5 CHAPTER 5: AGENT SYSTEM IMPLEMENTATION

5.1 Introduction

The systematic study of the development of agent systemsrkasrd history. Little time has
elapsed since the scientific world perceived the promise of using the agedigpato solve a great
variety of problems. This realization prompted many reseaduwoedesign, independently, their
own infrastructures on which to activate their own agents. The restking proposals were often
optimal, very efficient for a specific problem domain, but not devoidsahe defects. The
programming language, the communication paradigm, and other techrtiziégd denerally made
these frameworks unsuitable for purposes other than those for whichem gpproach was
originally conceived. The total absence of genuine attention dswtre system design and
development process (and consequent documentation) often stymied thie, gaaldbility and
maintenance of these applications. Furthermore, systems weréopal/ewithout regard to
compliance to any standard, thereby creating agents so significantlyeditiat they were unable to
interact with each other across different frameworks. Nowagant technology has come of age,
these solutions, while good for a first experimental phase, , atequate for the true uptake of this
paradigm.

The importance of standardization is such a pivotal issue thateanational organization, the
Foundation for Intelligent Physical Agents (FIPA), was founded to promhetentelligent agent
industry by openly developing specifications supporting interoperabititgng agents and agent-
based applications. A new and very active field, agent-orientedasefewngineering is now dealing
with the problem of identifying the proper design method for a multi-agennsyste

In this chapter we deal with all of these themes, firstudising the key features of FIPA
specifications in order to position and define widespread conceptsadjgat, behavior, and
communication in a reference context, and then presenting a comdefe pecess (adopting the
PASSI methodology) applied to the PPS-Bikes’ system casg. dtudnore detail, the chapter is
articulated as follows: in paragraph 5.2 the standard architedtisigned by FIPA for an agent
platform is examined, describing the mandatory components that eéfchnplaas to implement,
then in paragraph 5.3, using the practical example of the PPS-Bistem, the fundamentals
guiding the implementation of a multi agent system, startiogn fthe initial design down to the

code implementation, are illustrated.

5.2 The FIPA abstract architecture

The work of the FIPA focuses mainly on the definition of the agdasiform (AP); this is
defined as the physical infrastructure where agents can be ddpldpst of the standardization
work, therefore, concerns the definition of some key-points that ama&Ro comply with. Thanks
to these standards, agents living in two or more FIPA complianbptadfare able to communicate
and interoperate with each other.

The principal aspects defined by FIPA specifications are:

* The message level, which describes the composition of a message (expréstee Agent
Communication Language), a set of primitive messages witlea@afispsemantic (referring
to the speech acts theory [17]) and the sequence of speech aatentipatse a correct
communication (the Agent Interaction Protocol);

* The transport level, which details how a message has to be mmradafsender to a
receiver;

* The service level, which defines the mechanism used by eachtagéfar its own services
and to discover the services offered by other agents in the platform.

5.2.1 Architecture overview

One of the main goals of FIPA specifications is to promote woperability between agent
applications and agent systems and this is achieved by dgfthen Abstract Architecture
Specification. This is a collection of architectural elemelmés tharacterize each FIPA-compliant
platform. The term *abstract’ means that the architectunaekedbnly some functional requirements
but it is neutral about the technologies used to achieve them.

The agent-platform architecture (represented in Figure lemgered on three mandatory
components:

» the DF (Directory Facilitator) component,

* the AMS (Agent Management System) component,

* the MTS (Message Transport System) component.

All of these elements will be examined more in detail in the paragraphs tioat.foll

Agent Platform

MTS

Figure 1. Overview of the FIPA abstract architectue

5.2.2 Infrastructures for agent interactions

The DF component of an AP provides the yellow pages service to agentygy"lion that
platform. It defines the support for agents’ collaborations centered on the concapiad where a
service is defined as an activity that an agent performs oretjuest of another one belonging to
the same community. Agents may interact with the DF in twierét ways: registration and
search. To advertise that a specific service is availabteet community the provider agent can
register it in the DF with a significant name. Generaltyagent can provide more than one service,
each one of them being registered in the DF with a differenen@m agent has no a-priori
knowledge about the other agents of the system. In order to discover if another canybleetyp &@n
reaching its own goal(s), the agent may search the DF. CargBguhe agent obtains a vector of
DF-entries; each entry contains the univocal address of an agdm system that performs that
service. Generally speaking, the result is a vector, becausethnaorene agent can provide the
required service.

The AMS is responsible for managing the operation of an AP; the main duatities of the
AMS are the creation, deletion and life-cycle management of agér@sAMS may support other
activities that are not mandatory, e.g., the migration of agerdad from other platforms (mobile
agents). The AMS maintains the physical index (AID) of allafgents that are currently resident on
an AP; this index is an address that univocally identifies all the agents gkthms

The MTS (Message Transport Service) is generally invisible to agerdgheir developers. It
provides a mechanism for delivering messages among agents wijlatfaam and to agents that
are resident on other platforms. Messages are coded in a statndetdre composed of an envelop
and a payload. The envelop contains transport information needed farrtbet delivery of the
message. Transport information could specify a network protocol [KEPHor SMTP and the
address of the agent if it is reachable using that protocol (komgdike www.mysite.net/abor

agentname@host.domain.grgThe payload record is coded in a language called Agent
Communication Language (ACL) (see also paragraph 5.2.3.2), and it cotitaimsformation
content that is to be delivered.

5.2.3 Agent Social relationships

Social relationships are among the most important charaatsristiagents. A multi-agent
system is composed of a number of autonomous and interacting agents ianflequently
represented as a well organized society of individuals. In this xtoeéeh agent has its own
personal goals and plays one or more different roles during it lifderact with other community
members.

Agents interact through messages only and, most commonly, theictideris composed of a
series of messages, thus composing what we define as a ctiowernsas more correct to think
about an agent interaction as a conversation rather then one singsi@ggmeA conversation, and
specifically a FIPA conversation, is essentially composed ofoormaore messages. As already
mentioned, each message needs a transport infrastructure in ordetetoveesd. This allows the
effective implementation of a conversation but does not ensure amyness for it. In order to add
a semantic value five important concepts must be adhered to i(gge B): ontology, content,

Message
Expressed in
| L
* *
Contains 1.* | -Contains 0.* | -Contains 1 | Embodies
Content Content Language Ontology Communicative Act Agent-communication-language
% Belongs_to
\ \ | \
RDF SL KIF cCL AP ACL KQML

Figure 2. Structural diagram illustrating the elements constituting a FIPA Message and the relationsp
among then

content language, communicative act and agent interaction protocol (AIP).

5.2.3.1 Modeling the Communication Semantic with an Ontology

An ontology is a representation of the categories that exist speaific domain; it is a
vocabulary used to describe the terms and the relationships amongitheansubject matter. An
ontology allows the specification of the type of terms an ageayt handle and what type of
manipulation and reasoning it is able to perform on them. Refemwinget same ontology, two
agents can interact without the risk of a misunderstanding. Theytoefiee same set of concepts
and, if they adopt the same (content) language, the communicatidmewrleaningful for both of
them. On the contrary, the lack of a common ontology introduces théhatk term used by an
agent with some specific significance will be interpretedabgther in a different way, thereby
jeopardizing agents’ interaction and the entire system’s performance.

Ontology defines the meaning of categories and the relationsfopcathem but in order to
manage it agents need a language that can represent bathtdlegy structure and content. In
many approaches, the ontology structure is composed of three kindenoénéd (concepts,
predicates and actions), and the associations among them. Manysaléver dealt with the
representation of the ontology using Unified Modeling Language (UM&][19]. In this book we
will adopt the PASSI notation that uses a UML class diagram. €pisicpredicates and actions are
represented as classes characterized by a specific gperebigure 3 reports a PASSI diagram
representing a portion of the ontology designed for the PPS-Bikes’ multi-sagtam.

As an example, th©rder class (Figure 3) represents a concept of the ontology; apbnc
stands for one of the categories of the specific domain, ardsiexampleOrder represents the
order issued by a customer for receiving some bicycles. It doase attributes, e.g., the
delivery_datethat is the delivery date requested by the customer for theedrdeods. A concept
may be related to other concepts; for example, an order is composad of moredrderStock
i.e., the number of bicycles of a certain model specified in the order). A concgpktead another
concept, inheriting all the attributes and relationships of its stg@ept. For example,Gustomer
is a specificCompanywith some supplementary characteristics (Dattribute used to identify it
in the bicycle production company).

