diagram(s) are used to represent a
functional description of the system. The termsubrefers, as
previously said, to the chance of dividing the whole prob-
lem in sub-problems.

6



 

Figure 4. The Agent Identification Diagram de-
signed in the first iteration for reported exper-
iment

4.2 Agent Society Model

Developing this model involves two work definition:
Agent Identification and Domain Ontology description. The
first starts from the already produced use case diagrams; ac-
cording to our definition of agent, it is possible to see an
agent as a use case or a package of use cases and starting
from a sufficiently detailed diagram of the system function-
alities, we group one or more use cases into stereotyped
packages so as to form a new diagram, in so doing, each
package defines the functionalities of a specific agent; for
instance in Figure 4 we can see a portion of A.Id. dia-
gram. Domain ontology description aims to capture the on-
tology of the system, here involved entities are represented
through classes. The ontology is described (using a class
diagram, see Figure 5) in terms of concepts (fill colour :
yellow), predicates (fill colour: light blue) and actions (fill
colour: white).Elements of the ontology can be related us-
ing three UML standard relationships: generalization, asso-
ciation and aggregation. We think that this step is to be done
at the same time with the previous one, in fact, while decid-
ing which functionalities will be assigned to different agents
we could also identify and represent their knowledge. For
instance a Domain Ontology Description diagram reporting
some of the concepts is shown in the Figure 5.

4.3 Code Model

This model includes two work definitions: Pattern Reuse
and Coding. In the first we try to reuse patterns of agents
and we obtain pieces of reusable code that is documented
with a structural view and a behavioral one. This is done
with aid of a tool that we already adopted in conventional
PASSI: Agent Factory; it allows the creation of a multi-
agent system by designing new agents or referring to a
repository of patterns in order to add them more function-

Figure 5. A Domain Ontology Diagram repre-
senting a portion of the ontology related to
the agent represented in 4

alities; it provides a support for the automatic compilation
of a relevant amount of code (not only class skeletons but
also inner parts of methods) and it performs the reverse en-
gineering of manually modified code. This pattern-based
approach improves project quality, increases the quantityof
rapidly produced code and lowers the overall time and costs
[23] of development. Since we need a good documentation
of the design phase, we specifically produced an add-in for
the MetaEdit+ tool that we use to design our systems. This
module, starting from the information stored in the Agent
Identification diagram and in the structural and behavioral
models generated by Agent Factory, automatically produces
four documents:

• COD - a class diagram representing agents, their com-
munications and related parameters (content language,
agent interaction protocol and referred ontology)

• (M)ASD - a class diagram where we represent the
whole system at the social, multi-agent level of ab-
straction. It represents each agent with one class and
agent’s tasks as methods of the class.

• (M)ABD - an activity diagram representing the flow of
control and communications between all the agents.

• SASD - a different class diagram for each agent in or-
der to represent its internal structure and all its task in
the most detailed way

In the coding step we complete the code previously pro-
duced by putting in practice all the rules of extreme pro-
gramming.

4.4 Test

The testing phase, in this process, envelopes the coding
phase, that is it occurs before and after than coding. This

7



feature came out from the agile manifesto principles. The
agile processes, as the eXtreme Programming (XP), rule
that testing must be a continuous activity during the devel-
oping process. The testing phase have to start before pro-
gramming a component (or an agent in this context); in this
phase the programmer have to prepare one or more tests that
the component must satisfy after the coding phase. This
represents a way to take under control the programming
work, in fact if almost a test fails the component will be
subject to a refinement and a refactoring; this until all the
test are satisfied. When the test phase terminates success-
fully then a working version of the agent is released. This
may be not entire according what requisites were included
in the test, but it is perfectly running, and it may be used as
a prototype to use for a demonstration for the client.

