
 1

5 CHAPTER 5: AGENT SYSTEM IMPLEMENTATION

5.1 Introduction

The systematic study of the development of agent systems has a recent history. Little time has

elapsed since the scientific world perceived the promise of using the agent paradigm to solve a great

variety of problems. This realization prompted many researchers to design, independently, their

own infrastructures on which to activate their own agents. The result working proposals were often

optimal, very efficient for a specific problem domain, but not devoid of some defects. The

programming language, the communication paradigm, and other technical details generally made

these frameworks unsuitable for purposes other than those for which a given approach was

originally conceived. The total absence of genuine attention towards the system design and

development process (and consequent documentation) often stymied the growth, scalability and

maintenance of these applications. Furthermore, systems were developed without regard to

compliance to any standard, thereby creating agents so significantly diverse that they were unable to

interact with each other across different frameworks. Now that agent technology has come of age,

these solutions, while good for a first experimental phase, , are inadequate for the true uptake of this

paradigm.

The importance of standardization is such a pivotal issue that an international organization, the

Foundation for Intelligent Physical Agents (FIPA), was founded to promote the intelligent agent

industry by openly developing specifications supporting interoperability among agents and agent-

based applications. A new and very active field, agent-oriented software engineering is now dealing

with the problem of identifying the proper design method for a multi-agent systems.

In this chapter we deal with all of these themes, first discussing the key features of FIPA

specifications in order to position and define widespread concepts like agent, behavior, and

communication in a reference context, and then presenting a complete design process (adopting the

PASSI methodology) applied to the PPS-Bikes’ system case study. In more detail, the chapter is

articulated as follows: in paragraph 5.2 the standard architecture designed by FIPA for an agent

platform is examined, describing the mandatory components that each platform has to implement,

then in paragraph 5.3, using the practical example of the PPS-Bikes’ system, the fundamentals

guiding the implementation of a multi agent system, starting from the initial design down to the

code implementation, are illustrated.

 2

5.2 The FIPA abstract architecture

The work of the FIPA focuses mainly on the definition of the agent platform (AP); this is

defined as the physical infrastructure where agents can be deployed. Most of the standardization

work, therefore, concerns the definition of some key-points that an AP has to comply with. Thanks

to these standards, agents living in two or more FIPA compliant platforms are able to communicate

and interoperate with each other.

The principal aspects defined by FIPA specifications are:

• The message level, which describes the composition of a message (expressed with the Agent

Communication Language), a set of primitive messages with a specific semantic (referring

to the speech acts theory [17]) and the sequence of speech acts that compose a correct

communication (the Agent Interaction Protocol);

• The transport level, which details how a message has to be moved from a sender to a

receiver;

• The service level, which defines the mechanism used by each agent to offer its own services

and to discover the services offered by other agents in the platform.

5.2.1 Architecture overview

One of the main goals of FIPA specifications is to promote inter-operability between agent

applications and agent systems and this is achieved by defining the Abstract Architecture

Specification. This is a collection of architectural elements that characterize each FIPA-compliant

platform. The term ‘abstract’ means that the architecture defines only some functional requirements

but it is neutral about the technologies used to achieve them.

The agent-platform architecture (represented in Figure 1) is centered on three mandatory

components:

• the DF (Directory Facilitator) component,

• the AMS (Agent Management System) component,

• the MTS (Message Transport System) component.

All of these elements will be examined more in detail in the paragraphs that follow.

 3

MTS

Agent Platform

Agent DF AMS

Figure 1. Overview of the FIPA abstract architecture

5.2.2 Infrastructures for agent interactions

The DF component of an AP provides the yellow pages service to agents ‘living’ on that

platform. It defines the support for agents’ collaborations centered on the concept of service where a

service is defined as an activity that an agent performs on the request of another one belonging to

the same community. Agents may interact with the DF in two different ways: registration and

search. To advertise that a specific service is available to the community the provider agent can

register it in the DF with a significant name. Generally an agent can provide more than one service,

each one of them being registered in the DF with a different name. An agent has no a-priori

knowledge about the other agents of the system. In order to discover if another can be of any help in

reaching its own goal(s), the agent may search the DF. Consequently, the agent obtains a vector of

DF-entries; each entry contains the univocal address of an agent of the system that performs that

service. Generally speaking, the result is a vector, because more than one agent can provide the

required service.

The AMS is responsible for managing the operation of an AP; the main functionalities of the

AMS are the creation, deletion and life-cycle management of agents. The AMS may support other

activities that are not mandatory, e.g., the migration of agents to and from other platforms (mobile

agents). The AMS maintains the physical index (AID) of all the agents that are currently resident on

an AP; this index is an address that univocally identifies all the agents of the system.

The MTS (Message Transport Service) is generally invisible to agents and their developers. It

provides a mechanism for delivering messages among agents within a platform and to agents that

are resident on other platforms. Messages are coded in a standard structure composed of an envelop

and a payload. The envelop contains transport information needed for the correct delivery of the

message. Transport information could specify a network protocol like HTTP or SMTP and the

address of the agent if it is reachable using that protocol (something like www.mysite.net/abc or

 4

agentname@host.domain.org). The payload record is coded in a language called Agent

Communication Language (ACL) (see also paragraph 5.2.3.2), and it contains the information

content that is to be delivered.

5.2.3 Agent Social relationships

Social relationships are among the most important characteristics of agents. A multi-agent

system is composed of a number of autonomous and interacting agents and it is frequently

represented as a well organized society of individuals. In this context each agent has its own

personal goals and plays one or more different roles during its life to interact with other community

members.

Agents interact through messages only and, most commonly, their interaction is composed of a

series of messages, thus composing what we define as a conversation. It is more correct to think

about an agent interaction as a conversation rather then one simple message. A conversation, and

specifically a FIPA conversation, is essentially composed of one or more messages. As already

mentioned, each message needs a transport infrastructure in order to be delivered. This allows the

effective implementation of a conversation but does not ensure any usefulness for it. In order to add

a semantic value five important concepts must be adhered to (see Figure 2): ontology, content,

content language, communicative act and agent interaction protocol (AIP).

Message

Content Content Language Agent-communication-language

Contains

Expressed in

RDF SL KIF ACL KQML

*

-Contains1..*

*

-Contains0..* Embodies1

CCL

Communicative ActOntology

AIP

Belongs_to

Figure 2. Structural diagram illustrating the elements constituting a FIPA Message and the relationship
among them

 5

5.2.3.1 Modeling the Communication Semantic with an Ontology

An ontology is a representation of the categories that exist in a specific domain; it is a

vocabulary used to describe the terms and the relationships among them with a subject matter. An

ontology allows the specification of the type of terms an agent may handle and what type of

manipulation and reasoning it is able to perform on them. Referring to the same ontology, two

agents can interact without the risk of a misunderstanding. They refer to the same set of concepts

and, if they adopt the same (content) language, the communication will be meaningful for both of

them. On the contrary, the lack of a common ontology introduces the risk that a term used by an

agent with some specific significance will be interpreted by another in a different way, thereby

jeopardizing agents’ interaction and the entire system’s performance.

Ontology defines the meaning of categories and the relationship among them but in order to

manage it agents need a language that can represent both the ontology structure and content. In

many approaches, the ontology structure is composed of three kinds of elements (concepts,

predicates and actions), and the associations among them. Many authors have dealt with the

representation of the ontology using Unified Modeling Language (UML) [18][19]. In this book we

will adopt the PASSI notation that uses a UML class diagram. Concepts, predicates and actions are

represented as classes characterized by a specific stereotype. Figure 3 reports a PASSI diagram

representing a portion of the ontology designed for the PPS-Bikes’ multi-agent system.