<<concept>> <<action>>

Bicycle <<concept>> requestLotProduction
code : int ! OrderStock Actor : String
model_name : String h quantity : int ResultReceiwer : String
price : Currency
<L1__n <<Act>> ProduceLot(lot : Lot)
<<concept>>
<<predicate>> ' Order <<concept>>
isReady price : Currency 1.* Lot
value : Boolean order_date : Date ID : Long
) delivery_date : Date 3 ScheduledDate : Date
ID : Long S
T~
<<concept>> 1 <<action>>
: Ccompany <<concept>> RequestOrderSchedulation
nz;ne : Strér;g . Customer Actor : String
Sho:]fsnﬂmbrgg St < D5 Long ResultReceiver : String
Emal‘(” ijsttrin%t) <<Act>> PerformScheduling(order : Order)
ank_data : String $
<<concept>>
CustomerBook

Figure 3. Example of ontology expressed using a UMtlass diagram (Domain Ontology Description diagranof
the PASSI methodology)

A predicate represents a particular statement or belrefiinding some concept, as in the case
of theisReadypredicate shown in Figure 3; this is used to announce that somacs@edr is
ready to be delivered.

An action indicates the type of operation that can be performedeoments of the ontology,
thus possibly provoking some changes to the internal knowledge of the . agent
RequestOrderSchedulatiagn Figure 3, is the example of an action specifying the requestdne
agent to another to schedule the production of the bikes for some specific order.

5.2.3.2Message Content and Message Content Language

The MTS is the architectural level of a platform that performs the routiagressage from the
sender to the receiver whether they are in the same or in different plaffdrenge-cycle of a
message from its initial creation by the sender to its reading by theeteagent is reported in
Figure 4. The basic information delivered by a message is taken from the ontologysehter

AgentPI atform
Creates Mesage | Content
Content | Language
Message
I Payload AL
MTS
A
L _/ A
e =
Payload+
Envel
Y
MIS
Y

Figure 4. Transfoymations of a m%e juriag itsfe

Reads
Content
Message
. Language

AgentPIatform
agent. It could be a concept, a predicate or an action. The message conteri¢tha ’dement of

the ontology) is expressed by the agent using a Content Language. Et#fcapons include four
languages:

1. Semantic Language (SL)

2. Constraint Satisfaction Problems (CCL)

3. Knowledge Interchange Format (KIF)

4. Resource Description Framework (RDF)

These are born in different contexts and represent the solutions adoppestific approaches
or by some communities; each of them has its specific domaairich it is preferable. The RDF
language was created for web applications, but, as previouslydlligeoved to be optimal for
representing an ontology for many different applications. Iteéguently used, alternatively to SL,
as the Content Language of messages exchanged among FIPA @bentsher two languages,

CCL and KIF, were developed for Atrtificial Intelligence apations; they are very powerful at
expressing actions and predicates, but they come with a complex grammar.

The RDF language enjoys very widespread use because i) it is both’aawéB&n FIPA
standard, ii) it has quite a simple syntax and iii) it allows a number of posgbbseatations (e.g.,
it also exists in the form of a XML specification). The RDF description (sspctusing XML) of
the ontology elemericyclereported in Figure 3 is shown in Figure 4.

<rdfs: d ass rdf: | D="Bicycle">
<rdf:type rdf:resource="rdf sx: concept"/>
</rdfs: C ass>
<rdf: Property | D="Bicycl e. rodel _nane" >
<rdf s: domai n rdf:resource="#Bicycl e"/>
<rdfs:range rdf:resource="rdf sx: String"/>
</rdf: Property>
<rdf: Property | D="Bicycle.price">
<rdfs: donmmi n rdf:resource="#Bicycle"/>
<rdf s: range rdf:resource="#Currency"/>
</rdf: Property>

Figure 4. The RDF description of the Bycicle elemerof the ontology shown in Figure 3

Once the message content is expressed in a content languagedéssary to encapsulate it
into a structure called Message Payload. This structure isldoda specific ACL that includes
several other message parameters, the most relevant of which are:

» performative Type of communicative acts (inform, request, agreehighwlepends on the

AlP;
» sender ID of the agent that is playing the Sender role in the communication;
* receiver ID of the agent that is playing the Participant role in the comatiamic
e content The already discussed Message Content (express in a Contengégngua
* language Language used for the Message Content;
* ontology name of the ontology element reported in the Message Content;
» protocol name of the AIP used in the communication;

The Message Payload, coded in ACL, is received by the MTS qidtferm where the Sender
agent is located. MTS encapsulates the payload into an Envelopelimgclthe transport
information needed to deliver the message: sender and receiver tralesmoiptions, plus
additional information such as the encoding representation, sealatgd data and whatever else
needs to be visible to the MTS. The transport-descriptions descrédenahsport protocol is to be
used (IIOP, HTTP and WAP are all examples of such protoaois) the physical address (e.g., an
IP address) to which the message has to be delivered.

1World Wide Web Consortium RDF specifications: Httpww.w3.org/RDF/
2FIPA RDF specifications: http://www.fipa.org/spHigs=00011/

5.2.3.3 Agent Interaction Protocols

The FIPA Abstract Architecture places a great deal of ilapo#d to the interaction rules of
agent conversations. These have been formalized primarily through ctmcepts: the
communicative act and the AIP (also known simply as protocol snctbmtext). According to the
FIPA directive, each conversation has to respect a protocol andiohde made up of
communicative acts (see also Figure 2)cddnmunicative actis a way to associate a predefined
semantic to the content of a message so that it can be uhjmaaérstood by agents. The FIPA is
responsible for maintaining a consistent list of communicatives. aSBbme examples of
communicative acts are reported in Figure 5; theyeayeestrefuse agree inform, andfailure.

A protocol univocally defines which communicative acts may be used in a GatieT and in
what order the related messages have to be sent to give the ipegeng to the communication.
Therefore, a protocol compels the use of determined messagesspiitific semantic according to
a specific sequence. When an agent starts a conversation witleraagent it has to specify a
protocol; a conversation without a protocol is not possible. If a meskagenot respect the rules
of the protocol or violates the prescribed order, then the conversation fails.

Until now, FIPA specifications use AUML diagrams [20][21] to cédse protocols. This
diagram is a modified version of the UML sequence diagram. Th& Re&quest Interaction
Protocol is reported in Figure 5. This may be used when one agemi{idt®r) asks another (the

Participant) to perform some kind of action.

Initiator Participant

request |
L

refuse

i
n)

inform

failure

Figure 5. The FIPA Request Interacting Protocol

To start the conversation the Initiator sendeg@uestcommunication act. The content of the
message is a description, constructed in a language the regedenstands, of the action to be
performed; if there is a common ontology the content may be an ontalgg éas described in

the previous paragraph).

The Participant processes the incomreguestand it decides whether to accept or refuse it.
The receiving agent makes a decision on the basis of a typasaining as could be expected given
the principle of autonomy of agents. If the Participant agent agygessform the requested action,
then it replies with amgreemessage; otherwiserafusemessage is sent (the possibility of sending
anagreeor refuseresponse is represented in Figure 5 by the diamond).

Once the request has been accepted, the Participant has to fulfill the adtianarding to the
result obtained, reply with one of the following communicative acts:

» a failure message to notify that the action was not completed for seawomn; this

motivation is usually reported in the content of the message;

* aninform message to communicate that it successfully carried oadi@en to be done;

some information on the action results may be reported in the contiiet message (e.g., a
link to a web site selected according to criteria passed on by the Inigett).a

5.2.4 JADE: an Implementation Platform

The FIPA describes an abstract architecture that cannot bdydingalemented; since the main
focus of these specifications regards agent interoperabilitymaaly details are provided on the
platform implementation aspects.

On this basis a great number of different solutions have been proposedeolast years, a list
of which can be found on the FIPA web site. Among the most widety argeFIPA-OS, JADE and
Zeus. In this section the JADE AP is briefly analyzed in otdeillustrate some of its specific
implementation details.

