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5 CHAPTER 5: AGENT SYSTEM IMPLEMENTATION 

5.1  Introduction 

The systematic study of the development of agent systems has a recent history. Little time has 

elapsed since the scientific world perceived the promise of using the agent paradigm to solve a great 

variety of problems. This realization prompted many researchers to design, independently, their 

own infrastructures on which to activate their own agents. The result working proposals were often 

optimal, very efficient for a specific problem domain, but not devoid of some defects. The 

programming language, the communication paradigm, and other technical details generally made 

these frameworks unsuitable for purposes other than those for which a given approach was 

originally conceived. The total absence of genuine attention towards the system design and 

development process (and consequent documentation) often  stymied the growth, scalability and 

maintenance of these applications. Furthermore, systems were developed without regard to 

compliance to any standard, thereby creating agents so significantly diverse that they were unable to 

interact with each other across different frameworks. Now that agent technology has come of age, 

these solutions, while good for a first experimental phase, , are inadequate for the true uptake of this 

paradigm.  

The importance of standardization is such a pivotal issue that an international organization, the 

Foundation for Intelligent Physical Agents (FIPA), was founded to promote the intelligent agent 

industry by openly developing specifications supporting interoperability among agents and agent-

based applications. A new and very active field, agent-oriented software engineering is now dealing 

with the problem of identifying the proper design method for a multi-agent systems. 

In this chapter we deal with all of these themes, first discussing the key features of FIPA 

specifications in order to position and define widespread concepts like agent, behavior, and 

communication in a reference context, and then presenting a complete design process (adopting the 

PASSI methodology) applied to the PPS-Bikes’ system case study. In more detail, the chapter is 

articulated as follows: in paragraph 5.2 the standard architecture designed by FIPA for an agent 

platform is examined, describing the mandatory components that each platform has to implement, 

then in paragraph 5.3, using the practical example of the PPS-Bikes’ system, the fundamentals 

guiding the implementation of a multi agent system, starting from the initial design down to the 

code implementation, are illustrated. 
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5.2  The FIPA abstract architecture  

The work of the FIPA focuses mainly on the definition of the agent platform (AP); this is 

defined as the physical infrastructure where agents can be deployed. Most of the standardization 

work, therefore, concerns the definition of some key-points that an AP has to comply with. Thanks 

to these standards, agents living in two or more FIPA compliant platforms are able to communicate 

and interoperate with each other. 

The principal aspects defined by FIPA specifications are: 

• The message level, which describes the composition of a message (expressed with the Agent 

Communication Language), a set of primitive messages with a specific semantic (referring 

to the speech acts theory [17]) and the sequence of speech acts that compose a correct 

communication (the Agent Interaction Protocol); 

• The transport level, which details how a message has to be moved from a sender to a 

receiver; 

• The service level, which defines the mechanism used by each agent to offer its own services 

and to discover the services offered by other agents in the platform. 

 

5.2.1 Architecture overview 

One of the main goals of FIPA specifications is to promote inter-operability between agent 

applications and agent systems and this is achieved by defining the Abstract Architecture 

Specification. This is a collection of architectural elements that characterize each FIPA-compliant 

platform. The term ‘abstract’ means that the architecture defines only some functional requirements 

but it is neutral about the technologies used to achieve them. 

The agent-platform architecture (represented in Figure 1) is centered on three mandatory 

components: 

• the DF (Directory Facilitator) component, 

• the AMS (Agent Management System) component, 

• the MTS (Message Transport System) component. 

All of these elements will be examined more in detail in the paragraphs that follow. 
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Figure 1. Overview of the FIPA abstract architecture 

 

5.2.2 Infrastructures for agent interactions  

The DF component of an AP provides the yellow pages service to agents ‘living’ on that 

platform. It defines the support for agents’ collaborations centered on the concept of service where a 

service is defined as an activity that an agent performs on the request of another one belonging to 

the same community. Agents may interact with the DF in two different ways: registration and 

search. To advertise that a specific service is available to the community the provider agent can 

register it in the DF with a significant name. Generally an agent can provide more than one service, 

each one of them being registered in the DF with a different name. An agent has no a-priori 

knowledge about the other agents of the system. In order to discover if another can be of any help in 

reaching its own goal(s), the agent may search the DF. Consequently, the agent obtains a vector of 

DF-entries; each entry contains the univocal address of an agent of the system that performs that 

service. Generally speaking, the result is a vector, because more than one agent can provide the 

required service. 

The AMS is responsible for managing the operation of an AP; the main functionalities of the 

AMS are the creation, deletion and life-cycle management of agents. The AMS may support other 

activities that are not mandatory, e.g., the migration of agents to and from other platforms (mobile 

agents). The AMS maintains the physical index (AID) of all the agents that are currently resident on 

an AP; this index is an address that univocally identifies all the agents of the system. 