As an example, the Order class (Figure 3) represents a concept of the ontology; a concept

stands for one of the categories of the specific domain, and in this example, Order represents the

order issued by a customer for receiving some bicycles. It has some attributes, e.g., the

delivery_date, that is the delivery date requested by the customer for the ordered goods. A concept

may be related to other concepts; for example, an order is composed of one or more OrderStock,

i.e., the number of bicycles of a certain model specified in the order). A concept may extend another

concept, inheriting all the attributes and relationships of its super-concept. For example, a Customer

is a specific Company with some supplementary characteristics (the ID attribute used to identify it

in the bicycle production company).

 6

Company

name : String
address : String
phone_number : String
email : String
bank_data : String

<<concept>>

CustomerBook
<<concept>>

requestLotProduction

Actor : String
ResultReceiver : String

<<Act>> ProduceLot(lot : Lot)

<<action>>

isReady

value : Boolean

<<predicate>>

Customer

ID : Long

<<concept>>

Lot

ID : Long
ScheduledDate : Date

<<concept>>

RequestOrderSchedulation

Actor : String
ResultReceiver : String

<<Act>> PerformScheduling(order : Order)

<<action>>

Bicycle

code : int
model_name : String
price : Currency

<<concept>>

OrderStock

quantity : int

<<concept>>
11

Order

price : Currency
order_date : Date
delivery_date : Date
ID : Long

<<concept>>

11

1..*1..*

1..n1..n

Figure 3. Example of ontology expressed using a UML class diagram (Domain Ontology Description diagram of

the PASSI methodology)

A predicate represents a particular statement or belief surrounding some concept, as in the case

of the isReady predicate shown in Figure 3; this is used to announce that some specific Order is

ready to be delivered.

An action indicates the type of operation that can be performed on elements of the ontology,

thus possibly provoking some changes to the internal knowledge of the agent.

RequestOrderSchedulation, in Figure 3, is the example of an action specifying the request from one

agent to another to schedule the production of the bikes for some specific order.

 7

5.2.3.2 Message Content and Message Content Language

The MTS is the architectural level of a platform that performs the routing of a message from the

sender to the receiver whether they are in the same or in different platforms. The life-cycle of a

message from its initial creation by the sender to its reading by the receiver agent is reported in

Figure 4. The basic information delivered by a message is taken from the ontology of the sender

agent. It could be a concept, a predicate or an action. The message content (that refers an element of

the ontology) is expressed by the agent using a Content Language. FIPA specifications include four

languages:

1. Semantic Language (SL)

2. Constraint Satisfaction Problems (CCL)

3. Knowledge Interchange Format (KIF)

4. Resource Description Framework (RDF)

These are born in different contexts and represent the solutions adopted in specific approaches

or by some communities; each of them has its specific domain in which it is preferable. The RDF

language was created for web applications, but, as previously alluded, it proved to be optimal for

representing an ontology for many different applications. It is frequently used, alternatively to SL,

as the Content Language of messages exchanged among FIPA agents. The other two languages,

Message =
Payload +
Envelope

Message
Payload

Message

MTS

Agent Platform

Agent

MTS

Agent Platform

Agent

Message
Content

Content
Language

ACL

Message
Payload

Content
Language

ACL

Creates

Reads

Figure 4. Transformations of a message during its life

 8

CCL and KIF, were developed for Artificial Intelligence applications; they are very powerful at

expressing actions and predicates, but they come with a complex grammar.

The RDF language enjoys very widespread use because i) it is both a W3C1 and an FIPA2

standard, ii) it has quite a simple syntax and iii) it allows a number of possible representations (e.g.,

it also exists in the form of a XML specification). The RDF description (expressed using XML) of

the ontology element Bicycle reported in Figure 3 is shown in Figure 4.

 <rdfs:Class rdf:ID="Bicycle">

 <rdf:type rdf:resource="rdfsx:concept"/>

 </rdfs:Class>

 <rdf:Property ID="Bicycle.model_name">

 <rdfs:domain rdf:resource="#Bicycle"/>

 <rdfs:range rdf:resource="rdfsx:String"/>

 </rdf:Property>

 <rdf:Property ID="Bicycle.price">

 <rdfs:domain rdf:resource="#Bicycle"/>

 <rdfs:range rdf:resource="#Currency"/>

 </rdf:Property>

Figure 4. The RDF description of the Bycicle element of the ontology shown in Figure 3

Once the message content is expressed in a content language, it is necessary to encapsulate it

into a structure called Message Payload. This structure is coded in a specific ACL that includes

several other message parameters, the most relevant of which are:

• performative Type of communicative acts (inform, request, agree…), which depends on the

AIP;

• sender ID of the agent that is playing the Sender role in the communication;

• receiver ID of the agent that is playing the Participant role in the communication;

• content The already discussed Message Content (express in a Content Language);

• language Language used for the Message Content;

• ontology name of the ontology element reported in the Message Content;

• protocol name of the AIP used in the communication;

The Message Payload, coded in ACL, is received by the MTS of the platform where the Sender

agent is located. MTS encapsulates the payload into an Envelope including the transport

information needed to deliver the message: sender and receiver transport-descriptions, plus

additional information such as the encoding representation, security related data and whatever else

needs to be visible to the MTS. The transport-descriptions describe what transport protocol is to be

used (IIOP, HTTP and WAP are all examples of such protocols), and the physical address (e.g., an

IP address) to which the message has to be delivered.

1World Wide Web Consortium RDF specifications: http://www.w3.org/RDF/
2FIPA RDF specifications: http://www.fipa.org/specs/fipa00011/

 9

5.2.3.3 Agent Interaction Protocols

The FIPA Abstract Architecture places a great deal of importance to the interaction rules of

agent conversations. These have been formalized primarily through two concepts: the

communicative act and the AIP (also known simply as protocol in this context). According to the

FIPA directive, each conversation has to respect a protocol and has to be made up of

communicative acts (see also Figure 2). A communicative act is a way to associate a predefined

semantic to the content of a message so that it can be univocally understood by agents. The FIPA is

responsible for maintaining a consistent list of communicative acts. Some examples of

communicative acts are reported in Figure 5; they are request, refuse, agree, inform, and failure.

A protocol univocally defines which communicative acts may be used in a conversation and in

what order the related messages have to be sent to give the proper meaning to the communication.

Therefore, a protocol compels the use of determined messages with a specific semantic according to

a specific sequence. When an agent starts a conversation with another agent it has to specify a

protocol; a conversation without a protocol is not possible. If a message does not respect the rules

of the protocol or violates the prescribed order, then the conversation fails.

Until now, FIPA specifications use AUML diagrams [20][21] to describe protocols. This

diagram is a modified version of the UML sequence diagram. The FIPA Request Interaction

Protocol is reported in Figure 5. This may be used when one agent (the Initiator) asks another (the

Participant) to perform some kind of action.

Figure 5. The FIPA Request Interacting Protocol

To start the conversation the Initiator sends a request communication act. The content of the

message is a description, constructed in a language the receiver understands, of the action to be

performed; if there is a common ontology the content may be an ontology action (as described in

the previous paragraph).

 10

The Participant processes the incoming request and it decides whether to accept or refuse it.

The receiving agent makes a decision on the basis of a type of reasoning as could be expected given

the principle of autonomy of agents. If the Participant agent agrees to perform the requested action,

then it replies with an agree message; otherwise a refuse message is sent (the possibility of sending

an agree or refuse response is represented in Figure 5 by the diamond).

Once the request has been accepted, the Participant has to fulfill the action and, according to the

result obtained, reply with one of the following communicative acts:

• a failure message to notify that the action was not completed for some reason; this

motivation is usually reported in the content of the message;

• an inform message to communicate that it successfully carried on the action to be done;

some information on the action results may be reported in the content of the message (e.g., a

link to a web site selected according to criteria passed on by the Initiator agent).

5.2.4 JADE: an Implementation Platform

The FIPA describes an abstract architecture that cannot be directly implemented; since the main

focus of these specifications regards agent interoperability, not many details are provided on the

platform implementation aspects.