JADE (Java Agent DEvelopment Framework) [12] was completelgldped in Java language
by Telecom ltalia Lab with the collaboration of the UniversityParma. The JADE platform has
many interesting features; one of these is the support it provides fomagjaitity, which allows its
use for the creation of distributed applications where mobility pkeysimportant role (e.g.,
searching).

A JADE agent is based on a class that extendfgentsuper-class (a UML class diagram
representing th&dministrationagent from the bicycle case study reported in the next sidrsext
shown in Figure 6). The agent class usually contains a constiuetprired by Java and, by
convention, in JADE used to initialize data structures) andehgmethod, which, automatically
invoked by the platform once the constructor ends, is often used to hegagént activity. An
agent can be instantiated only by the platform; when this happens/azal ID is assigned to the
agent and the constructor followed by #supmethod are executed. Often, the developer uses the
constructor to initialize the agent’s data structures andgehgmethod to start the activity of its
agent.

1C

Agent

Behaviour
(from JADE)

(from JADE)

/\

: H

<<Agent>>
Administration
BSAGENT TYPE : String = Administration Agent <<Task>>
aversion : String = 1.0 RequestWork
Eproductcomponent : ProductComponent
rawmaterial : RawMaterial
Eproductmodel : Bicycle
E&componentlot : ComponentLot
Border : Order
Borderstock : OrderStock
Ebicycle : Bicycle
Bicustomer : Customer
Blot : Lot
Erequestorderschedulation : RequestOrderSchedulation

Bagent_to_request : AgentiD

®FIPARequestinitiatorTask()
Saction()

$handleRefuse()
®handleAgree()
®handleFailure()
®handlelnform()
E¥sendrequest()
F¥RequestWork()

$Administration()
$shutdown()
E¥setup()
Bfregister_WithDF()

Figure 6. Structure of a Jade agent with a behavior

Another method automatically invoked by the platformslitdown which arises when an
agent is about to terminate It contains the code needed to propadiude the agent’s activities
and to reallocate the assigned resources; the JAdaatclass (the mother class of all the agents)
already provides such a method and, in most cases, this is suff@ismtcessfully shutdown the
agent.

Agent activities are typically not described in its basssclaethods, but are located in some
sub-classes calledehaviors A behaviorrepresents the atomic element of decomposition of the
agent’s tasks. Operations needed to reach a goal of the ag@atrt#tiened among its behaviors.
For instance, communication with another agent is delegated to iicspebavior (an example is
the RequestWorklass shown in Figure 6). Concretely, a behavior is a clasextends a JADE
super-class calleBehavior As seen for the agent base class, a template structusdaxiehavior
classes. All the behaviors must contain ation method. Like thesetup method, action is
automatically invoked by the platform, after which the class cattsir method is completed; the
use is the same but at the behavior level (i.e., it is used totlstaoperations related to that
behavior).

Obviously, a behavior class can contain several methods; a comtramigahavior is usually
made up of a set of methods in order to catch all the incoming gesssha specific protocol. For
instance, if a behavior is used to initiatRequestommunication [1] (as theequestWorkehavior
of Figure 6) it must contain thendleRefuséhandleAgreehandleFailure handlelnformmethods.

11

5.3 A case study: designing the PS-Bikes system

Designing a multi-agent system is as complex as designirdpjact-oriented one. In order to
achieve a sound design and to guarantee access to documentation thékecosddl to further
enhance or maintain the software, a specific design methodolamyjdshe adopted. Several
different approaches exist in the literature and some of them lbesmare already discussed in the
previous chapters. We will now describe an example of a design praggslying it to the
construction of an application for the PPS-Bikes’ case study. Theeadopmthodology is PASSI
(Process for Agent Societies Specification and Implementatiof®2]2hnd, with the help of the
supporting tool, PTK (PASSI ToolKit), the design documentation will lmelgced. The system
will be implemented using JADE as deployment AP.

5.3.1 PPS-Bikes’ case study: system requirements in itial description

The first phase of the design in most methodologies entails ititatedn and analysis of
requirements. A requirement is a feature that the system exhdbit: it can be a functional
requirement, such as service, or a non-functional requirement sactoastraint or a performance
issue. In UML [4] (functional) requirements are described withaase diagrams. According to
UML [3] a use case represents a coherent unit of functionalitygedwy a system, a subsystem,
or a class, as manifested by sequences of messages exchmoggtaut the system (subsystem,
class) and one or more outside interactors (called actorsjhéogeith actions performed by the
system (subsystem, class). An actor defines a cohereot s#és that users of an entity can play
when interacting with the entity.

In Figure 7 a use case diagram depicts the functionabtiagortion of the PPS-Bikes’ system

and the interactions with two actors: the customer department and the productieissuper

12

- O

Customer data management Unresolved lots

7\
<<include>>
<<extend>>

X O bS

Order acquisition Lots assigment
Customer q g Production
department | supervisor
<<inclpde>>
> \/
. .
Customer notification Plant management

Figure 7. A portion of use case diagram representthe functionalities of the PPS-Bikes system

The company organizes its production on the basis of the receivaed.coftde customers are
both wholesalers and retailers of sporting goods; they inter#lctanfigure called the customer
department represented by an actor (a stick figure) in theadiag/hen a customer wants to place
an order for some bicycles, he contacts the customer departmesltydie.g., sending the order by
fax); using a graphical interface the customer departmenbge®lthat receives the customer order
may introduce the data into the system. This functionalitgpsasented by the “Order acquisition”
use case. The “customer data management” functionality afloer'scompany to maintain an
archive of customers. The administration department generaies for the production phases of
the two plants on the basis of forecasts of the demands and custorders. When an order is
placed by the customer department, it has to be composed in lots @ndduction assigned to a
specific plant. These operations are represented by the “tighasent” and “Plant management”
use cases. The person responsible for interacting with thech&dgler is theProduction
Supervisor

5.4 Designing the solution with PASSI

It is well known that code production is a complex activity, and gentaoriented paradigm
does not ignore this hurdle. A methodology to design and implement muilti-syggtems is a pre-
requisite approach to simplify this task. The PASSI methodologystep-by-step requirements-to-
code methodology for designing and developing multi-agent soci#tiesegrates design models
and concepts from both OO software engineering and artificelligegnce approaches using the

UML notation with some extensions.

13

As already mentioned, the methodology is supported by PTK (PA&Skit), a Rational Rose
plug-in, and also by a repository of patterns for agents. Theseateolery useful in the design and
development of the MAS (multi-agent system) because they ingcallevel of automation in the
process, thus enhancing the designer’'s productivity. This is partycidfidctive when entire
portions of the model are taken from the patterns repository; tigs,rperformed during the design
phase, also affects the coding activity, since a signifigariton of code is automatically generated
starting from the pattern structure.

In the following sections, the PASSI methodology is synthetically amdlyzerder to illustrate
how a methodology specifically conceived for multi agent systems can sappastmplify the
designer’s work. The methodology is applied to the design of a system for thakeRScBse
study.

5.4.1 The PASSI Methodology

PASSI is composed of five models (Figure 8) regarding the diffeabstraction levels of the

process:

1. System Requirements Model The initial part of this model is similar to other common
object-oriented methodologies (requirements analysis). An agesd-bedution to the
problem is thus drafted.

2. Agent Society Model This describes the details of the system solution in ternagerit
society concepts like ontology, communications and roles.

3. Agent Implementation Model. The previous models are used to obtain a detailed
description of the agent society in terms of both structure andsibeltiaat can be used to
produce the code of the system.

4. Code Model In order to streamline and speed up the development of a nemsgstie is
partially obtained from the application of patterns. A conventional codwletion activity
is then carried out.

5. Deployment Model Mobile agents require that specific attention be paid to the
specification of their needs in terms of both software environmergs (ibraries available
in the host platform) and hardware capabilities and performarge deount of available
network bandwidth); these are the issues defined in the deployment model.