The MTS (Message Transport Service) is generally invisible to agents and their developers. It 

provides a mechanism for delivering messages among agents within a platform and to agents that 

are resident on other platforms. Messages are coded in a standard structure composed of an envelop 

and a payload. The envelop contains transport information needed for the correct delivery of the 

message. Transport information could specify a network protocol like HTTP or SMTP and the 

address of the agent if it is reachable using that protocol (something like www.mysite.net/abc or 
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agentname@host.domain.org). The payload record is coded in a language called Agent 

Communication Language (ACL) (see also paragraph 5.2.3.2), and it contains the information 

content that is to be delivered. 

 

5.2.3 Agent Social relationships  

Social relationships are among the most important characteristics of agents. A multi-agent 

system is composed of a number of autonomous and interacting agents and it is frequently 

represented as a well organized society of individuals. In this context each agent has its own 

personal goals and plays one or more different roles during its life to interact with other community 

members.  

Agents interact through messages only and, most commonly, their interaction is composed of a 

series of messages, thus composing what we define as a conversation. It is more correct to think 

about an agent interaction as a conversation rather then one simple message. A conversation, and 

specifically a FIPA conversation, is essentially composed of one or more messages. As already 

mentioned, each message needs a transport infrastructure in order to be delivered. This allows the 

effective implementation of a conversation but does not ensure any usefulness for it. In order to add 

a semantic value five important concepts must be adhered to (see Figure 2): ontology, content, 

content language, communicative act and agent interaction protocol (AIP). 

 

Message

Content Content Language Agent-communication-language

Contains

Expressed in

RDF SL KIF ACL KQML

*

-Contains1..*

*

-Contains0..* Embodies1

CCL

Communicative ActOntology

AIP

Belongs_to

Figure 2. Structural diagram illustrating the elements constituting a FIPA Message and  the relationship 
among them 
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5.2.3.1 Modeling the Communication Semantic with an  Ontology 

An ontology is a representation of the categories that exist in a specific domain; it is a 

vocabulary used to describe the terms and the relationships among them with a subject matter. An 

ontology allows the specification of the type of terms an agent may handle and what type of 

manipulation and reasoning it is able to perform on them. Referring to the same ontology, two 

agents can interact without the risk of a misunderstanding. They refer to the same set of concepts 

and, if they adopt the same (content) language, the communication will be meaningful for both of 

them. On the contrary, the lack of a common ontology introduces the risk that a term used by an 

agent with some specific significance will be interpreted by another in a different way, thereby 

jeopardizing agents’ interaction and the entire system’s performance. 

Ontology defines the meaning of categories and the relationship among them but in order to 

manage it agents need a language that can represent both the ontology structure and content. In 

many approaches, the ontology structure is composed of three kinds of elements (concepts, 

predicates and actions), and the associations among them. Many authors have dealt with the 

representation of the ontology using Unified Modeling Language (UML) [18][19]. In this book we 

will adopt the PASSI notation that uses a UML class diagram. Concepts, predicates and actions are 

represented as classes characterized by a specific stereotype. Figure 3 reports a PASSI diagram 

representing a portion of the ontology designed for the PPS-Bikes’ multi-agent system.  

As an example, the Order class (Figure 3) represents a concept of the ontology; a concept 

stands for one of the categories of the specific domain, and in this example, Order represents the 

order issued by a customer for receiving some bicycles. It has some attributes, e.g., the 

delivery_date, that is the delivery date requested by the customer for the ordered goods. A concept 

may be related to other concepts; for example, an order is composed of one or more OrderStock, 

i.e., the number of bicycles of a certain model specified in the order). A concept may extend another 

concept, inheriting all the attributes and relationships of its super-concept. For example, a Customer 

is a specific Company with some supplementary characteristics (the ID attribute used to identify it 

in the bicycle production company).  
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Company

name : String
address : String
phone_number : String
email : String
bank_data : String

<<concept>>

CustomerBook
<<concept>>

requestLotProduction

Actor : String
ResultReceiver : String

<<Act>> ProduceLot(lot : Lot)

<<action>>

isReady

value : Boolean

<<predicate>>

Customer

ID : Long

<<concept>>

Lot

ID : Long
ScheduledDate : Date

<<concept>>

RequestOrderSchedulation

Actor : String
ResultReceiver : String

<<Act>> PerformScheduling(order : Order)

<<action>>

Bicycle

code : int
model_name : String
price : Currency

<<concept>>

OrderStock

quantity : int

<<concept>>
11

Order

price : Currency
order_date : Date
delivery_date : Date
ID : Long

<<concept>>

11

1..*1..*

1..n1..n

 

Figure 3. Example of ontology expressed using a UML class diagram (Domain Ontology Description diagram of 

the PASSI methodology) 

A predicate represents a particular statement or belief surrounding some concept, as in the case 

of the isReady predicate shown in Figure 3; this is used to announce that some specific Order is 

ready to be delivered.  