On this basis a great number of different solutions have been proposed over the last years, a list

of which can be found on the FIPA web site. Among the most widely used are FIPA-OS, JADE and

Zeus. In this section the JADE AP is briefly analyzed in order to illustrate some of its specific

implementation details.

JADE (Java Agent DEvelopment Framework) [12] was completely developed in Java language

by Telecom Italia Lab with the collaboration of the University of Parma. The JADE platform has

many interesting features; one of these is the support it provides for agent mobility, which allows its

use for the creation of distributed applications where mobility plays an important role (e.g.,

searching).

A JADE agent is based on a class that extends the Agent super-class (a UML class diagram

representing the Administration agent from the bicycle case study reported in the next subsection is

shown in Figure 6). The agent class usually contains a constructor (required by Java and, by

convention, in JADE used to initialize data structures) and the setup method, which, automatically

invoked by the platform once the constructor ends, is often used to begin the agent activity. An

agent can be instantiated only by the platform; when this happens, a univocal ID is assigned to the

agent and the constructor followed by the setup method are executed. Often, the developer uses the

constructor to initialize the agent’s data structures and the setup method to start the activity of its

agent.

 11

Administration
AGENT_TYPE : String = Administration_Agent
version : String = 1.0
productcomponent : ProductComponent
rawmaterial : RawMaterial
productmodel : Bicycle
componentlot : ComponentLot
order : Order
orderstock : OrderStock
bicycle : Bicycle
customer : Customer
lot : Lot
requestorderschedulation : RequestOrderSchedulation

Administration()
shutdown()
setup()
register_WithDF()

<<Agent>>

Agent
(from JADE)

Behaviour
(from JADE)

RequestWork
agent_to_request : AgentID

FIPARequestInitiatorTask()
action()
handleRefuse()
handleAgree()
handleFailure()
handleInform()
sendRequest()
RequestWork()

<<Task>>

Figure 6. Structure of a Jade agent with a behavior

Another method automatically invoked by the platform is shutdown, which arises when an

agent is about to terminate It contains the code needed to properly conclude the agent’s activities

and to reallocate the assigned resources; the JADE Agent class (the mother class of all the agents)

already provides such a method and, in most cases, this is sufficient to successfully shutdown the

agent.

Agent activities are typically not described in its base class methods, but are located in some

sub-classes called behaviors. A behavior represents the atomic element of decomposition of the

agent’s tasks. Operations needed to reach a goal of the agent are partitioned among its behaviors.

For instance, communication with another agent is delegated to a specific behavior (an example is

the RequestWork class shown in Figure 6). Concretely, a behavior is a class that extends a JADE

super-class called Behavior. As seen for the agent base class, a template structure exits for behavior

classes. All the behaviors must contain an action method. Like the setup method, action is

automatically invoked by the platform, after which the class constructor method is completed; the

use is the same but at the behavior level (i.e., it is used to start the operations related to that

behavior).

Obviously, a behavior class can contain several methods; a communication behavior is usually

made up of a set of methods in order to catch all the incoming messages of a specific protocol. For

instance, if a behavior is used to initiate a Request communication [1] (as the RequestWork behavior

of Figure 6) it must contain the handleRefuse, handleAgree, handleFailure, handleInform methods.

 12

5.3 A case study: designing the PS-Bikes system

Designing a multi-agent system is as complex as designing an object-oriented one. In order to

achieve a sound design and to guarantee access to documentation that could be used to further

enhance or maintain the software, a specific design methodology should be adopted. Several

different approaches exist in the literature and some of them have been already discussed in the

previous chapters. We will now describe an example of a design process, applying it to the

construction of an application for the PPS-Bikes’ case study. The adopted methodology is PASSI

(Process for Agent Societies Specification and Implementation) [2][22] and, with the help of the

supporting tool, PTK (PASSI ToolKit), the design documentation will be produced. The system

will be implemented using JADE as deployment AP.

5.3.1 PPS-Bikes’ case study: system requirements in itial description

The first phase of the design in most methodologies entails the elicitation and analysis of

requirements. A requirement is a feature that the system must exhibit: it can be a functional

requirement, such as service, or a non-functional requirement such as a constraint or a performance

issue. In UML [4] (functional) requirements are described with use case diagrams. According to

UML [3] a use case represents a coherent unit of functionality provided by a system, a subsystem,

or a class, as manifested by sequences of messages exchanged throughout the system (subsystem,

class) and one or more outside interactors (called actors), together with actions performed by the

system (subsystem, class). An actor defines a coherent set of roles that users of an entity can play

when interacting with the entity.

In Figure 7 a use case diagram depicts the functionalities of a portion of the PPS-Bikes’ system

and the interactions with two actors: the customer department and the production supervisor.

 13

Customer data management

Customer notification

Production
supervisor

Customer
department

Unresolved lots

Order acquisition Lots assigment

<<include>>
<<extend>>

Plant management

<<include>>

Figure 7. A portion of use case diagram representing the functionalities of the PPS-Bikes system

The company organizes its production on the basis of the received orders. The customers are

both wholesalers and retailers of sporting goods; they interact with a figure called the customer

department represented by an actor (a stick figure) in the diagram. When a customer wants to place

an order for some bicycles, he contacts the customer department directly (e.g., sending the order by

fax); using a graphical interface the customer department employee that receives the customer order

may introduce the data into the system. This functionality is represented by the “Order acquisition”

use case. The “customer data management” functionality allows the company to maintain an

archive of customers. The administration department generates plans for the production phases of

the two plants on the basis of forecasts of the demands and customers’ orders. When an order is

placed by the customer department, it has to be composed in lots and its production assigned to a

specific plant. These operations are represented by the “Lot assignment” and “Plant management”

use cases. The person responsible for interacting with the lot scheduler is the Production

Supervisor.

5.4 Designing the solution with PASSI

It is well known that code production is a complex activity, and the agent oriented paradigm

does not ignore this hurdle. A methodology to design and implement multi-agent systems is a pre-

requisite approach to simplify this task. The PASSI methodology is a step-by-step requirements-to-

code methodology for designing and developing multi-agent societies. It integrates design models

and concepts from both OO software engineering and artificial intelligence approaches using the

UML notation with some extensions.

 14

As already mentioned, the methodology is supported by PTK (PASSI Toolkit), a Rational Rose

plug-in, and also by a repository of patterns for agents. These tools are very useful in the design and

development of the MAS (multi-agent system) because they introduce a level of automation in the

process, thus enhancing the designer’s productivity. This is particularly effective when entire

portions of the model are taken from the patterns repository; this reuse, performed during the design

phase, also affects the coding activity, since a significant portion of code is automatically generated

starting from the pattern structure.

In the following sections, the PASSI methodology is synthetically analyzed in order to illustrate

how a methodology specifically conceived for multi agent systems can support and simplify the

designer’s work. The methodology is applied to the design of a system for the PPS-Bikes’ case

study.

5.4.1 The PASSI Methodology

PASSI is composed of five models (Figure 8) regarding the different abstraction levels of the

process:

1. System Requirements Model. The initial part of this model is similar to other common

object-oriented methodologies (requirements analysis). An agent-based solution to the

problem is thus drafted.

2. Agent Society Model. This describes the details of the system solution in terms of agent

society concepts like ontology, communications and roles.

3. Agent Implementation Model. The previous models are used to obtain a detailed

description of the agent society in terms of both structure and behavior that can be used to

produce the code of the system.

4. Code Model. In order to streamline and speed up the development of a new system, code is

partially obtained from the application of patterns. A conventional code completion activity

is then carried out.

5. Deployment Model. Mobile agents require that specific attention be paid to the

specification of their needs in terms of both software environments (e.g., libraries available

in the host platform) and hardware capabilities and performance (e.g., amount of available

network bandwidth); these are the issues defined in the deployment model.