14

Initial
Requirements

Next Iteration

v

Domain
Description
Agents
Identification

System Requirements Model

Agent Implementation Model

Multi-Agent
Structure
Definition

A\ 4

- 4
Behavior
Description

Single-Agent

Structure
Definition

A

Y

Behavior
Description

i

Roles Tasks
Identification Specification

f

Code Model

Code Reuse

Code
Production

Agent
Test

Domain
Ontology
Description

Communication
Ontology
Description

Roles
Description

Protocols
Description

Agent Society Model

Deployment
Configuration

Deployment Model

Figure 8. The different steps and models of the PAS design process

5.4.2 The System Requirements Model

The System Requirements Models a model of the system requirements in terms of agency
and purpose. The methodology is use case driven and starts widgtiements analysis, where
the designer models the system as a set of use case dia§@me of these diagrams, the Domain
(Requirements) Description diagrams, are drawn to representttine and the use cases identified
for the system. Figure 7 reports some of the use cases ofP&iBiRes’ system. In this kind of
diagram the designer can identify the agents that will popthatesolution. In PASSI, each agent
receives the responsibility for a part of the functionalitiethe whole system; this is represented in
a use case diagram (called Agent Identification diagram) by grouping someustthases within a
package and giving it the name of the agent.

Figure 9 depicts a portion of the Agent Identification diagramttier PPS-Bikes’ system. It
describes only two agents, tl@ustomerand the Administration these are displayed as two
packages containing some use cases from Figure 7. Each agspoissible for accomplishing the

functionalities associated with the use cases included in its gg@ckar example th€ustomer

agent responsibilities includeCtustomer Data Managemént Order Acquisitiofi and “Customer

Notificatior’. All of these have a direct interaction with tl@ustomer departmerdctor that

represents one of the users of the application.

15

A

Customer department

<<Agent>>

CustomerAgent

)
N

Customer data management

O

Customer natification

| .
\1 <<communicate>> —_—

A

Production supervisor

<<Agent>>
AdministrationAgent

<<include>>

e

Order acquisition

N

Lots assig ment\
<<include>> ™=

D
Unresolved lots

D)
S

Plant manag ement

Figure 9. A portion of the agent identification diagram for the PPS-Bikes case study

When two use cases are assigned to different agents andaded t®} arinclude relationship
(showing that the included use case offers some kind of functionality to the incturgipgrextend
relationship (showing that the extended use case profits from tBadexj one to tackle some
specific situation triggered by a guard condition), then the involvexdtag@ve a dependency and
will communicate to achieve the collaboration requested by th@amship between the two use

cases.

In this phase an agent is only an aggregation of functionalities. lexdmple, theOrder
Acquisition and thelLots Assignmentise cases are connected (see Figure 7) witkexéend
association: in the Agent Identification diagram, this turns inteommunicaterelationship

(representing an agent conversation) between the two agents.

)
L

A

: Customer

CustomerDB :
Customer

OrderManagement :
Customer

LotsManagement :
Administration

department

SearchCustomerData

1

InsertNewOrder

SendDataToTheAdministration

1

Figure 10. The Role Identification diagram for the“insert new order” scenario

16

When all the agents are identified, the next step is to exfllerscenarios in which they are
involved. This is done using a set of UML sequence diagrams; indreggams each agent may be
involved in many activities and may appear more than once in @agh scenario, thus meaning
that an agent plays more than one role in that scenario. The identification ofcdeeig one of the
main outcomes of these diagrams, which are therefore called |&Raiéfication diagrams in
PASSI. An example of a Role Identification diagram is showirigure 10. Here th€ustomer
agent appears twice: in the first instance, it searchesnformation about a customer in the
company database (rofeustomerDB and then, in the second, it archives a new customer’s order
(role OrderManagemeit

The last step of this first model (the System Requirements Model) is to begdiesttrgotion the
dynamic behavior of each agent. This phase is performed wghat Task Specification Diagrams
(one for each identified agent). According to FIPA definitions [1Q@ask is the observable effect
of an operation or an event, including its results. It specifies the catigrutthat generates the
effects of the behavioral featlrestarting from this definition, PASSI considers a task asritye
that is somehow similar to th&ehavior defined in the JADE agent structure. The Task
Specification Diagram is a UML activity diagram represaptigents in a swim-lane and their tasks
as activities. Each diagram is drawn to detail one agenbamlydtwo swim-lanes are present in it
(see Figure 11): the right-hand one contains a collection of adisgenbolizing the current
agent’s tasks, while the left-hand one reports some activittes other agents involved in
interactions with this specific agent.

Administration T.Sp.:Interacting Agents Administration

/~Customer.SendO ™\ /" OrderList
\ rderData / ener J
-/ PlanM
N ask
[if refused] Supeniso N
™~ \ rGUl J
| Plant.WorkListener Request
‘%/ Work >

Figure 11. The Task Specification diagram for theAdministration Agent of the PPS-Bikes’ case study

17

An example of a Task Specification Diagram for Aweministrationagent is reported in Figure
11. This agent is involved in the introduction of a new order fré@ustomeragent. It receives this
communication with th©rderListenertask. After that, the agent plans the bike production with the
PlannerTaskandRequestWorkasks. TheSupervisorGUltask is activated if a problem is found in
the planning phase; the task is responsible for notifying the product the need to manually

adjust the plan.

5.4.3 The Agent Society Model

The next PASSI model is th&gent Society Modelthat represents social interactions and
dependencies among agents involved in the solution. This model is composed of four phases:

» the Domain Ontology Description, where the domain is explored and its distinguishing

concepts are identified together with actions and propositions related to them;

» the Communication Ontology Description,used to detail agent communications in terms
of ontology, content language and interaction protocol;

* theRoles Description,which consists of a diagram representing agents with their rokes, th
tasks involved in those roles and the dependencies among agents/telessi of resources
to be shared and services to be provided;

» the Protocols Description which constitutesa phase that is frequently skipped by the
designer. It is necessary to define a new protocol only if xistieg FIPA protocols are
insufficient to model the specific communication, and this happens rarely.

In the PASSI methodology the design of ontology is performed in theaDo@ntology
Description (DOD) phase and a class diagram is used. Seveita van be found in the literature
about the use of UML for modeling ontology (6-8). Figure 3 reporexample of a PASSI DOD
diagram; it describes the ontology in terms of concepts (@aésg entities of the domain),
predicates (assertions on properties of concepts) and actiofsri{pet in the domain). This
diagram represents an XML schema that is useful to obt&esaurce Description Framework
(RDF) encoding of the ontological structure. We have adopted RD&ptesent our ontologies,
since it is part of both the W3C [5] and FIPA (FIPA RDF Content Language) [9fisp&ons.

In Figure 3, the PPS-Bikes system ontology is described bgedasnd their relationships.
Elements of the ontology are related using three UML standard relationships:

* Generalization, permits the ‘generalize’ relation betweendnities, which is one of the

essential operators for constructing an ontology;

» Association models the existence of some kind of logical reldtiprsetween two entities
and allows specifying the role of the involved entities in order to clarify tbetste;

18

e Aggregation can be used to construct sets where value restrictonde explicitly
specified; in the W3C RDF specification three types of contabgcts are enumerated,
namely the bag (an unordered list of resources), the sequenoed@ed list of resources)
and the alternative (a list of alternative values of a propdfty)our purposes we consider
a bag as an aggregation without an explicit restriction, a seqasrmging qualified by the
ordered attribute, while the alternative is identified with tbaly_one attribute of the
relationship.

The example (Figure 3) shows that e@nldler concept is characterized bypece, order_date
delivery_dateandID. Each order aggregates sevéatierStock, each one of them describing the
number of bikes of a specific type that are part of the ofider.bicycle model is described in the
homonymous concept. One agent can ask another if an order has beenechraptethis instance
is stated by the Boolean value of tiseReadypredicate. TheScheduleManifacturingaction
introduces the order (and therefore the specified number of é®yoh the manufacturing
scheduling of the different machine tools.

The Communication Ontology Description (COD) (Figure 12) ispaesentation of the agents’
(social) interactions; this is a class diagram that showagalhts and all their interactions (lines
connecting agents). In designing this diagram we start fnemnesults of the A.ld. phase. A class is
introduced for each identified agent, and an association is then introduassth communication
between two agents (ignoring for the moment distinctions about agelats). Clearly, it is also
important to introduce the proper data structure (coming frorarnthies described in the DOD.) in
each agent in order to store the exchanged data.