An action indicates the type of operation that can be performed on elements of the ontology, 

thus possibly provoking some changes to the internal knowledge of the agent. 

RequestOrderSchedulation, in Figure 3, is the example of an action specifying the request from one 

agent to another to schedule the production of the bikes for some specific order. 
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5.2.3.2 Message Content and Message Content Language  

The MTS is the architectural level of a platform that performs the routing of a message from the 

sender to the receiver whether they are in the same or in different platforms. The life-cycle of a 

message from its initial creation by the sender to its reading by the receiver agent is reported in 

Figure 4. The basic information delivered by a message is taken from the ontology of the sender 

agent. It could be a concept, a predicate or an action. The message content (that refers an element of 

the ontology) is expressed by the agent using a Content Language. FIPA specifications include four 

languages: 

1. Semantic Language (SL) 

2. Constraint Satisfaction Problems (CCL) 

3. Knowledge Interchange Format (KIF) 

4. Resource Description Framework (RDF) 

These are born in different contexts and represent the solutions adopted in specific approaches 

or by some communities; each of them has its specific domain in which it is preferable. The RDF 

language was created for web applications, but, as previously alluded, it proved to be optimal for 

representing an ontology for many different applications. It is frequently used, alternatively to SL, 

as the Content Language of messages exchanged among FIPA agents. The other two languages, 

Message =
Payload +
Envelope

Message
Payload

Message

MTS

Agent Platform

Agent

MTS

Agent Platform

Agent

Message
Content

Content
Language

ACL

Message
Payload

Content
Language

ACL

Creates

Reads

Figure 4. Transformations of a message during its life 
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CCL and KIF, were developed for Artificial Intelligence applications; they are very powerful at 

expressing actions and predicates, but they come with a complex grammar.  

The RDF language enjoys very widespread use because i) it is both a W3C1 and an FIPA2 

standard, ii) it has quite a simple syntax and iii) it allows a number of possible representations (e.g., 

it also exists in the form of a XML specification). The RDF description (expressed using XML) of 

the ontology element Bicycle reported in Figure 3 is shown in Figure 4. 

 <rdfs:Class rdf:ID="Bicycle"> 

  <rdf:type rdf:resource="rdfsx:concept"/> 

 </rdfs:Class> 

 <rdf:Property ID="Bicycle.model_name"> 

  <rdfs:domain rdf:resource="#Bicycle"/> 

  <rdfs:range rdf:resource="rdfsx:String"/> 

 </rdf:Property> 

 <rdf:Property ID="Bicycle.price"> 

  <rdfs:domain rdf:resource="#Bicycle"/> 

  <rdfs:range rdf:resource="#Currency"/> 

 </rdf:Property> 

Figure 4. The RDF description of the Bycicle element of the ontology shown in Figure 3 

Once the message content is expressed in a content language, it is necessary to encapsulate it 

into a structure called Message Payload. This structure is coded in a specific ACL that includes 

several other message parameters, the most relevant of which are: 

• performative Type of communicative acts (inform, request, agree…), which depends on the 

AIP; 

• sender  ID of the agent that is playing the Sender role in the communication; 

• receiver ID of the agent that is playing the Participant role in the communication; 

• content  The already discussed Message Content (express in a Content Language); 

• language Language used for the Message Content; 

• ontology name of the ontology element reported in the Message Content; 

• protocol name of the AIP used in the communication; 

The Message Payload, coded in ACL, is received by the MTS of the platform where the Sender 

agent is located. MTS encapsulates the payload into an Envelope including the transport 

information needed to deliver the message: sender and receiver transport-descriptions, plus 

additional information such as the encoding representation, security related data and whatever else 

needs to be visible to the MTS. The transport-descriptions describe what transport protocol is to be 

used (IIOP, HTTP and WAP are all examples of such protocols), and the physical address (e.g., an 

IP address) to which the message has to be delivered. 
                                                 
1World Wide Web Consortium RDF specifications: http://www.w3.org/RDF/ 
2FIPA RDF specifications: http://www.fipa.org/specs/fipa00011/  
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5.2.3.3 Agent Interaction Protocols 

The FIPA Abstract Architecture places a great deal of importance to the interaction rules of 

agent conversations. These have been formalized primarily through two concepts: the 

communicative act and the AIP (also known simply as protocol in this context). According to the 

FIPA directive, each conversation has to respect a protocol and has to be made up of 

communicative acts (see also Figure 2). A communicative act is a way to associate a predefined 

semantic to the content of a message so that it can be univocally understood by agents. The FIPA is 

responsible for maintaining a consistent list of communicative acts. Some examples of 

communicative acts are reported in Figure 5; they are request, refuse, agree, inform, and failure. 