 15

Figure 8. The different steps and models of the PASSI design process

5.4.2 The System Requirements Model

The System Requirements Model is a model of the system requirements in terms of agency

and purpose. The methodology is use case driven and starts with the requirements analysis, where

the designer models the system as a set of use case diagrams. Some of these diagrams, the Domain

(Requirements) Description diagrams, are drawn to represent the actors and the use cases identified

for the system. Figure 7 reports some of the use cases of our PPS-Bikes’ system. In this kind of

diagram the designer can identify the agents that will populate the solution. In PASSI, each agent

receives the responsibility for a part of the functionalities of the whole system; this is represented in

a use case diagram (called Agent Identification diagram) by grouping some of the use cases within a

package and giving it the name of the agent.

Figure 9 depicts a portion of the Agent Identification diagram for the PPS-Bikes’ system. It

describes only two agents, the Customer and the Administration; these are displayed as two

packages containing some use cases from Figure 7. Each agent is responsible for accomplishing the

functionalities associated with the use cases included in its package. For example the Customer

agent responsibilities include: “Customer Data Management”, “ Order Acquisition” and “Customer

Notification”. All of these have a direct interaction with the Customer department actor that

represents one of the users of the application.

 16

CustomerAgent
<<Agent>>

AdministrationAgent
<<Agent>>

Production supervisor

Plant management

Unresolved lotsLots assigment

<<include>>

<<include>>

Customer data management
Order acquisition

<<communicate>>

Customer department

Customer notification

Figure 9. A portion of the agent identification diagram for the PPS-Bikes case study

When two use cases are assigned to different agents and are related by an include relationship

(showing that the included use case offers some kind of functionality to the including one) or extend

relationship (showing that the extended use case profits from the extending one to tackle some

specific situation triggered by a guard condition), then the involved agents have a dependency and

will communicate to achieve the collaboration requested by the relationship between the two use

cases.

In this phase an agent is only an aggregation of functionalities. In the example, the Order

Acquisition and the Lots Assignment use cases are connected (see Figure 7) with an extend

association: in the Agent Identification diagram, this turns into a communicate relationship

(representing an agent conversation) between the two agents.

 : Customer
department

CustomerDB :
Customer

OrderManagement :
Customer

LotsManagement :
Administration

SearchCustomerData

InsertNewOrder
SendDataToTheAdministration

Figure 10. The Role Identification diagram for the “insert new order” scenario

 17

When all the agents are identified, the next step is to explore the scenarios in which they are

involved. This is done using a set of UML sequence diagrams; in these diagrams each agent may be

involved in many activities and may appear more than once in each single scenario, thus meaning

that an agent plays more than one role in that scenario. The identification of agent roles is one of the

main outcomes of these diagrams, which are therefore called Role Identification diagrams in

PASSI. An example of a Role Identification diagram is shown in Figure 10. Here the Customer

agent appears twice: in the first instance, it searches for information about a customer in the

company database (role CustomerDB) and then, in the second, it archives a new customer’s order

(role OrderManagement).

The last step of this first model (the System Requirements Model) is to begin the description the

dynamic behavior of each agent. This phase is performed with a set of Task Specification Diagrams

(one for each identified agent). According to FIPA definitions [10], a task is “the observable effect

of an operation or an event, including its results. It specifies the computation that generates the

effects of the behavioral feature”. Starting from this definition, PASSI considers a task as an entity

that is somehow similar to the Behavior defined in the JADE agent structure. The Task

Specification Diagram is a UML activity diagram representing agents in a swim-lane and their tasks

as activities. Each diagram is drawn to detail one agent and only two swim-lanes are present in it

(see Figure 11): the right-hand one contains a collection of activities symbolizing the current

agent’s tasks, while the left-hand one reports some activities from other agents involved in

interactions with this specific agent.

Customer.SendO
rderData

Plant.WorkListener

PlannerT
ask

OrderList
ener

Request
Work

Superviso
rGUI

[if refused]

AdministrationAdministration T.Sp.:Interacting Agents

Figure 11. The Task Specification diagram for the Administration Agent of the PPS-Bikes’ case study

 18

An example of a Task Specification Diagram for the Administration agent is reported in Figure

11. This agent is involved in the introduction of a new order from a Customer agent. It receives this

communication with the OrderListener task. After that, the agent plans the bike production with the

PlannerTask and RequestWork tasks. The SupervisorGUI task is activated if a problem is found in

the planning phase; the task is responsible for notifying the production of the need to manually

adjust the plan.

5.4.3 The Agent Society Model

The next PASSI model is the Agent Society Model that represents social interactions and

dependencies among agents involved in the solution. This model is composed of four phases:

• the Domain Ontology Description, where the domain is explored and its distinguishing

concepts are identified together with actions and propositions related to them;

• the Communication Ontology Description, used to detail agent communications in terms

of ontology, content language and interaction protocol;

• the Roles Description, which consists of a diagram representing agents with their roles, the

tasks involved in those roles and the dependencies among agents/roles in terms of resources

to be shared and services to be provided;

• the Protocols Description, which constitutes a phase that is frequently skipped by the

designer. It is necessary to define a new protocol only if the existing FIPA protocols are

insufficient to model the specific communication, and this happens rarely.

In the PASSI methodology the design of ontology is performed in the Domain Ontology

Description (DOD) phase and a class diagram is used. Several works can be found in the literature

about the use of UML for modeling ontology (6-8). Figure 3 reports an example of a PASSI DOD

diagram; it describes the ontology in terms of concepts (categories, entities of the domain),

predicates (assertions on properties of concepts) and actions (performed in the domain). This

diagram represents an XML schema that is useful to obtain a Resource Description Framework

(RDF) encoding of the ontological structure. We have adopted RDF to represent our ontologies,

since it is part of both the W3C [5] and FIPA (FIPA RDF Content Language) [9] specifications.

In Figure 3, the PPS-Bikes system ontology is described by classes and their relationships.

Elements of the ontology are related using three UML standard relationships:

• Generalization, permits the ‘generalize’ relation between two entities, which is one of the

essential operators for constructing an ontology;

• Association models the existence of some kind of logical relationship between two entities

and allows specifying the role of the involved entities in order to clarify the structure;

 19

• Aggregation can be used to construct sets where value restrictions can be explicitly

specified; in the W3C RDF specification three types of container objects are enumerated,

namely the bag (an unordered list of resources), the sequence (an ordered list of resources)

and the alternative (a list of alternative values of a property). For our purposes we consider

a bag as an aggregation without an explicit restriction, a sequence as being qualified by the

ordered attribute, while the alternative is identified with the only_one attribute of the

relationship.

The example (Figure 3) shows that each Order concept is characterized by a price, order_date

delivery_date and ID. Each order aggregates several OrderStocks, each one of them describing the

number of bikes of a specific type that are part of the order. The bicycle model is described in the

homonymous concept. One agent can ask another if an order has been completed, and this instance

is stated by the Boolean value of the isReady predicate. The ScheduleManifacturing action

introduces the order (and therefore the specified number of bicycles) in the manufacturing

scheduling of the different machine tools.

The Communication Ontology Description (COD) (Figure 12) is a representation of the agents’

(social) interactions; this is a class diagram that shows all agents and all their interactions (lines

connecting agents). In designing this diagram we start from the results of the A.Id. phase. A class is

introduced for each identified agent, and an association is then introduced for each communication

between two agents (ignoring for the moment distinctions about agents’ roles). Clearly, it is also

important to introduce the proper data structure (coming from the entities described in the DOD.) in

each agent in order to store the exchanged data.