The association line that represents each communication is dramntifie initiator of the
conversation to the other agent (participant) as can be deduced Heomlescription of their
interaction performed in the Role Identification (R.ld.) phase. akgady mentioned, each
communication is characterized by three attributes, which we gnbaign association class. This
is the characterization of the communication itself (a commuaoicawith different ontology,
language or protocol is certainly different from this one), andntsvledge is used to uniquely
refer this communication (which can have, obviously, several instataestime since it may
arise more than once). Roles played by agents in the intergeisomnerived from the R.ld.
diagrams) are reported at the beginning and the end of the association line.

19

<<Agent>>
PlantAgent
ScheduledProduction : PlantProduction

+PlantMangement

Administration - Plantl L
<<Communication>>

Administration-Plant1

<<Agent>> Ontology : requestLotProduction
Customer Customer - Administrationl T 7 |Language : RDF
customers : CustomerList +OrderManagement - Protocol : FIPARequest
/// /
_—

—
_—

. +LotsManagement
<<Communication>>

Customer - Administrationl \/

+Scheduler

Ontology : requestOrderSchedulation <<_Ag_ent>_>
Language : RDF Administration
Protocol : FIPARequest lots : LotSchedulation

Figure 12. The Communication Ontology DescriptionCOD) diagram for the PPS-Bikes case study

Figure 12 illustrates the communication betweenGhstomemlandAdministrationagents (the
unigue communication name {Sustomer-Administration)1The first initiates the interaction in
order to ask the other about the production scheduling of an order for some bikes. The referred
ontology is an actiorré¢questOrderSchedulatipand the interaction protocol is the FIPA Request
that is dedicated to dealing with requests for some kind of service. RDF is thet tamgeiage.

The FIPA Methodology Glossary [10] defines a roleapdrtion of the social behaviour of an
agent that is characterized by some specificity such as a goal, a attiloiites (for example
responsibilities, permissions, activities, and protocols) or providing atibmadity/servicé. In
PASSI, roles are initially identified in the already diseds#.1d. diagrams. Their definition is the
completed in the Role Description (RD) diagram, i.e., a UML atlkagram in which classes are
used to represent roles. Agents are represented by packagesiegrai@sses of roles (see Figure
13). Each role is achieved by grouping several elementary itaska resulting complex behavior;
for this reason tasks are shown in the operation compartment ofadashctass. An agent during
its life can take on several different roles, and this dynawotugon in its behavior is represented
by a dashed line with the name [ROLE CHANGE] that connestdifterent roles in the expected
order. Conversations between roles are indicated by solid linege(have depicted in the COD),
using exactly the same relationships names.

We have also considered dependencies between agents. Becauseaggaotonomous and
may refuse to provide a service or a resource to another, tlgn desids a schema that expresses
such matters and explores alternative ways to achieve goalsidnto realize such a schema, we

20

have introduced in the Roles Description diagram some additionabnslaips that express the
following kinds of dependency:

» Service dependency, where one role depends on another to bring aboutirdgzdaed by
a dashed line with theervicestereotype);

* Resource dependency, where one role depends on another for the ayadalit entity
(indicated by a dashed line with tresourcestereotype);

» Soft-Service and Soft-Resource dependency, where the requested/sesource is helpful
or desirable, but not essential to bring about a role’s goal (inditgt@ dashed line with trsoft-
serviceandsoft-resourcestereotypes).

In the example of Figure 13, tiiistomeragent plays th€ustomerDBrole while dealing with
the customer data and t@ederManagementole while managing customer orders. We can see that
several tasks are involved in the exploitation of the second rale (gaphical interfaces like
OrderDataGUIlare used to interact with the user that introduces the customerdatdg¢. We can
also note that this agent initially plays a role related ta@tmepilation of the customer data archive,
and then changes its vocatidRole Changerelationship) towards order-oriented operations. The
communication with thédministrationagent already discussed in the COD. diagram (Figure 12) is
also reported in order to simplify the analysis of the interactions amoriifférent roles.

‘ Administration
Customer -

LotsManagement

CustomerDB

OrderListener()
DataBaseUpdater() = PlannerTask()
CustomerDataGUI() |~ SupervisorGUI() \
[ROLE GHANGE] | OrderManagement Cusjg[[ﬁl/mfaﬁﬂnl [ROLE WE}

E y
GUIManagerTask() / PlantMangement
OrderDataGUI() .y service
OrderNotification() To— RequestWork()
SendOrderData() WorkRejected()

Figure 13. The Role Description (RD) diagram for tle PPS-Bikes case study

As we have seen in the DOD phase and as specified by the FIRfeeture, a protocol is used
for each communication. All of them are standard FIPA protocotaiincase study. Usually, the
related documentation is given in form of AUML sequence diagrams HiElice, designers do not
need to specify protocols on their own. In some cases, however, @¥&#HA protocols are not
adequate. If this happens, some specific protocols have to be prajssigned (Protocol
Description phase); this can be done using the same FIPA documestapgrbach (with an
AUML sequence diagram as in Figure 5).

21

5.4.4 The Agent Implementation Model

The Agent Implementation Model is a model of the solution architecture. It is composed of
two different phases, each performed at both the multi- and singie-keyel of abstraction. The
multi-agent level deals with the agent society and is therefore detaiéelow degree as regards the
agent implementation specifications; however, it fittingly documémtsoverall structure of the
system (behaviors of each agent, communications, etc.). The sgaglied@vel of abstraction
focuses on the implementation details of each agent and spesifetever is needed in order to
prepare the coding phase. The two phases are:

* Agent Structure Definition (ASD) uses conventional class diagtardsescribe the structure
of solution agent classes;

» Agent Behavior Description (ABD); uses activity diagramss@atecharts to describe the
behavior of individual agents.

This model is characterized by an iterative process and, ispdgif by a double level of
iteration (see the Agent Implementation Model box in Figure 8). Mloidel needs to be viewed as
being composed of two views: the multi-agent and single-agens vedated by two iterations. The
outer level of iteration concerns the dependencies between theseivgo In each we can find an
ASD (representing the agents’ structure at the social or iagent granularity) and an ABD
(describing the agents’ behaviors again from the social oresaggnt perspective). An inner level
of iteration takes place at both the multi-agent and single-agemts and concerns the
dependencies between the structural and behavioral matters.ofisexjaence of this double level
of iteration, the Agent Implementation Model is composed of two P and ABD), but still
yields four kinds of diagrams taking into account the multi- and the single-agest view

In the Multi-Agent Structure Definition (MASD) diagram, attention is centered on the
general architecture of the system. The MASD is an overvietiheo results obtained from the
previous phases from the structural point of view. In this diagramur@id4), agents are
represented as classes with their behaviors in the operatiopatorants; attributes specify the
agent knowledge. Building this diagram is not an effort for thegdesj since PTK (the tool that
supports the design with the PASSI methodology) automatically buiideng information coming

from previous diagrams.

22

Customer %%
department

\L Production worker
| %
<<Agent>>

'
Customer <<Agent>> Storeho.use
book : CustomerBook Production responsible

order : Order daily_production : OrderStock

SendOrderData() NotifyOrderState()

GUIManagerT ask() ComponentListener()

CustomerDataGUI() <<Agent>>
OrderDataGUI() Supplier
DataBase Updater() - -
OrderNotification(stock : RawMaterial Stock

SendOderData()

RawMaterialListener()

<<Agent>> <<Agent>>
Administration Plant

lots : LotSchedulation estabProduction : EstabilishmentProduction
order : Order

WorkListener()

PlannerTask() RequestComponentProduction()
OrderListener() DeclareRawMaterialUse()
RequestWork()
SupervisorGUI()

A A

Production Establishment
supervisor responsible

Figure 14. The Multi-Agent Structure Definition diagram for the PPS-Bikes case study

At this point, a new diagram, ttfgingle-Agent Structure Definition (SASD) diagram is drawn
for each agent in order to explore its internal composition araf & tasks at a level of detail that
is sufficient to generate the implementation code. This diagg@UML class diagram and reports
the agent main class and each agent task as a classbliegethe structure of the most common
AP specifications (Jade [12], FIPA-OS [13],). At this point, weugeattributes and methods of the
agent class (e.g., the constructor and the shutdown method required FHPAROS platform or
just the constructor in JADE) and the task classes (e.g., thieodsetequired to deal with

communication events when the agent receives/sends a communicative act).