A protocol univocally defines which communicative acts may be used in a conversation and in 

what order the related messages have to be sent to give the proper meaning to the communication. 

Therefore, a protocol compels the use of determined messages with a specific semantic according to 

a specific sequence. When an agent starts a conversation with another agent it has to specify a 

protocol; a conversation without a protocol is not possible. If a message does not respect the rules 

of the protocol or violates the prescribed order, then the conversation fails.  

Until now, FIPA specifications use AUML diagrams [20][21] to describe protocols. This 

diagram is a modified version of the UML sequence diagram. The FIPA Request Interaction 

Protocol is reported in Figure 5. This may be used when one agent (the Initiator) asks another (the 

Participant) to perform some kind of action. 

 

 

Figure 5. The FIPA Request Interacting Protocol 

To start the conversation the Initiator sends a request communication act. The content of the 

message is a description, constructed in a language the receiver understands, of the action to be 

performed; if there is a common ontology the content may be an ontology action (as described in 

the previous paragraph). 
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The Participant processes the incoming request and it decides whether to accept or refuse it. 

The receiving agent makes a decision on the basis of a type of reasoning as could be expected given 

the principle of autonomy of agents. If the Participant agent agrees to perform the requested action, 

then it replies with an agree message; otherwise a refuse message is sent (the possibility of sending 

an agree or refuse response is represented in Figure 5 by the diamond). 

Once the request has been accepted, the Participant has to fulfill the action and, according to the 

result obtained, reply with one of the following communicative acts: 

• a failure message to notify that the action was not completed for some reason; this 

motivation is usually reported in the content of the message; 

• an inform message to communicate that it successfully carried on the action to be done; 

some information on the action results may be reported in the content of the message (e.g., a 

link to a web site selected according to criteria passed on by the Initiator agent). 

5.2.4 JADE: an Implementation Platform 

The FIPA describes an abstract architecture that cannot be directly implemented; since the main 

focus of these specifications regards agent interoperability, not many details are provided on the 

platform implementation aspects.  

On this basis a great number of different solutions have been proposed over the last years, a list 

of which can be found on the FIPA web site. Among the most widely used are FIPA-OS, JADE and 

Zeus. In this section the JADE AP is briefly analyzed in order to illustrate some of its specific 

implementation details. 

JADE (Java Agent DEvelopment Framework) [12] was completely developed in Java language 

by Telecom Italia Lab with the collaboration of the University of Parma. The JADE platform has 

many interesting features; one of these is the support it provides for agent mobility, which allows its 

use for the creation of distributed applications where mobility plays an important role (e.g., 

searching). 

A JADE agent is based on a class that extends the Agent super-class (a UML class diagram 

representing the Administration agent from the bicycle case study reported in the next subsection is 

shown in Figure 6). The agent class usually contains a constructor (required by Java and, by 

convention, in JADE used to initialize data structures) and the setup method, which, automatically 

invoked by the platform once the constructor ends, is often used to begin the agent activity. An 

agent can be instantiated only by the platform; when this happens, a univocal ID is assigned to the 

agent and the constructor followed by the setup method are executed. Often, the developer uses the 

constructor to initialize the agent’s data structures and the setup method to start the activity of its 

agent. 
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Administration
AGENT_TYPE : String = Administration_Agent
version : String = 1.0
productcomponent : ProductComponent
rawmaterial : RawMaterial
productmodel : Bicycle
componentlot : ComponentLot
order : Order
orderstock : OrderStock
bicycle : Bicycle
customer : Customer
lot : Lot
requestorderschedulation : RequestOrderSchedulation

Administration()
shutdown()
setup()
register_WithDF()

<<Agent>>

Agent
(from JADE)

Behaviour
(from JADE)

RequestWork
agent_to_request : AgentID

FIPARequestInitiatorTask()
action()
handleRefuse()
handleAgree()
handleFailure()
handleInform()
sendRequest()
RequestWork()

<<Task>>

 

Figure 6. Structure of a Jade agent with a behavior 

Another method automatically invoked by the platform is shutdown, which arises when an 

agent is about to terminate It contains the code needed to properly conclude the agent’s activities 

and to reallocate the assigned resources; the JADE Agent class (the mother class of all the agents) 

already provides such a method and, in most cases, this is sufficient to successfully shutdown the 

agent. 

Agent activities are typically not described in its base class methods, but are located in some 

sub-classes called behaviors. A behavior represents the atomic element of decomposition of the 

agent’s tasks. Operations needed to reach a goal of the agent are partitioned among its behaviors. 

For instance, communication with another agent is delegated to a specific behavior (an example is 

the RequestWork class shown in Figure 6). Concretely, a behavior is a class that extends a JADE 

super-class called Behavior. As seen for the agent base class, a template structure exits for behavior 

classes. All the behaviors must contain an action method. Like the setup method, action is 

automatically invoked by the platform, after which the class constructor method is completed; the 

use is the same but at the behavior level (i.e., it is used to start the operations related to that 

behavior). 