5 Experimental results

The evaluation of a methodology is a complex issue that
can be faced from several points of view. In this work we
will examine the performance of Agile PASSI in two differ-
ent ways: first of all, a qualitative exam will be carried on by
considering its proximity to some attributes that an agent-
oriented methodology should have, then a more quantitative
evaluation will be done by repeating some projects (or bet-
ter significant part of them) already realized with conven-
tional PASSI and comparing the results in terms of develop-
ment time and support received from the adopted tools. A
methodology that is specifically conceived to design MAS,
should exhibit some characteristic that are specific of its do-
main; in this work we will refer to the categories presented
by K. Hoa Dam and M. Winikoff in [15]. In this work they
compare some agent design methodology by using a ques-
tionnarie that has been issued to designers experienced with
those approaches and the same methodologies authors. The
basic criteria we will consider are:

• Concepts and ideas that the methodology deals with.

• The models that are drawn and the notations that are
used to express these models.

• The phases and steps that are part of the methodology
(i.e. the process aspect of the methodology).

• A range of practical issues that are concerns when
adopting a methodology (pragmatics).

By considering the MAS concepts addressed in Agile
PASSI, we can remark that it supports: concurrency (it was
one of the requirements identified in subsection 2.1, multi-
agent planning (represented in the MABD, Multi-Agent Be-
havior Description diagram), communications (detailed in
all of their most important aspects) and an environment
representation in terms of the knowledge that the agent

achieves about it. Agents are also supposed to be au-
tonomous and proactive (they will act according to their
own plan to reach their goals without any supervision). On
the contrary, no kind of description there exists about men-
tal attitudes (like believes, desires, and intentions). About
the definition of specific (or proprietary) terms and their
semantics we can say that the number of sources about
conventional PASSI significantly contributes to define all
of them and therefore this can be listed among the posi-
tive aspects too. As regards modeling and notational as-
pects, Agile PASSI largely refers to UML and extends it
only when this is necessary to represent specific issues of
agency that could be not coped with an object-oriented
notation; again the existing documentation about PASSI
(that is even defined according to OMG SPEM specifica-
tions [5]) definitely contributes to clarify everything. Obvi-
ously the use of our notation will be easy only for design-
ers already skilled with UML and object-oriented design.
Traceability is one of the major advantages of Agile PASSI;
the add-in that we developed for MetaEdit and the pattern
reuse/reverse engineering tool (Agent Factory), give a deci-
sive contribution in this direction, by verifying the consis-
tency among the design artifacts and corresponding code at
the different stages of the process. Our process is iterative,
composed by a low number of steps and strongly involves
the end-user (or customer). This is a precise choice done to
be compliant with the agile manifest principles[22]. After
an initial phase of study and planning the process may be re-
sumed in the following phases: Test Planning - Code Reuse
- Programming - Testing - Refactoring. As a consequence
some of the phases of traditional methodologies are not con-
sidered or performed very quickly. Quality assurance is
pursued by largely reusing patterns and automatically pro-
ducing relevant portions of code. No supports is provided
for management issues or estimation about time, costs and
so on. Considering the methodology pragmatics we should
note that Agile PASSI is conceived to be used in our lab-
oratory by graduating students and researchers in the field.
Nonetheless it is much simpler than the most diffused agent-
oriented design methodologies (Gaia, Tropos, Adelfe, Mase
an so on) and it is the unique agile one. Almost all the
steps of the process are supported by automatisms and tools.
Typically these are used to automatically complete/partially
compile diagrams by using the information already intro-
duced by the designer/programmer in the previous phases.
The programming phase is also well supported in code reuse
by the Agent Factory tool. Some limits still exist in the eas-
iness of using all of these tools; they are totally integrated
but they could create some problems if some specific steps
are not performed in the right way; moreover, we are still
experiencing some troubles in redesigning some diagrams
in successive iterations (problems are related to the position
of diagram elements that are not properly located with re-