23

Agent Behav iour
(fromJADE) (from JADE)
[

\
1 /
<<Agent>> /
Customer /
/
/

BUAGENT TYPE : String = Customer
v ersion : String = 1.0 /
&productmodel : Bicycle /
Bcustomer : Customer //
Bnotify odercomplete : notify OderState /
& on : Order " - / - -
&Jorder : Order SimpleBehav iour CompositeBehav iour
%arders‘tock : OrderStock (FomIADE) B okag {romJADE)
. SendOderData
&bicycle : Bicycle
B o e EE A &agent_to_request : AgentID
BFrawmaterial : RawMaterial .
MFIPARequestlnitiatorTask () ®Inf ormParticipant Task()
SCustomer() Faction() @action()
Sshutdown() ShandieRefuse() ®orderNotification()
Eisetup() ®handleAgree()
BPregister_WithDF() - ShandieFailure() ParallelBehav iour
OneShotBehav iour ®handlelnform()
(from JADE)
(from JADE) BPsendRequest()
®sendOderData()

A

<<Task>>
OrderNotification
Bquery_conv : Conversation

/

<<Task>> <<Task>>
DataBaseUpdater GUIManagerTask

<<Task>>
OrderDataGUI

<<Task>>
CustomerDataGUI

®DataBaseUpdater() ®GUIManagerTask ()
Saction() Saction()

®orderDataGUI()

®customerDataGUI()
Saction()

Saction()

Figure 15. The Single-Agent Structure Definition (3SD) diagram for Customer of the PPS-Bikes case siy

An example of an SASD diagram is reported in Figure 15 and desthidenternal structure of
the Customeragent of the PPS-Bikes’ case study to be implemented in the jddiérm. The
Customermain class is derived from thfegentbase class of JADE. Among its attributes we find
AGENT_TYPEwhich usually contains the name of the agent tyhes{omerin this case), while in
the operations compartment we find tlegister WithDFmethod that contains the code necessary
to register with the yellow pages service of the platfddinectory Facilitator).

As regards the agent’s tasks (calBehaviorsin JADE), we can considé&endOrderDatand
OrderNotification,which are represented as two classes extending the B&bB&viorsuper class,
and whose duties entail dealing with the agent communications (dscseen in Figure 14, this
agent has relationships with both tiRroduction and Administration agents); for example,
SendOrderDataadopts a Request protocol to delegate Aldeninistrationto take care of the

introduction of a new order in the manufacturing schedule.
A different structure is proposed forCustomerDataGUl OrderDataGUl and

DataBaseUpdaterwhich are inherited from the JADBneShotBehaviofa behavior that performs
a single operation and then terminates its existence). This kisdlution is a valid option for
controlling graphical interfaces, i.e., once the interaction Wwithuser is completed, there is no
reason for the behavior to remain active.

The agent behavior at the multi-agent level is described by thki-Myent Behavior
Description (MABD) diagram. This is a UML activity diagramedsto illustrate the dynamics of
the system during the agents’ life. Figure 16 reports an exaaipMABD,; it illustrates the
activities occurring during thRequestommunication between theéustomerand Administration

24

agents. In the diagram, all the involved classes (both of agents sk&) #ae represented with
swim-lanes (such austomerandCustomer.SendOrderD3gtavhile operations are displayed as an
activity (rectangles with rounded corners, lilEendOrderData.PrepareRequesthich is the
constructor method of th8endOrderDatabehavior in Figure 16). In these diagrams, transitions
among activities indicate an event as a method invocation (iinglactivities in the same swim-
lane), a new behavior instantiation (if relating activitieshaf same agent but in different swim-
lanes) or a message (if two different agents are involved). dfmnanication described in the
example initiates a request message and then, according ts@m@cocess (not described), the
Administrationagent replies with aefuseor agree message. Each message is detailed with the
communication name and the communicative act.

The Single Agent Behavior Description(SASD)is the last phase of the Agent Implementation
Model. The approach we use in this activity is quite common. The aim of this phase is to produce
design of the inner part of methods introduced in the SASD diagrams in order to prejpare the
implementation. The designer is free to describe these features asseeshsost fitting and
appropriate (e.g., using flow charts, state diagrams or semi-formal gexipdiens). It should be
noted that, because in many instances operations performed according to a metbhbdaamnplex
enough to justify so much attention, a textual description is often sufficient.

Customer. GUIManagerTask Customer. SendOrderData. Administration. OrderListener Administration.Planner Administration

H

 Administration ™
Customer.GUI™ / Customer.Send0™ OrderLi dministratior
—_ManagerTask rderData stener.OrderListener addBehatiour T
o message(/~ Administration.set ™\
0“5'0:“9"'"'33'? Customer.GUNan Customer. SendOrderD ™\ Customer-AdministrationL, request) ,~ Administration.OrderList \ up J
SEEEIIE agerTask.action (ata.Prep: quest ener. q
{
|) / Administration.reg

i
Customer.setup q\ ister_with_DF

\L message(

Custol 1,

Customeregt — @S5merClMAn0ey Cus‘Df"ervSe"dOrder\’ refuse) q o,de,\ Administrafion. OrderList

Ustomer.regi Task. OrderRefused Data. use e ener.sendAgree \
ster_with_DF \) \

/ Customer GUManager CREBNE SO message(Customer-Administration1, agree) addBehaviour -

{ Task.OrderAccepted Data.handleAgree j Planner

Customer. GUMAnagerTask. C‘rJ’S"U'“E'-SEW‘O"’E' \ message(Custs ond, inform)/ Administration.Order o
ata ner.

OrderScheduled = nner.action

Figure 16. Multi-Agent Behavior Description (M.A.B.D.) diagram used to describe the interaction of twagents
during a FIPA Request Communication

5.4.5 The Code Model

The Code Modelis a model of the solution at the code level. In this phase the dewvé&ope
aided by a tool (AgentFactory) developed in the order to grant thereose. AgentFactory may
work inside PTK or as a standalone application, its key featureg dbat it allows the easy

25

construction of a substantial part of an MAS reusing elements péitern repository (specifically
realized to solve agent-oriented problems and therefore difffem@nta common object-oriented
one).

An agent pattern, according to the PASSI conception, derives fronst-@bbjented design
patterns [14], and describes a tested solution for a recurreghgesblem. This pattern [15][16] is
presented as a set of diagrams of the PASSI methodology, eadbidgdhe different aspects of
the problem at different abstraction levels and covering one @ pla@ases of the design process.
Typically, diagrams used to describe a pattern are classifiede of two categories: structural or
behavioral, the most common diagrams used in the pattern descriptithre arask Specification,
DOD, COD, SASD and MABD. Starting from these representationdranda description of the
solution with an XML-based meta-language, AgentFactory cdarntiate the implementation code
for both the FIPA-OS and JADE platforms. Obviously, the code geoerangine also considers
the needs emerging from the composition of different parts téeceeeomplex agent structure and
can solve all the ensuing problems.

Communication patterns are among the most frequently used byg#@FRactory repository.
As an example, thEIPARequespattern introduces one possible solution to the recurrent problem
to create a conversation among two agents according the FIPA Ragaasttnteraction protocol
(see subsection 5.2.3.3).

The structure of the two agents involved in the communication igidedcby two SASD
diagrams (Figure 17), which illustrate what attributes and methaidse added to the initiator and
participant agents when the pattern is applied to them. A plethora of methods dieafipeelated
to protocol communicative acts; these methods have the preambleé'htlidiwed by the name
of the communicative act, e.daandleAgreeor handlelnformare the methods where messages

containing theAgreeof Inform performatives will be managed.

initiator agent participant agent
AgentShell TaskShell AgentShell TaskShell
—
- I
<<Agent>>
ini?iator <<T85k.>.> <<Agent>> <<Task>>
FIPARequestlnitiatorTask participant FIPARequestParticipantTask
Brequest_content : String
B¥agent_to_request : AID SFIPARequestParticipantTask()
WsendAgree()
%FIPARequestInitiatorTask() #sendNotUnderstood()
ShandleAgree() $¥sendRefuse()
®handleRefuse() Wsendinform()
handleFailure() WsetMessageTemplate()
’handleNotUnderstood() ®prepareResponse()
‘handlelnform() ®prepareResultNotification()
®handleOutOfSequence()
®handleAllResponses()
®handleAllResultNotifications()
®prepareRequests()

26

Figure 17. Two class diagrams representing the siiatstructure of the agents involved in a FIPA Requst
communication

These two diagrams do not suffice to describe all the featuretheofFIPA protocol
management, since they do not provide any dynamic representatioMA®SD diagram is
therefore needed to complete the pattern description: this fal usedescribe the activities
performed by the two agents involved in the communication (Figure E8foirm that can be easily
reused as a portion of the actual design of the system (in fa&,aopattern is applied to the
project, PTK automatically introduces it in the corresponding diagrams).

request_initiator request_participant

/" handleRequest ™\

{ \
| |

\ /

/ prepareRequest \

/~ handleRefuse ™\ /~ sendRefuse

/ sendAgree \

()

/~ handleAgree ™\
/~ doYourDuty ™\
/~ handlelnform / sendinform (\\
(\« \ J
handieFailure /" sendFailure ™\

Figure 18. A Multi-Agent Behavior Description diagram used to describe the FIPA Request pattern

The MABD reported in Figure 18 illustrates that tequest_initiatoragent sends a message to
therequest_participanagent with the@repareRequeshethod (see also Figure 17). The responding
agent receives it with theandleRequeshethod and according to its will responds with a message
containing one of the Request interaction protocol performatiRetuge Agree...) sent by the
correspondent methoddndRefusesendAgree..).