Obviously, a behavior class can contain several methods; a communication behavior is usually 

made up of a set of methods in order to catch all the incoming messages of a specific protocol. For 

instance, if a behavior is used to initiate a Request communication [1] (as the RequestWork behavior 

of Figure 6) it must contain the handleRefuse, handleAgree, handleFailure, handleInform methods. 
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5.3  A case study: designing the PS-Bikes system 

Designing a multi-agent system is as complex as designing an object-oriented one. In order to 

achieve a sound design and to guarantee access to documentation that could be used to further 

enhance or maintain the software, a specific design methodology should be adopted. Several 

different approaches exist in the literature and some of them have been already discussed in the 

previous chapters. We will now describe an example of a design process, applying it to the 

construction of an application for the PPS-Bikes’ case study. The adopted methodology is PASSI 

(Process for Agent Societies Specification and Implementation) [2][22] and, with the help of the 

supporting tool, PTK (PASSI ToolKit), the design documentation will be produced. The system 

will be implemented using JADE as deployment AP. 

5.3.1 PPS-Bikes’ case study: system requirements in itial description 

The first phase of the design in most methodologies entails the elicitation and analysis of 

requirements. A requirement is a feature that the system must exhibit: it can be a functional 

requirement, such as service, or a non-functional requirement such as a constraint or a performance 

issue. In UML [4] (functional) requirements are described with use case diagrams. According to 

UML [3] a use case represents a coherent unit of functionality provided by a system, a subsystem, 

or a class, as manifested by sequences of messages exchanged throughout the system (subsystem, 

class) and one or more outside interactors (called actors), together with actions performed by the 

system (subsystem, class). An actor defines a coherent set of roles that users of an entity can play 

when interacting with the entity. 

In Figure 7 a use case diagram depicts the functionalities of a portion of the PPS-Bikes’ system 

and the interactions with two actors: the customer department and the production supervisor. 
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Figure 7. A portion of use case diagram representing the functionalities of the PPS-Bikes system 

 

The company organizes its production on the basis of the received orders. The customers are 

both wholesalers and retailers of sporting goods; they interact with a figure called the customer 

department represented by an actor (a stick figure) in the diagram. When a customer wants to place 

an order for some bicycles, he contacts the customer department directly (e.g., sending the order by 

fax); using a graphical interface the customer department employee that receives the customer order 

may introduce the data into the system. This functionality is represented by the “Order acquisition” 

use case. The “customer data management” functionality allows the company to maintain an 

archive of customers. The administration department generates plans for the production phases of 

the two plants on the basis of forecasts of the demands and customers’ orders. When an order is 

placed by the customer department, it has to be composed in lots and its production assigned to a 

specific plant. These operations are represented by the “Lot assignment” and “Plant management” 

use cases. The person responsible for interacting with the lot scheduler is the Production 

Supervisor. 

5.4 Designing the solution with PASSI 

It is well known that code production is a complex activity, and the agent oriented paradigm 

does not ignore this hurdle. A methodology to design and implement multi-agent systems is a  pre-

requisite approach to simplify this task. The PASSI methodology is a step-by-step requirements-to-

code methodology for designing and developing multi-agent societies. It integrates design models 

and concepts from both OO software engineering and artificial intelligence approaches using the 

UML notation with some extensions. 
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As already mentioned, the methodology is supported by PTK (PASSI Toolkit), a Rational Rose 

plug-in, and also by a repository of patterns for agents. These tools are very useful in the design and 

development of the MAS (multi-agent system) because they introduce a level of automation in the 

process, thus enhancing the designer’s productivity. This is particularly effective when entire 

portions of the model are taken from the patterns repository; this reuse, performed during the design 

phase, also affects the coding activity, since a significant portion of code is automatically generated 

starting from the pattern structure.  

In the following sections, the PASSI methodology is synthetically analyzed in order to illustrate 

how a methodology specifically conceived for multi agent systems can support and simplify the 

designer’s work. The methodology is applied to the design of a system for the PPS-Bikes’ case 

study. 

5.4.1 The PASSI Methodology 

PASSI is composed of five models (Figure 8) regarding the different abstraction levels of the 

process:  

1. System Requirements Model. The initial part of this model is similar to other common 

object-oriented methodologies (requirements analysis). An agent-based solution to the 

problem is thus drafted. 

2. Agent Society Model. This describes the details of the system solution in terms of agent 

society concepts like ontology, communications and roles. 

3. Agent Implementation Model. The previous models are used to obtain a detailed 

description of the agent society in terms of both structure and behavior that can be used to 

produce the code of the system. 