The association line that represents each communication is drawn from the initiator of the

conversation to the other agent (participant) as can be deduced from the description of their

interaction performed in the Role Identification (R.Id.) phase. As already mentioned, each

communication is characterized by three attributes, which we group into an association class. This

is the characterization of the communication itself (a communication with different ontology,

language or protocol is certainly different from this one), and its knowledge is used to uniquely

refer this communication (which can have, obviously, several instances at runtime since it may

arise more than once). Roles played by agents in the interaction (as derived from the R.Id.

diagrams) are reported at the beginning and the end of the association line.

 20

Customer - Administration1

Ontology : requestOrderSchedulation
Language : RDF
Protocol : FIPARequest

<<Communication>>

Administration-Plant1

Ontology : requestLotProduction
Language : RDF
Protocol : FIPARequest

<<Communication>>

Customer

customers : CustomerList

<<Agent>>

Administration

lots : LotSchedulation

<<Agent>>

+OrderManagement

+LotsManagement

Customer - Administration1

PlantAgent

ScheduledProduction : PlantProduction

<<Agent>>

+Scheduler

+PlantMangement

Administration - Plant1

Figure 12. The Communication Ontology Description (COD) diagram for the PPS-Bikes case study

Figure 12 illustrates the communication between the Customer and Administration agents (the

unique communication name is: Customer-Administration1). The first initiates the interaction in

order to ask the other about the production scheduling of an order for some bikes. The referred

ontology is an action (requestOrderSchedulation) and the interaction protocol is the FIPA Request

that is dedicated to dealing with requests for some kind of service. RDF is the content language.

The FIPA Methodology Glossary [10] defines a role as “a portion of the social behaviour of an

agent that is characterized by some specificity such as a goal, a set of attributes (for example

responsibilities, permissions, activities, and protocols) or providing a functionality/service”. In

PASSI, roles are initially identified in the already discussed A.Id. diagrams. Their definition is the

completed in the Role Description (RD) diagram, i.e., a UML class diagram in which classes are

used to represent roles. Agents are represented by packages containing classes of roles (see Figure

13). Each role is achieved by grouping several elementary tasks into a resulting complex behavior;

for this reason tasks are shown in the operation compartment of each role’s class. An agent during

its life can take on several different roles, and this dynamic evolution in its behavior is represented

by a dashed line with the name [ROLE CHANGE] that connects its different roles in the expected

order. Conversations between roles are indicated by solid lines (as we have depicted in the COD),

using exactly the same relationships names.

We have also considered dependencies between agents. Because agents are autonomous and

may refuse to provide a service or a resource to another, the design needs a schema that expresses

such matters and explores alternative ways to achieve goals. In order to realize such a schema, we

 21

have introduced in the Roles Description diagram some additional relationships that express the

following kinds of dependency:

• Service dependency, where one role depends on another to bring about a goal (indicated by

a dashed line with the service stereotype);

• Resource dependency, where one role depends on another for the availability of an entity

(indicated by a dashed line with the resource stereotype);

• Soft-Service and Soft-Resource dependency, where the requested service/resource is helpful

or desirable, but not essential to bring about a role’s goal (indicated by a dashed line with the soft-

service and soft-resource stereotypes).

In the example of Figure 13, the Customer agent plays the CustomerDB role while dealing with

the customer data and the OrderManagement role while managing customer orders. We can see that

several tasks are involved in the exploitation of the second role (e.g., graphical interfaces like

OrderDataGUI are used to interact with the user that introduces the customer order data). We can

also note that this agent initially plays a role related to the compilation of the customer data archive,

and then changes its vocation (Role Change relationship) towards order-oriented operations. The

communication with the Administration agent already discussed in the COD. diagram (Figure 12) is

also reported in order to simplify the analysis of the interactions among the different roles.

Administration

PlantMangement

RequestWork()
WorkRejected()

Customer

OrderManagement

GUIManagerTask()
OrderDataGUI()
OrderNotif ication()
SendOrderData()

LotsManagement

OrderListener()
PlannerTask()
Superv isorGUI()

Customer - Administration1

CustomerDB

DataBaseUpdater()
CustomerDataGUI()

[ROLE CHANGE]

serv ice

[ROLE CHANGE]

Figure 13. The Role Description (RD) diagram for the PPS-Bikes case study

As we have seen in the DOD phase and as specified by the FIPA architecture, a protocol is used

for each communication. All of them are standard FIPA protocols in our case study. Usually, the

related documentation is given in form of AUML sequence diagrams [11]. Hence, designers do not

need to specify protocols on their own. In some cases, however, existing FIPA protocols are not

adequate. If this happens, some specific protocols have to be properly designed (Protocol

Description phase); this can be done using the same FIPA documentation’s approach (with an

AUML sequence diagram as in Figure 5).

 22

5.4.4 The Agent Implementation Model

The Agent Implementation Model is a model of the solution architecture. It is composed of

two different phases, each performed at both the multi- and single-agent level of abstraction. The

multi-agent level deals with the agent society and is therefore detailed to a low degree as regards the

agent implementation specifications; however, it fittingly documents the overall structure of the

system (behaviors of each agent, communications, etc.). The single-agent level of abstraction

focuses on the implementation details of each agent and specifies whatever is needed in order to

prepare the coding phase. The two phases are:

• Agent Structure Definition (ASD) uses conventional class diagrams to describe the structure

of solution agent classes;

• Agent Behavior Description (ABD); uses activity diagrams or statecharts to describe the

behavior of individual agents.

This model is characterized by an iterative process and, specifically, by a double level of

iteration (see the Agent Implementation Model box in Figure 8). This model needs to be viewed as

being composed of two views: the multi-agent and single-agent views related by two iterations. The

outer level of iteration concerns the dependencies between these two views. In each we can find an

ASD (representing the agents’ structure at the social or inner agent granularity) and an ABD

(describing the agents’ behaviors again from the social or single agent perspective). An inner level

of iteration takes place at both the multi-agent and single-agent views and concerns the

dependencies between the structural and behavioral matters. As a consequence of this double level

of iteration, the Agent Implementation Model is composed of two steps (ASD and ABD), but still

yields four kinds of diagrams taking into account the multi- and the single-agent views.

In the Multi-Agent Structure Definition (MASD) diagram, attention is centered on the

general architecture of the system. The MASD is an overview of the results obtained from the

previous phases from the structural point of view. In this diagram (Figure 14), agents are

represented as classes with their behaviors in the operations compartments; attributes specify the

agent knowledge. Building this diagram is not an effort for the designer, since PTK (the tool that

supports the design with the PASSI methodology) automatically builds it using information coming

from previous diagrams.

 23

Storehouse
responsible

Supplier

stock : RawMaterialStock

RawMaterialListener()

<<Agent>>

Establishment
responsible

Production
supervisor

Plant

estabProduction : Estabil ishmentProduction

WorkListener()
RequestComponentProduction()
DeclareRawMaterialUse()

<<Agent>>

Production worker

Administration

lots : LotSchedulation
order : Order

PlannerTask()
OrderListener()
RequestWork()
SupervisorGUI()

<<Agent>>

Production

daily_production : OrderStock

NotifyOrderState()
ComponentListener()

<<Agent>>

Customer
department

Customer

book : CustomerBook
order : Order

SendOrderData()
GUIManagerTask()
CustomerDataGUI()
OrderDataGUI()
DataBaseUpdater()
OrderNotification()
SendOderData()

<<Agent>>

Figure 14. The Multi-Agent Structure Definition diagram for the PPS-Bikes case study

At this point, a new diagram, the Single-Agent Structure Definition (SASD) diagram is drawn

for each agent in order to explore its internal composition and all of its tasks at a level of detail that

is sufficient to generate the implementation code. This diagram is a UML class diagram and reports

the agent main class and each agent task as a class, resembling the structure of the most common

AP specifications (Jade [12], FIPA-OS [13],). At this point, we set up attributes and methods of the

agent class (e.g., the constructor and the shutdown method required by the FIPA-OS platform or

just the constructor in JADE) and the task classes (e.g., the methods required to deal with

communication events when the agent receives/sends a communicative act).