Since a significant part of the design and an even more substpatialof the code
automatically descend from (depend/are contingent on) the appropriate afdhe right pattern
for a specific situation, this activity becomes a strategie and should not be neglected by the
designer.

27

5.4.6 The Deployment Model

The Deployment Model is the response to the need to detail the position of the ageats in
distributed system or in mobile-agent contexts. The Deployment Qoafign diagram (Figure 19)
is useful to depict where the agents will be located during lifesfii.e., the processing units where
they live), their movement and their communication support.

The standard UML notation is useful for representing the elabgrahits, here shown as 3-D
boxes, and the agents, which are depicted as components; since anagbkatinstantiated more

than once, agent (instance) names are in the &4gent-name:agent-class

<<Network>>

CustomerNode

N
customer : Customer --F+---,

|

I

I

I

i

communicate

AdministrationNode
fffffff }f ScheduleOrder

administration : Administration

<<Nefjwork>>
<<Network>>

communicate
SouthPlant

Producelot | | = to—po—m—————————— ProduceLot

NorthPlant

north : Plant south : Plant

Figure 19. Deployment Configuration diagram for theagents of the PPS-Bikes’ system

5.4.7 Agent and Society Test

The testing activity in PASSI has been split into two different steps: tigdgsagent test and
the society test. During the agent test, the aim is to verify whether egtd agent respects its
specifications as these can be derived from the different design steps.d¢loasés can be derived
from the use cases that constitute the agent functionality specificaties@idd in the Agent
Identification diagram.

In the society test, the validation of the correct interaction of the agentsasped to
ascertain that they concur in solving problems requiring cooperation. Onlg atdbe is it possible
to verify whether the expected social behavior is achieved and the agents rateropeectly
without any problems. This is also the moment for evaluating the system peréermaerms of:

28

» the results provided by the different agents making it up (i.e., if they areoatffert
the required services, or to deal with the required amount of data) while interacting
with the others in the real operating configuration;

» the effect that the operating environment (network capabilities, host platforms
elaboration power and configurations) has on the system.

5.5 Agent implementation

A distinguishing feature of the PASSI methodology is that it cotte@swhole development
process from requirements analysis to code implementation. ithefahis section is to conclude
the overview of the agent modeling process with a concrete teaiiz# an agent , starting with
the requirements analysis (System Requirements Model) and c¢ogtiop to the social
representations (Agent Society Model) of the agents involved and Hrehitectural
implementation details (Agent Implementation and Deployment models).

In this section a brief description of the programming codese@nnaturally from the process
diagrams will be given. Part of this code has been generst®&I' K, and only a few lines have
been added manually. The solution presented is an implementation in diA®portion of the
Administrationagent already described in the previous design phases (namggrttdealing with
the main agent class and a behavior that initiates a Request communication).

29

1 public class Custoner extends Agent {

2 private final String AGENT_NAME = "custoner" ;

3 private Order order;

4 private Custoner Book book;

5

6 public Custoner() {

7 initialize_custoner_book();

8 }

9

10 public void setup () {

11 register_to_df();

12 GUI Manager Task gui = new GUI Manager Task(this);
13 addBehavi or (gui) ;

14 }

15

16 public void register_to_df () {

17 /* this block enables DF registration */

18 try {

19 /'l create the agent description of itself
20 DFAgent Descri ption dfd = new DFAgent Descri ption();
21 df d. set Name(get Al D)) ;

22

23 /1 register the description with the DF
24 DFService.register(this, dfd);

25 } catch (FlI PAException e) {

26 e.printStackTrace();

27 }

28 }

29

30 public class Request Wrk extends Achi eveREInitiator {
62 }

63

268 }

Figure 20. A portion of the code for theCustomer agent base class

Figure 20 shows a portion of the code for estomeragent. the internal structure of the
RequestWorkehavior has by now been omitted (at lines 30-62) because in phfase we focus
on another issue, that is the agent inner structure represented by its [sase clas

Line 1 is the declaration of th@ustomeragent as a Java class inherited by the JAQEnNt
class (i.e., the mother class of all JADE agents; see atsiors&.2.4). Line 2 defines an agent
attribute, calledAGENT_NAME there is no difference between an agent attribute and a class
attribute, since both of them follow the same (Java) syntax. fthisuéeknown (a String constant),
has been introduced in the agent to contain its name; this valuéenased in order to register
some agent services to the local Directory Facilitator (DF).

3C

The constructor method (Customer) in this case is used to caleanwmiethod where the
customer book is initialized (not dealt with by our example). Agemsstructors are often used
only to initialize data structures, while the agent behavior is delegated t@theds that follow.

The agensetupmethod is declared at line 10. An agent may contain several mebdsme
of them are reserved for specific goals. Batupmethod is one of them and it is a mandatory
element, since it represents the starting point for all aggivitees. Once an agent instance has
been created (and its base class constructor executed), thenplagisters it automatically to the
local Agent Management Service (AMS); it then invokes the aggtnpmethod.

In our example, th€ustomeragentsetupmethod contains only three instructions:

* (line 11) an invocation to thegister_to_dimethod defined some lines later (lines 16-28).
This method inserts a new record in the local DF registee. ifistruction used for this
operation is at line 240FService.register(this, dffj)it is put inside dry — catchconstruct
to intercept possible exceptions arising during the registratibe.did parameter is a
DFAgentDescriptionobject and represent the record used to describe the agent to the
community. At line 21 this record is initialized with the agent ID value.

* (line 12,13) theGUIManagerTaskbehavior is created and then scheduled with the
addbehavioutinstruction. This is the classic way to start a new agdm\ber in JADE. As
can be deduced from the MABD diagram reported in Figure 16, this loehvailliinteract
with the user and then call another behavior RleguestWorlbehavior) that is described
more in detail below.

Now we can analyze the structure of BequestWorkehavior, which was omitted in Figure 20

(lines 30-62); the complete code is reported in Figure 21. This is not the only behavior of the
Customeragent (see also the agent structure described in Figure 14 and Figure 15), but it has bee
chosen because it is a classic communication task. The behavior is declatadesreagent

inner class, and it inherits a JADE core super-class whose name is not univdoaly (ks it was

for the JADEAgentclass used to define the agent); in fact, a complex hierarchy of behaviorstypes i
provided by this implementation platform and the choice is left to the developer.|Eaantof

the hierarchy has its specific functionalities; for exampleCydicBehaviormay be used to create

a behavior that cyclically repeats an operation SbguentialBehaviab execute some activities in

the specified order, and tR&MBehaviotto implement a complex finite state machine.