4. Code Model. In order to streamline and speed up the development of a new system, code is 

partially obtained from the application of patterns. A conventional code completion activity 

is then  carried out. 

5. Deployment Model. Mobile agents require that specific attention be paid to the 

specification of their needs in terms of both software environments (e.g., libraries available 

in the host platform) and hardware capabilities and performance (e.g., amount of available 

network bandwidth); these are the issues defined in the deployment model. 
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Figure 8. The different steps and models of the PASSI design process 

5.4.2 The System Requirements Model 

The System Requirements Model is a model of the system requirements in terms of agency 

and purpose. The methodology is use case driven and starts with the requirements analysis, where 

the designer models the system as a set of use case diagrams. Some of these diagrams, the Domain 

(Requirements) Description diagrams, are drawn to represent the actors and the use cases identified 

for the system. Figure 7 reports some of the use cases of our PPS-Bikes’ system. In this kind of 

diagram the designer can identify the agents that will populate the solution. In PASSI, each agent 

receives the responsibility for a part of the functionalities of the whole system; this is represented in 

a use case diagram (called Agent Identification diagram) by grouping some of the use cases within a 

package and giving it the name of the agent.  

Figure 9 depicts a portion of the Agent Identification diagram for the PPS-Bikes’ system. It 

describes only two agents, the Customer and the Administration; these are displayed as two 

packages containing some use cases from Figure 7. Each agent is responsible for accomplishing the 

functionalities associated with the use cases included in its package. For example the Customer 

agent responsibilities include: “Customer Data Management”, “ Order Acquisition” and “Customer 

Notification”. All of these have a direct interaction with the Customer department actor that 

represents one of the users of the application. 
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CustomerAgent
<<Agent>>

AdministrationAgent
<<Agent>>

Production supervisor

Plant management

Unresolved lotsLots assigment

<<include>>

<<include>>
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Order acquisition

<<communicate>>

Customer department

Customer notification

 

Figure 9. A portion of the agent identification diagram for the PPS-Bikes case study 

 

When two use cases are assigned to different agents and are related by an include relationship 

(showing that the included use case offers some kind of functionality to the including one) or extend 

relationship (showing that the extended use case profits from the extending one to tackle some 

specific situation triggered by a guard condition), then the involved agents have a dependency and 

will communicate to achieve the collaboration requested by the relationship between the two use 

cases. 

In this phase an agent is only an aggregation of functionalities. In the example, the Order 

Acquisition and the Lots Assignment use cases are connected (see Figure 7) with an extend 

association: in the Agent Identification diagram, this turns into a communicate relationship 

(representing an agent conversation) between the two agents. 

 

 : Customer 
department

CustomerDB : 
Customer

OrderManagement : 
Customer

LotsManagement : 
Administration

SearchCustomerData

InsertNewOrder
SendDataToTheAdministration

 

Figure 10. The Role Identification diagram for the “insert new order” scenario 



 17 

 

When all the agents are identified, the next step is to explore the scenarios in which they are 

involved. This is done using a set of UML sequence diagrams; in these diagrams each agent may be 

involved in many activities and may appear more than once in each single scenario, thus meaning 

that an agent plays more than one role in that scenario. The identification of agent roles is one of the 

main outcomes of these diagrams, which are therefore called Role Identification diagrams in 

PASSI. An example of a Role Identification diagram is shown in Figure 10. Here the Customer 

agent appears twice: in the first instance, it searches for information about a customer in the 

company database (role CustomerDB) and then, in the second, it archives a new customer’s order 

(role OrderManagement).  

The last step of this first model (the System Requirements Model) is to begin the description the 

dynamic behavior of each agent. This phase is performed with a set of Task Specification Diagrams 

(one for each identified agent). According to FIPA definitions [10], a task is “the observable effect 

of an operation or an event, including its results. It specifies the computation that generates the 

effects of the behavioral feature”. Starting from this definition, PASSI considers a task as an entity 

that is somehow similar to the Behavior defined in the JADE agent structure. The Task 

Specification Diagram is a UML activity diagram representing agents in a swim-lane and their tasks 

as activities. Each diagram is drawn to detail one agent and only two swim-lanes are present in it 

(see Figure 11): the right-hand one contains a collection of activities symbolizing the current 

agent’s tasks, while the left-hand one reports some activities from other agents involved in 

interactions with this specific agent. 

Customer.SendO
rderData

Plant.WorkListener

PlannerT
ask

OrderList
ener

Request
Work

Superviso
rGUI

[ if refused ]

AdministrationAdministration T.Sp.:Interacting Agents

 

Figure 11. The Task Specification diagram for the Administration Agent of the PPS-Bikes’ case study 
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An example of a Task Specification Diagram for the Administration agent is reported in Figure 

11. This agent is involved in the introduction of a new order from a Customer agent. It receives this 

communication with the OrderListener task. After that, the agent plans the bike production with the 

PlannerTask and RequestWork tasks. The SupervisorGUI task is activated if a problem is found in 

the planning phase; the task is responsible for notifying the production of the need to manually 

adjust the plan. 