 24

Customer

AGENT_TYPE : String = Customer
v ersion : String = 1.0
productmodel : Bicy cle
customer : Customer
notif y odercomplete : notif y OderState
requestorderschedulation : ScheduleOrder
order : Order
orderstock : OrderStock
bicy cle : Bicy cle
productcomponent : ProductComponent
rawmaterial : RawMaterial

Customer()
shutdown()
setup()
register_WithDF()

<<Agent>>

Agent
(from JADE)

Behav iour
(from JADE)

SimpleBehav iour
(from JADE)

CompositeBehav iour
(from JADE)

ParallelBehav iour
(from JADE)

GUIManagerTask

GUIManagerTask()
action()

<<Task>>

OneShotBehav iour
(from JADE)

CustomerDataGUI

CustomerDataGUI()
action()

<<Task>>
OrderDataGUI

OrderDataGUI()
action()

<<Task>>
DataBaseUpdater

DataBaseUpdater()
action()

<<Task>>

SendOderData

agent_to_request : AgentID

FIPARequestInitiatorTask()
action()
handleRef use()
handleAgree()
handleFailure()
handleInf orm()
sendRequest()
SendOderData()

<<Task>>

OrderNotif ication

query _conv : Conv ersation

Inf ormParticipantTask()
action()
OrderNotif ication()

<<Task>>

Figure 15. The Single-Agent Structure Definition (SASD) diagram for Customer of the PPS-Bikes case study

An example of an SASD diagram is reported in Figure 15 and describes the internal structure of

the Customer agent of the PPS-Bikes’ case study to be implemented in the JADE platform. The

Customer main class is derived from the Agent base class of JADE. Among its attributes we find

AGENT_TYPE, which usually contains the name of the agent type (Customer in this case), while in

the operations compartment we find the register_WithDF method that contains the code necessary

to register with the yellow pages service of the platform (Directory Facilitator).

As regards the agent’s tasks (called Behaviors in JADE), we can consider SendOrderData and

OrderNotification, which are represented as two classes extending the JADE Behavior super class,

and whose duties entail dealing with the agent communications (as can be seen in Figure 14, this

agent has relationships with both the Production and Administration agents); for example,

SendOrderData adopts a Request protocol to delegate the Administration to take care of the

introduction of a new order in the manufacturing schedule.

A different structure is proposed for CustomerDataGUI, OrderDataGUI and

DataBaseUpdater, which are inherited from the JADE OneShotBehavior (a behavior that performs

a single operation and then terminates its existence). This kind of solution is a valid option for

controlling graphical interfaces, i.e., once the interaction with the user is completed, there is no

reason for the behavior to remain active.

The agent behavior at the multi-agent level is described by the Multi-Agent Behavior

Description (MABD) diagram. This is a UML activity diagram used to illustrate the dynamics of

the system during the agents’ life. Figure 16 reports an example of MABD; it illustrates the

activities occurring during the Request communication between the Customer and Administration

 25

agents. In the diagram, all the involved classes (both of agents and tasks) are represented with

swim-lanes (such as Customer and Customer.SendOrderData), while operations are displayed as an

activity (rectangles with rounded corners, like SendOrderData.PrepareRequest, which is the

constructor method of the SendOrderData behavior in Figure 16). In these diagrams, transitions

among activities indicate an event as a method invocation (if relating activities in the same swim-

lane), a new behavior instantiation (if relating activities of the same agent but in different swim-

lanes) or a message (if two different agents are involved). The communication described in the

example initiates a request message and then, according to a decision process (not described), the

Administration agent replies with a refuse or agree message. Each message is detailed with the

communication name and the communicative act.

The Single Agent Behavior Description (SASD) is the last phase of the Agent Implementation

Model. The approach we use in this activity is quite common. The aim of this phase is to produce a

design of the inner part of methods introduced in the SASD diagrams in order to prepare their

implementation. The designer is free to describe these features as he/she sees most fitting and

appropriate (e.g., using flow charts, state diagrams or semi-formal text descriptions). It should be

noted that, because in many instances operations performed according to a method are not complex

enough to justify so much attention, a textual description is often sufficient.

Customer

Customer.setup

Customer.regi
ster_with_DF

Customer.initialize
_customer_book

Customer.GUI
ManagerTask

Customer.GUIMan
agerTask.action

Customer.GUIManager
Task.OrderAccepted

Customer.GUIMAnager
Task. OrderRefused

Customer.GUIMAnagerTask.
OrderScheduled

Customer.SendO
rderData

Customer.SendOrderD
ata.PrepareRequest

Customer.SendOrder
Data.handleAgree

Customer.SendOrder
Data.handleInform

Customer.SendOrder
Data.handleRefuse

Administration.OrderLi
stener.OrderListener

Administration.OrderList
ener.handleRequest

message(
Customer-Administration1, request)

Administration.Order
Listener.sendRefuse

message(
Customer-Administration1,

refuse)

Administration.Order
Listener.sendInform

message(Customer-Administration1, inform)

Administration.OrderList
ener.sendAgree

Administration.
Planner

Administration.Pla
nner.action

Administration

Administration.set
up

Administration.reg
ister_with_DF

message(Customer-Administration1, agree) addBehaviour

addBehaviour

addBehaviour

addBehaviour

AdministrationAdministration.PlannerAdministration.OrderListenerCustomer.SendOrderDataCustomer.GUIManagerTaskCustomer

Figure 16. Multi-Agent Behavior Description (M.A.B.D.) diagram used to describe the interaction of two agents

during a FIPA Request Communication

5.4.5 The Code Model

The Code Model is a model of the solution at the code level. In this phase the developer is

aided by a tool (AgentFactory) developed in the order to grant the code reuse. AgentFactory may

work inside PTK or as a standalone application, its key feature being that it allows the easy

 26

construction of a substantial part of an MAS reusing elements of its pattern repository (specifically

realized to solve agent-oriented problems and therefore different from a common object-oriented

one).

An agent pattern, according to the PASSI conception, derives from object-oriented design

patterns [14], and describes a tested solution for a recurrent design problem. This pattern [15][16] is

presented as a set of diagrams of the PASSI methodology, each describing the different aspects of

the problem at different abstraction levels and covering one or more phases of the design process.

Typically, diagrams used to describe a pattern are classified in one of two categories: structural or

behavioral, the most common diagrams used in the pattern description are the Task Specification,

DOD, COD, SASD and MABD. Starting from these representations and from a description of the

solution with an XML-based meta-language, AgentFactory can instantiate the implementation code

for both the FIPA-OS and JADE platforms. Obviously, the code generation engine also considers

the needs emerging from the composition of different parts to create a complex agent structure and

can solve all the ensuing problems.

Communication patterns are among the most frequently used by the AgentFactory repository.

As an example, the FIPARequest pattern introduces one possible solution to the recurrent problem

to create a conversation among two agents according the FIPA Request agent interaction protocol

(see subsection 5.2.3.3).