31

130 | public class Request Wrk extends Achi eveREInitiator {
31 private String request_content ;
32 private Al D agent_to_request ;
33 private GU Manager Task gui ;
34
35 publ i c Request Wrk(Agent owner, AIDid, String content, GU Manager Task gui) {
36 super (owner, new ACLMessage(ACLMessage. REQUEST));
37 agent _to_request = id;
38 request _content = sone_servi ce;
39 }
40 public void handl eAgree (ACLMessage nsg) {
41 gui . notifyOrder Accepted();
42 }
43 public void handl eRefuse (ACLMessage nsg) {
44 gui . noti fyOrder Ref used();
45 }
46 public void handl el nform (ACLMessage msg) {
47 gui . noti fyOrder Shedul ed();
48 }
49 public Vector prepareRequests (ACLMessage nsg) {
50 /lautomatically invoked by the platformafter the class constructor
51 nsg. set Per f or mat i ve(ACLMessage. REQUEST) ;
52 nsg. set Prot ocol (FI PANanes. | nt eracti onPr ot ocol . Fl PA_REQUEST);
55 nsg. set Sender (nyAgent. get Al ()) ;
54 nsg. addRecei ver (agent _to_request);
55 nsg. set Cont ent (request _content);
56
57 Vector | = new Vector();
58 | . addEl enent (msg) ;
59 return |;
60 }
61 }
62

Figure 21. Portion of the code for theRequestWork behavior of the Customer agent

The RequestWorlbehavior starts a Request conversation with the purpose to cotai@
service from théAdministrationagent. The JADE API offers an off-the-shelf behavior taateta
communication by adopting several communication protocols,AttléeveREIlnitiatorand the
AchieveRERespondtr deal with the consequent incoming messages.

Line 30 defines the behavior as a claBedquestWoikthat extends théchieveRElnitiator
super class. It also has some attributes defined at lines 3&e@@st _contens a String containing
the message content (coded in a specific content language, e.g.,f&0kg initial “request”
communicative act. The other attribuégient_to_requegtused to address the receiver agent), is an
instance of the AID class belonging to the JADE API framework; this is aioentfor the univocal
identifier used to locate an agent within a specific platform. Juneattribute is used to store a

32

reference to the behavior that calls ttiidJ{ManagerTasksee Figure 18) in order to notify it with
the results of the communication.

The RequestWorkonstructor is defined at lines 35-39. It requires four paraméterswner (a
reference to the agent), thAdD (the receiver agent’s unique ID), trexjuest_contentthe content of
the message to be sent) anddhereference to the caller behavior (see above). The first coshma
of this method is a call to the super class constructor thavaged by specifying, with the first
parameter, the owner agent and, with the second parameter, thatsdagent be used to initiate
the protocol is aequestcommunicative act. This last parameter is not of paramount impertanc
since the request message is better defined in the follgwapgareRequeshethod.

Once the constructor is completed, girepareRequegnethod (lines 49-60) is automatically
invoked for all theAchieveRElIntiatotype behaviors. It returns a vector ACLMessagebjects
used to initiate the communications with n different agents. AleMessagelass represents the
data structure used to contain the message payload of a m@gssaGé language) as illustrated in
subsection 5.2.3.2. In this method, geformative protocol sendeyreceiverandcontentfields of
the message are filled in with necessary data. Then, at3ii&9 the vector is filled in with the
message, and the method terminates by returning this vector esulah At this point the
AchieveRElIntiatosuper-class actually sends the message to the receiver agent.

Lines 40 to 48 show the definitions of the methods devoted to handlingcthraing messages
sent by the receiver agent during this communication. It is possible to ob$amdlexXmethod for
each expected communicative act, where the X is the name opdtiermative ifiform,
agree...).In this way, when aragree message reaches the agent hiamdleAgreemethod is
invoked with this message as a parameter.

What can be derived from the code described in this section isdtiasiy FIPA agents under
the JADE platform is essentially JAVA coding. The most impuartifference is not in the actual
agent code, but in the communication infrastructure offered by théorplathat acts like a
middleware, enabling agents of our system to interact easilyrelieving the designer of many
decisions regarding details. For instance, the designer does ndbrigexlv where a mobile agent
is at a given moment to code a message for it; the singple anique name is sufficient, and the
AP will then take care of correctly delivering the messdggs, in essence, is the mission of FIPA:

to enable the interoperability of heterogeneous software agents.

References

[1] FIPA Request Interaction Protocol Specification. FIPA document n. 00026. 06-12-2002.
http://www.fipa.org/specs/fipa00026/

33

[2] M. Cossentino - "Different perspectives in designing multi-agent systeAGES '02
workshop at NODe02 - 8-9 October 2002 - Erfurt, Germany

[3] OMG Unified Modeling Language Specification. Version 1.5. OMG Document&i93-03-
01. March 2003.

[4] The Unified Modeling Language Reference Manual. J. Rumbaugh, I. Jacobson, G. Booch.
Addison-Wesley. 1999

[5] Resource Description Framework. (RDF) Model and Syntax Specification. W3C
Recommendation. 22-02-199&tp://www.w3.0rg/TR/1999/REC-rdf-syntax-19990222/

[6] Bergenti F., Poggi A., “Exploiting UML in the design of multi —agent systems” \SA
Worshop at ECAI 2000.

[7] S. Cranefield and M. Purvis. UML as an ontology modelling language. In Proc. of the

Workshop on Intelligent Information Integration, 16th International Joint Conferamc
Artificial Intelligence (IJCAI-99), 1999

[8] Modeling XML applications with UML. D. Carlson. Addison-Wesley. 2001.

[9] FIPA RDF Content Language Specification. Foundation for Intelligent Physyealts,
Document FIPA XC00011B (2001/08/10). http://www.fipa.org/specs/
fipa00011/XC00011B.html

[10] FIPA Methodology Glossary. http://www.pa.icar.cnr.it/~cossentino/FIRAfg®ssary.htm.

[11] J.Odell, H. Van Dyke Parunak, B. Bauer. Representing Agent Interaction Protocdig.,
Agent-Oriented Software Engineering, P. Ciancarini and M. Wooldridge eds., $pViedeg,
Berlin (2001), 121-140.

[12] Bellifemine, F., Poggi, A., Rimassa, G.: JADE - A FIPA2000 Compliant Agent
Development Environment. In Proc. Agents Fifth International Conference on Autonomous
Agents (Agents 2001), pp. 216-217, Montreal, Canada, 2001

[13] Poslad S., Buckle P., Hadingham R.: The FIPA-OS Agent Platform: Open Sourgeefor O
Standards. Proc. of the 5th International Conference and Exhibition on the Practiozshtfppl
of Intelligent Agents and Multi-Agents. Manchester, UK, April 2000, 355-368

[14] Gamma, E. Helm, R. Johnson, R. Vlissides, J. Design Patterns: Elements of &eusabl
Object-Oriented Software, Addison Wesley, 1995

[15] M. Cossentino, L. Sabatucci, A. Chella - A Possible Approach to the Development of
Robotic Multi-Agent Systems - IEEE/WIC Conf. on Intelligent Agent Techno(&4T'03).
October, 13-17, 2003. Halifax (Canada)

[16] M.Cossentino, L.Sabatucci, S.Sorace, A.ChéRattern reuse in the PASSI methodology”
—ESAW’'03 workshop — 29-31 October 2003, Imperial College London, UK (EU)

[17] Searle, J.R., Speech Acts. Cambridge University Press, 1969.

34

[18] Cranefield, S., and Purvis, M. UML as an ontology modeling language. Proc. of the
Workshop on Intelligent Information Integration, IJCAI-99 (Stockholm, Sweden, July 1999).

[19] F. Bergenti, A. Poggi. Exploiting UML in the Design of Multi-Agent Systems..In A
Omicidi, R. Tolksdorf, F. Zambonelli, eds., Engineering Societies in the Ageortis W
Lecture Notes on Artificial Intelligence, volume 1972, pp 106-113, 2000. Berlin, Germany,
Springer Verlag Publ.

[20] Bernhard Bauer, J6rg P. Mller, James Odell, Agent UML: A Formalismplecifying
Multiagent Interaction. Agent-Oriented Software Engineering, Paolac@rani and Michael
Wooldridge eds., Springer, Berlin, pp. 91-103, 2001.

[21] H. Van Dyke Parunak and James Odell, Representing Social Structures in WdlLofPr
Agent-Oriented Software Engineering (AOSE) 2001, Agents 2001, Montreal, pp. 17-31.
[22] M. Cossentino, C. Potts - "A CASE tool supported methodology for the design of multi-
agent systems" - The 2002 International Conference on Software Engineeseay¢h and

Practice (SERP'02) - June 24 - 27, 2002 - Las Vegas (NV), USA

35