5.4.3 The Agent Society Model 

The next PASSI model is the Agent Society Model that represents social interactions and 

dependencies among agents involved in the solution. This model is composed of four phases:  

• the Domain Ontology Description, where the domain is explored and its distinguishing 

concepts are identified together with actions and propositions related to them; 

• the Communication Ontology Description, used to detail agent communications in terms 

of ontology, content language and interaction protocol; 

• the Roles Description, which consists of a diagram representing agents with their roles, the 

tasks involved in those roles and the dependencies among agents/roles in terms of resources 

to be shared and services to be provided; 

• the Protocols Description, which constitutes a phase that is frequently skipped by the 

designer. It is necessary to define a new protocol only if the existing FIPA protocols are 

insufficient to model the specific communication, and this happens rarely. 

In the PASSI methodology the design of ontology is performed in the Domain Ontology 

Description (DOD) phase and a class diagram is used. Several works can be found in the literature 

about the use of UML for modeling ontology  (6-8). Figure 3 reports an example of a PASSI DOD 

diagram; it describes the ontology in terms of concepts (categories, entities of the domain), 

predicates (assertions on properties of concepts) and actions (performed in the domain). This 

diagram represents an XML schema that is useful to obtain a Resource Description Framework 

(RDF)  encoding of the ontological structure. We have adopted RDF to represent our ontologies, 

since it is part of both the W3C [5] and FIPA (FIPA RDF Content Language) [9] specifications.  

In Figure 3, the PPS-Bikes system ontology is described by classes and their relationships. 

Elements of the ontology are related using three UML standard relationships: 

• Generalization, permits the ‘generalize’ relation between two entities, which is one of the 

essential operators for constructing an ontology; 

• Association models the existence of some kind of logical relationship between two entities 

and allows specifying the role of the involved entities in order to clarify the structure;  



 19 

• Aggregation can be used to construct sets where value restrictions can be explicitly 

specified; in the W3C RDF specification three types of container objects are enumerated, 

namely the bag (an unordered list of resources), the sequence (an ordered list of resources) 

and the alternative (a list of alternative values of a property). For our purposes we consider 

a bag as an aggregation without an explicit restriction, a sequence as being qualified by the 

ordered attribute, while the alternative is identified with the only_one attribute of the 

relationship. 

The example (Figure 3) shows that each Order concept is characterized by a price, order_date 

delivery_date and ID. Each order aggregates several OrderStocks, each one of them describing the 

number of bikes of a specific type that are part of the order. The bicycle model is described in the 

homonymous concept. One agent can ask another if an order has been completed, and this instance 

is stated by the Boolean value of the isReady predicate. The ScheduleManifacturing action 

introduces the order (and therefore the specified number of bicycles) in the manufacturing 

scheduling of the different machine tools. 

The Communication Ontology Description (COD) (Figure 12) is a representation of the agents’ 

(social) interactions; this is a class diagram that shows all agents and all their interactions (lines 

connecting agents). In designing this diagram we start from the results of the A.Id. phase. A class is 

introduced for each identified agent, and an association is then introduced for each communication 

between two agents (ignoring for the moment distinctions about agents’ roles). Clearly, it is also 

important to introduce the proper data structure (coming from the entities described in the DOD.) in 

each agent in order to store the exchanged data.  

The association line that represents each communication is drawn from the initiator of the 

conversation to the other agent (participant) as can be deduced from the description of their 

interaction performed in the Role Identification (R.Id.) phase. As already mentioned, each 

communication is characterized by three attributes, which we group into an association class. This 

is the characterization of the communication itself (a communication with different ontology, 

language or protocol is certainly different from this one), and its knowledge is used to uniquely 

refer  this communication (which can have, obviously, several instances at runtime since it may 

arise more than once). Roles played by agents in the interaction (as derived from the R.Id. 

diagrams) are reported at the beginning and the end of the association line.  
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Figure 12. The Communication Ontology Description (COD) diagram for the PPS-Bikes case study 

 

Figure 12 illustrates the communication between the Customer and Administration agents (the 

unique communication name is: Customer-Administration1). The first initiates the interaction in 

order to ask the other about the production scheduling of an order for some bikes. The referred 

ontology is an action (requestOrderSchedulation) and the interaction protocol is the FIPA Request 

that is dedicated to dealing with requests for some kind of service. RDF is the content language.  