The structure of the two agents involved in the communication is described by two SASD

diagrams (Figure 17), which illustrate what attributes and methods will be added to the initiator and

participant agents when the pattern is applied to them. A plethora of methods are specifically related

to protocol communicative acts; these methods have the preamble “handle” followed by the name

of the communicative act, e.g., handleAgree or handleInform are the methods where messages

containing the Agree of Inform performatives will be managed.

initiator agent participant agent

TaskShell

FIPARequestInitiatorTask

request_content : String
agent_to_request : AID

FIPARequestInitiatorTask()
handleAgree()
handleRefuse()
handleFailure()
handleNotUnderstood()
handleInform()
handleOutOfSequence()
handleAllResponses()
handleAllResultNotifications()
prepareRequests()

<<Task>>

AgentShell

initiator
<<Agent>>

TaskShell

FIPARequestParticipantTask

FIPARequestParticipantTask()
sendAgree()
sendNotUnderstood()
sendRefuse()
sendInform()
setMessageTemplate()
prepareResponse()
prepareResultNotification()

<<Task>>

AgentShell

participant
<<Agent>>

 27

Figure 17. Two class diagrams representing the static structure of the agents involved in a FIPA Request

communication

These two diagrams do not suffice to describe all the features of the FIPA protocol

management, since they do not provide any dynamic representation. An MABD diagram is

therefore needed to complete the pattern description: this is useful to describe the activities

performed by the two agents involved in the communication (Figure 18) in a form that can be easily

reused as a portion of the actual design of the system (in fact, once a pattern is applied to the

project, PTK automatically introduces it in the corresponding diagrams).

prepareRequest

handleAgree

handleRefuse

handleInform

handleFailure

handleRequest

sendAgree

sendRefuse

doYourDuty

sendInform

sendFailure

request_participantrequest_initiator

Figure 18. A Multi-Agent Behavior Description diagram used to describe the FIPA Request pattern

The MABD reported in Figure 18 illustrates that the request_initiator agent sends a message to

the request_participant agent with the prepareRequest method (see also Figure 17). The responding

agent receives it with the handleRequest method and according to its will responds with a message

containing one of the Request interaction protocol performatives (Refuse, Agree,…) sent by the

correspondent method (sendRefuse, sendAgree,…).

Since a significant part of the design and an even more substantial part of the code

automatically descend from (depend/are contingent on) the appropriate choice of the right pattern

for a specific situation, this activity becomes a strategic one and should not be neglected by the

designer.

 28

5.4.6 The Deployment Model

The Deployment Model is the response to the need to detail the position of the agents in a

distributed system or in mobile-agent contexts. The Deployment Configuration diagram (Figure 19)

is useful to depict where the agents will be located during their life (i.e., the processing units where

they live), their movement and their communication support.

The standard UML notation is useful for representing the elaborating units, here shown as 3-D

boxes, and the agents, which are depicted as components; since an agent may be instantiated more

than once, agent (instance) names are in the form agent-name:agent-class.

Figure 19. Deployment Configuration diagram for the agents of the PPS-Bikes’ system

5.4.7 Agent and Society Test

The testing activity in PASSI has been split into two different steps: the (single) agent test and

the society test. During the agent test, the aim is to verify whether each single agent respects its

specifications as these can be derived from the different design steps. Most test cases can be derived

from the use cases that constitute the agent functionality specification as described in the Agent

Identification diagram.

In the society test, the validation of the correct interaction of the agents is performed to

ascertain that they concur in solving problems requiring cooperation. Only at this stage is it possible

to verify whether the expected social behavior is achieved and the agents interoperate correctly

without any problems. This is also the moment for evaluating the system performance in terms of:

 29

• the results provided by the different agents making it up (i.e., if they are able to offer

the required services, or to deal with the required amount of data) while interacting

with the others in the real operating configuration;

• the effect that the operating environment (network capabilities, host platforms

elaboration power and configurations) has on the system.

5.5 Agent implementation

A distinguishing feature of the PASSI methodology is that it covers the whole development

process from requirements analysis to code implementation. The aim of this section is to conclude

the overview of the agent modeling process with a concrete realization of an agent , starting with

the requirements analysis (System Requirements Model) and continuing up to the social

representations (Agent Society Model) of the agents involved and their architectural

implementation details (Agent Implementation and Deployment models).

In this section a brief description of the programming code derived naturally from the process

diagrams will be given. Part of this code has been generated by PTK, and only a few lines have

been added manually. The solution presented is an implementation in JADE of a portion of the

Administration agent already described in the previous design phases (namely, the part dealing with

the main agent class and a behavior that initiates a Request communication).

 30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

...

62

63

...

268

public class Customer extends Agent {

 private final String AGENT_NAME = "customer" ;

 private Order order;

 private CustomerBook book;

 public Customer() {

 initialize_customer_book();

 }

 public void setup () {

 register_to_df();

 GUIManagerTask gui = new GUIManagerTask(this);

 addBehavior(gui);

 }

 public void register_to_df () {

 /* this block enables DF registration */

 try {

 // create the agent description of itself

 DFAgentDescription dfd = new DFAgentDescription();

 dfd.setName(getAID());

 // register the description with the DF

 DFService.register(this, dfd);

 } catch (FIPAException e) {

 e.printStackTrace();

 }

 }

 public class RequestWork extends AchieveREInitiator {

 ...

 }

 ...

}

Figure 20. A portion of the code for the Customer agent base class

Figure 20 shows a portion of the code for the Customer agent. the internal structure of the

RequestWork behavior has by now been omitted (at lines 30-62) because in a first phase we focus

on another issue, that is the agent inner structure represented by its base class.

Line 1 is the declaration of the Customer agent as a Java class inherited by the JADE Agent

class (i.e., the mother class of all JADE agents; see also section 5.2.4). Line 2 defines an agent

attribute, called AGENT_NAME; there is no difference between an agent attribute and a class

attribute, since both of them follow the same (Java) syntax. This attributeknown (a String constant),

has been introduced in the agent to contain its name; this value may be used in order to register

some agent services to the local Directory Facilitator (DF).

 31

The constructor method (Customer) in this case is used to call another method where the

customer book is initialized (not dealt with by our example). Agents’ constructors are often used

only to initialize data structures, while the agent behavior is delegated to the methods that follow.

The agent setup method is declared at line 10. An agent may contain several methods, but some

of them are reserved for specific goals. The setup method is one of them and it is a mandatory

element, since it represents the starting point for all agent activities. Once an agent instance has

been created (and its base class constructor executed), the platform registers it automatically to the

local Agent Management Service (AMS); it then invokes the agent setup method.

In our example, the Customer agent setup method contains only three instructions:

• (line 11) an invocation to the register_to_df method defined some lines later (lines 16-28).

This method inserts a new record in the local DF register. The instruction used for this

operation is at line 24 (DFService.register(this, dfd)); it is put inside a try – catch construct

to intercept possible exceptions arising during the registration. The dfd parameter is a

DFAgentDescription object and represent the record used to describe the agent to the

community. At line 21 this record is initialized with the agent ID value.

• (line 12,13) the GUIManagerTask behavior is created and then scheduled with the

addbehaviour instruction. This is the classic way to start a new agent behavior in JADE. As

can be deduced from the MABD diagram reported in Figure 16, this behavior will interact

with the user and then call another behavior (the RequestWork behavior) that is described

more in detail below.

Now we can analyze the structure of the RequestWork behavior, which was omitted in Figure 20

(lines 30-62); the complete code is reported in Figure 21. This is not the only behavior of the

Customer agent (see also the agent structure described in Figure 14 and Figure 15), but it has been

chosen because it is a classic communication task. The behavior is declared as a Customer agent

inner class, and it inherits a JADE core super-class whose name is not univocally defined (as it was

for the JADE Agent class used to define the agent); in fact, a complex hierarchy of behavior types is

provided by this implementation platform and the choice is left to the developer. Each element of

the hierarchy has its specific functionalities; for example, the CyclicBehavior may be used to create

a behavior that cyclically repeats an operation, the SequentialBehavior to execute some activities in

the specified order, and the FSMBehavior to implement a complex finite state machine.