8



Figure 6. The Planner and DataFusion agents
described in section 5

spect to the others). In order to explore more in details the
process and to obtain an estimation of the time and the ef-
fort required to develop a robotic application with it we built
several systems. Now, for space concerns, we will report a
simple experiment centered on the navigation of a Koala
robot in an unknown environment. The obstacle avoidance
is supported by the on board IR sensors and by an eye-bird
camera looking at the environment. In Figure 6 a portion of
the Agent Identification diagram related to this experiment
is reported; the figure shows only a portion of the agents of
the system, the Planner and the DataFusion. The Planner
agent is responsible for elaborating the best path to the goal
using the VFH algorithm[6][19][20]; the DataFusion agent
produces a merge of the data collected by different sensors
(external camera and on board IR sensors). A portion of the
domain ontology is described in Figure 5 and includes con-
cepts like SelfPosition and TargetPosition that are used to
plan the robot trajectory. The same system had been devel-
oped, in the past, with the conventional PASSI methodology
and no one tool or automatic support. The development of
this application (without considering the study and tuning
of alghoritms) took 2 weeks for the PASSI project and 1
week for the programming and testing phases. The multi
agent system produced was composed by seven agents dis-
tributed in three computers connected by a LAN. The total
dimension of the application is more than five thousands
lines of code. Rebuilding the application with Agile PASSI
needed only 2 weeks in total; the final release has been ob-
tained after three iterations each of which terminated with
a running prototype (the agent involved in the first iteration
is described in Figure 4, some others in Figure 6). Dur-
ing the reuse phase, the use of automatism, patterns and
the automatic code generation produced a total reuse of ap-

proximately of 45-50% of entire code. This represented a
significative reduction of the work for the programmer. The
documentation obtained from this design experience is good
in quality (like can be noted by figures reported in this pa-
per), consistent and largely describes the system and could
enable future maintainance.

6 Conclusions and future works

In this paper we presented a new methodology, Agile
PASSI that we conceived in order to have a design process
that completely fulfills the needs of developing a robotic
system. In the last years we adopted the PASSI design
methodology and the results were good but, we were re-
cently looking for a new, more versatile and quick process.
In building it, we started from the analysis of our require-
ments, the study of agile processes and method engineer-
ing approach; the results of this phases have been concili-
ated with our existing experience in conventional PASSI by
reusing some portions of it in the new process. Agile PASSI
is supported by an add-in that we produced for the design
tool we adopted (MetaEdit+ by Metacase) and a pattern
reuse/reverse engineering application that is a new evolu-
tion of the already presented Agent Factory. We already de-
veloped a few systems with Agile PASSI and now we have a
reasonable level of confidence with it; in this work, in order
to evaluate its goodness, we reported a qualitative analy-
sis based on the assessment of several attributes that should
characterize an agent-oriented methodology and we also de-
scribe an example application that has been developed in
both conventional PASSI (a couple of years ago) and Agile
PASSI (for the purpose of this paper). In the future we will
try to enhance the friendliness of the design tools (MetaEdit,
our add-in for it and Agent Factory) because their integra-
tion is not very transparent to the user and little problems
exist in the (automatic) redesign phase of some diagrams
whose elements are not correctly re-positioned.

References

[1] Software process engineering metamodel.
version 1.0. OMG Document, Nov 2002.
http://www.omg.org/technology/documents/formal/
spem.htm.

[2] Method fragment definition. FIPA Document,
http://www.fipa.org/activities/methodology.html, Nov
2003.

[3] Agile Alliance. http://www.agilealliance.org.

[4] M. Cossentino an L. Sabatucci and V. Seidita. Method
fragments from the passi process.Rapporto tecnico
ICAR-CNR, (21-03), 2003.

9



[5] M. Cossentino an L. Sabatucci and V. Seidita. Spem
description of the passi process.Rapporto tecnico
ICAR-CNR, (20-03), 2003.

[6] J. Borenstein and Y. Koren. The vector field histogram
- fast obstacle avoidance for mobile robots.IEEE
Journal of Robotics and Automation, 7(3):278–288,
1991.

[7] S. Brinkkemper. Method engineering: engineering the
information systems development methods and tools.
Information and Software Technology, 37(11), 1995.

[8] S. Brinkkemper, K. Lyytinen, and R. Welke. Method
engineering: Principles of method construction and
tool support.International Federational for Informa-
tion Processing 65, 65:336, 1996.