 32

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

public class RequestWork extends AchieveREInitiator {

 private String request_content ;

 private AID agent_to_request ;

 private GUIManagerTask gui;

 public RequestWork(Agent owner, AID id, String content, GUIManagerTask gui) {

 super(owner, new ACLMessage(ACLMessage.REQUEST));

 agent_to_request = id;

 request_content = some_service;

 }

 public void handleAgree (ACLMessage msg) {

 gui.notifyOrderAccepted();

 }

 public void handleRefuse (ACLMessage msg) {

 gui.notifyOrderRefused();

 }

 public void handleInform (ACLMessage msg) {

 gui.notifyOrderSheduled();

 }

 public Vector prepareRequests (ACLMessage msg) {

 //automatically invoked by the platform after the class constructor

 msg.setPerformative(ACLMessage.REQUEST);

 msg.setProtocol(FIPANames.InteractionProtocol.FIPA_REQUEST);

 msg.setSender(myAgent.getAID());

 msg.addReceiver(agent_to_request);

 msg.setContent(request_content);

 Vector l = new Vector();

 l.addElement(msg);

 return l;

 }

}

Figure 21. Portion of the code for the RequestWork behavior of the Customer agent

The RequestWork behavior starts a Request conversation with the purpose to obtain some

service from the Administration agent. The JADE API offers an off-the-shelf behavior to initiate a

communication by adopting several communication protocols, the AchieveREInitiator and the

AchieveREResponder to deal with the consequent incoming messages.

Line 30 defines the behavior as a class (RequestWork) that extends the AchieveREInitiator

super class. It also has some attributes defined at lines 31-33: request_content is a String containing

the message content (coded in a specific content language, e.g., RDF) for the initial “request”

communicative act. The other attribute, agent_to_request (used to address the receiver agent), is an

instance of the AID class belonging to the JADE API framework; this is a container for the univocal

identifier used to locate an agent within a specific platform. The gui attribute is used to store a

 33

reference to the behavior that calls this (GUIManagerTask, see Figure 18) in order to notify it with

the results of the communication.

The RequestWork constructor is defined at lines 35-39. It requires four parameters: the owner (a

reference to the agent), the AID (the receiver agent’s unique ID), the request_content (the content of

the message to be sent) and the gui reference to the caller behavior (see above). The first command

of this method is a call to the super class constructor that is invoked by specifying, with the first

parameter, the owner agent and, with the second parameter, that the message to be used to initiate

the protocol is a request communicative act. This last parameter is not of paramount importance,

since the request message is better defined in the following prepareRequest method.

Once the constructor is completed, the prepareRequest method (lines 49-60) is automatically

invoked for all the AchieveREIntiator type behaviors. It returns a vector of ACLMessage objects

used to initiate the communications with n different agents. The ACLMessage class represents the

data structure used to contain the message payload of a message (in ACL language) as illustrated in

subsection 5.2.3.2. In this method, the performative, protocol, sender, receiver and content fields of

the message are filled in with necessary data. Then, at lines 57-59 the vector l is filled in with the

message, and the method terminates by returning this vector as a result. At this point the

AchieveREIntiator super-class actually sends the message to the receiver agent.

Lines 40 to 48 show the definitions of the methods devoted to handling the incoming messages

sent by the receiver agent during this communication. It is possible to observe a handleX method for

each expected communicative act, where the X is the name of the performative (inform,

agree,…).In this way, when an agree message reaches the agent the handleAgree method is

invoked with this message as a parameter.

What can be derived from the code described in this section is that coding FIPA agents under

the JADE platform is essentially JAVA coding. The most important difference is not in the actual

agent code, but in the communication infrastructure offered by the platform that acts like a

middleware, enabling agents of our system to interact easily and relieving the designer of many

decisions regarding details. For instance, the designer does not need to know where a mobile agent

is at a given moment to code a message for it; the simple agent unique name is sufficient, and the

AP will then take care of correctly delivering the message. This, in essence, is the mission of FIPA:

to enable the interoperability of heterogeneous software agents.

References

[1] FIPA Request Interaction Protocol Specification. FIPA document n. 00026. 06-12-2002.

http://www.fipa.org/specs/fipa00026/

 34

[2] M. Cossentino - "Different perspectives in designing multi-agent systems" - AGES '02

workshop at NODe02 - 8-9 October 2002 - Erfurt, Germany

[3] OMG Unified Modeling Language Specification. Version 1.5. OMG Document formal/03-03-

01. March 2003.

[4] The Unified Modeling Language Reference Manual. J. Rumbaugh, I. Jacobson, G. Booch.

Addison-Wesley. 1999

[5] Resource Description Framework. (RDF) Model and Syntax Specification. W3C

Recommendation. 22-02-1999. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

[6] Bergenti F., Poggi A., “Exploiting UML in the design of multi –agent systems”, ESAW

Worshop at ECAI 2000.

[7] S. Cranefield and M. Purvis. UML as an ontology modelling language. In Proc. of the

Workshop on Intelligent Information Integration, 16th International Joint Conference on

Artificial Intelligence (IJCAI-99), 1999

[8] Modeling XML applications with UML. D. Carlson. Addison-Wesley. 2001.

[9] FIPA RDF Content Language Specification. Foundation for Intelligent Physical Agents,

Document FIPA XC00011B (2001/08/10). http://www.fipa.org/specs/

fipa00011/XC00011B.html

[10] FIPA Methodology Glossary. http://www.pa.icar.cnr.it/~cossentino/FIPAmeth/glossary.htm.

[11] J.Odell, H. Van Dyke Parunak, B. Bauer. Representing Agent Interaction Protocols in UML,

Agent-Oriented Software Engineering, P. Ciancarini and M. Wooldridge eds., Springer-Verlag,

Berlin (2001), 121–140.

[12] Bellifemine, F., Poggi, A., Rimassa, G.: JADE - A FIPA2000 Compliant Agent

Development Environment. In Proc. Agents Fifth International Conference on Autonomous

Agents (Agents 2001), pp. 216-217, Montreal, Canada, 2001

[13] Poslad S., Buckle P., Hadingham R.: The FIPA-OS Agent Platform: Open Source for Open

Standards. Proc. of the 5th International Conference and Exhibition on the Practical Application

of Intelligent Agents and Multi-Agents. Manchester, UK, April 2000, 355-368

[14] Gamma, E. Helm, R. Johnson, R. Vlissides, J. Design Patterns: Elements of Reusable

Object-Oriented Software, Addison Wesley, 1995

[15] M. Cossentino, L. Sabatucci, A. Chella - A Possible Approach to the Development of

Robotic Multi-Agent Systems - IEEE/WIC Conf. on Intelligent Agent Technology (IAT'03).

October, 13-17, 2003. Halifax (Canada)

[16] M.Cossentino, L.Sabatucci, S.Sorace, A.Chella, “Pattern reuse in the PASSI methodology”

– ESAW’03 workshop – 29-31 October 2003, Imperial College London, UK (EU)

[17] Searle, J.R., Speech Acts. Cambridge University Press, 1969.

 35

[18] Cranefield, S., and Purvis, M. UML as an ontology modeling language. Proc. of the

Workshop on Intelligent Information Integration, IJCAI-99 (Stockholm, Sweden, July 1999).

[19] F. Bergenti, A. Poggi. Exploiting UML in the Design of Multi-Agent Systems. In A.

Omicidi, R. Tolksdorf, F. Zambonelli, eds., Engineering Societies in the Agents World -

Lecture Notes on Artificial Intelligence, volume 1972, pp 106-113, 2000. Berlin, Germany,

Springer Verlag Publ.

[20] Bernhard Bauer, Jörg P. Müller, James Odell, Agent UML: A Formalism for Specifying

Multiagent Interaction. Agent-Oriented Software Engineering, Paolo Ciancarini and Michael

Wooldridge eds., Springer, Berlin, pp. 91-103, 2001.

[21] H. Van Dyke Parunak and James Odell, Representing Social Structures in UML, Proc. of

Agent-Oriented Software Engineering (AOSE) 2001, Agents 2001, Montreal, pp. 17-31.

[22] M. Cossentino, C. Potts - "A CASE tool supported methodology for the design of multi-

agent systems" - The 2002 International Conference on Software Engineering Research and

Practice (SERP'02) - June 24 - 27, 2002 - Las Vegas (NV), USA