[9] S. Brinkkemper, M. Saeki, and F. Harmsen. Meta-
modelling based assembly techniques for situational
method engineering.Information Systems, Vol. 24, 24,
1999.

[10] G. Caire, M. Cossentino, A. Negri, A. Poggi, and
P. Turci. Multi-agent systems implementation and
testing. InFourth International Symposium: From
Agent Theory to Agent Implementation, Vienna, Aus-
tria (EU), April 14-16 2004.

[11] A. Chella, M. Cossentino, R. Pirrone, and A. Ruisi.
Modeling ontologies for robotic environments. In
The Fourteenth International Conference on Soft-
ware Engineering and Knowledge Engineering, Is-
chia, ITALY, July 15-19 2002.

[12] M. Cossentino, P. Burrafato, S. Lombardo, and
L. Sabatucci. Introducing pattern reuse in the de-
sign of multi-agent systems. InAITA’02 workshop at
NODe02, Erfurt, Germany, 8-9 October 2002.

[13] M. Cossentino and L. Sabatucci.Agent-Based Man-
ufacturing and Control Systems: New Agile Manu-
facturing Solutions for Achieving Peak Performance.
CRC Press, April.

[14] M. Cossentino, L. Sabatucci, and A. Chella. A pos-
sible approach to the development of robotic multi-
agent systems. InIEEE/WIC IAT’03 Conference, Hal-
ifax - Canada, 13-17 October 2003.

[15] Khanh Hoa Dam and Michael Winikoff. Comparing
agent-oriented methodologies. InFifth International
Bi-Conference Workshop on Agent-Oriented Informa-
tion Systems (AOIS-2003), Melbourne, Australia, 14
July 2003 2003.

[16] Extreme Programming. A gentle introduction.
http://www.extremeprogramming.org.

[17] Zahia Guessom, Massimo Cossentino, and Juan
Pavon. Methodologies and Software Engineering for
Agent Systems, chapter Roadmap of Agent-Oriented
Software Engineering: The European Agentlink Per-
spective. Kluwer, 2004.

[18] T. Juan, L. Sterling, and Michael Winikoff. Assem-
bling agent oriented software engineering methodolo-
gies from features. InThird International Workshop
on Agent-Oriented Software Engineering, Bologna -
Italy, 2002.

[19] J.Ulrich and J.Borenstein. Vfh+: Reliable obstacle
avoidance for fast mobile robots. InIEEE Interna-
tional Conference on Robotics and Automation, page
1572, Leuven, Belgium, July 15-19.

[20] J.Ulrich and J.Borenstein. Vfh*: Local obstacle avoid-
ance with look-ahead verification. InIEEE Interna-
tional Conference on Robotics and Automation, pages
2505–2511, San Francisco (CA), USA, April 2000.

[21] K. Kumar and R.J. Welke. Methodology engineer-
ing: a proposal for situation-specific methodology
construction.Challenges and Strategies for Research
in Systems Development, pages 257–269, 1992.

[22] Agile Manifesto.http://http//agilemanifesto.org.

[23] M.Cossentino, L.Sabatucci, S.Sorace, and A.Chella.
Pattern reuse in the passi methodology. InESAW’03,
Imperial College London, UK (EU), 29-31 October
2003.

[24] P. O’Brien and R. Nicol. Fipa - towards a standard for
software agents.BT Technology Journal, 16(3):51–59,
1998.

[25] J. Ralyt and C. Rolland. An approach for method
reengineering. Lecture Notes in Computer Science,
pages 27–30, 2001.

[26] L. Sabatucci and M. Cossentino. A multi-platform ar-
chitecture for agent patterns representation and reuse.
In WOA’03 Workshop, Villasimius (Cagliari) - Italy,
10-11 September 2003.

[27] Motoshi Saeki. Software specification & design meth-
ods and method engineering.International Journal
of Software Engineering and Knowledge Engineering,
1994.

[28] Juha-Pekka Tolvanen. Incremental method engineer-
ing with modeling tools: Theoretical principles and
empirical evidence (ph.d. thesis).Jyvskyl Studies in
Computer Science, page 301, 1998.

10