The FIPA Methodology Glossary [10] defines a role as “a portion of the social behaviour of an 

agent that is characterized by some specificity such as a goal, a set of attributes (for example 

responsibilities, permissions, activities, and protocols) or providing a functionality/service”. In 

PASSI, roles are initially identified in the already discussed A.Id. diagrams. Their definition is the 

completed in the Role Description (RD) diagram, i.e., a UML class diagram in which classes are 

used to represent roles. Agents are represented by packages containing classes of roles (see Figure 

13). Each role is achieved by grouping several elementary tasks into a resulting complex behavior; 

for this reason tasks are shown in the operation compartment of each role’s class. An agent during 

its life can take on several different roles, and this dynamic evolution in its behavior is represented 

by a dashed line with the name [ROLE CHANGE] that connects its different roles in the expected 

order. Conversations between roles are indicated by solid lines (as we have depicted in the COD), 

using exactly the same relationships names. 

We have also considered dependencies between agents. Because agents are autonomous and 

may refuse to provide a service or a resource to another, the design needs a schema that expresses 

such matters and explores alternative ways to achieve goals. In order to realize such a schema, we 
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have introduced in the Roles Description diagram some additional relationships that express the 

following kinds of dependency: 

• Service dependency, where one role depends on another to bring about a goal (indicated by 

a dashed line with the service stereotype); 

• Resource dependency, where one role depends on another for the availability of an entity 

(indicated by a dashed line with the resource stereotype); 

• Soft-Service and Soft-Resource dependency, where the requested service/resource is helpful 

or desirable, but not essential to bring about a role’s goal (indicated by a dashed line with the soft-

service and soft-resource stereotypes). 

In the example of Figure 13, the Customer agent plays the CustomerDB role while dealing with 

the customer data and the OrderManagement role while managing customer orders. We can see that 

several tasks are involved in the exploitation of the second role (e.g., graphical interfaces like 

OrderDataGUI are used to interact with the user that introduces the customer order data). We can 

also note that this agent initially plays a role related to the compilation of the customer data archive, 

and then changes its vocation (Role Change relationship) towards order-oriented operations. The 

communication with the Administration agent already discussed in the COD. diagram (Figure 12) is 

also reported in order to simplify the analysis of the interactions among the different roles.  
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PlantMangement

RequestWork()
WorkRejected()

Customer

OrderManagement

GUIManagerTask()
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OrderNotif ication()
SendOrderData()

LotsManagement

OrderListener()
PlannerTask()
Superv isorGUI()

Customer - Administration1

CustomerDB

DataBaseUpdater()
CustomerDataGUI()

[ROLE CHANGE]

serv ice

[ROLE CHANGE]

 

Figure 13. The Role Description (RD) diagram for the PPS-Bikes case study 

As we have seen in the DOD phase and as specified by the FIPA architecture, a protocol is used 

for each communication. All of them are standard FIPA protocols in our case study. Usually, the 

related documentation is given in form of AUML sequence diagrams [11]. Hence, designers do not 

need to specify protocols on their own. In some cases, however, existing FIPA protocols are not 

adequate. If this happens, some specific protocols have to be properly designed (Protocol 

Description phase); this can be done using the same FIPA documentation’s approach (with an 

AUML sequence diagram as in Figure 5). 
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5.4.4 The Agent Implementation Model 

The Agent Implementation Model is a model of the solution architecture. It is composed of 

two different phases, each performed at both the multi- and single-agent level of abstraction. The 

multi-agent level deals with the agent society and is therefore detailed to a low degree as regards the 

agent implementation specifications; however, it fittingly documents the overall structure of the 

system (behaviors of each agent, communications, etc.). The single-agent level of abstraction 

focuses on the implementation details of each agent and specifies whatever is needed in order to 

prepare the coding phase. The two phases are:   

• Agent Structure Definition (ASD) uses conventional class diagrams to describe the structure 

of solution agent classes; 

• Agent Behavior Description (ABD); uses activity diagrams or statecharts to describe the 

behavior of individual agents. 

This model is characterized by an iterative process and, specifically, by a double level of 

iteration (see the Agent Implementation Model box in Figure 8). This model needs to be viewed as 

being composed of two views: the multi-agent and single-agent views related by two iterations. The 

outer level of iteration concerns the dependencies between these two views. In each we can find an 

ASD (representing the agents’ structure at the social or inner agent granularity) and an ABD 

(describing the agents’ behaviors again from the social or single agent perspective). An inner level 

of iteration takes place at both the multi-agent and single-agent views and concerns the 

dependencies between the structural and behavioral matters. As a consequence of this double level 

of iteration, the Agent Implementation Model is composed of two steps (ASD and ABD), but still 

yields four kinds of diagrams taking into account the multi- and the single-agent views. 

In the Multi-Agent Structure Definition (MASD) diagram, attention is centered on the 

general architecture of the system. The MASD is an overview of the results obtained from the 

previous phases from the structural point of view. In this diagram (Figure 14), agents are 

represented as classes with their behaviors in the operations compartments; attributes specify the 

agent knowledge. Building this diagram is not an effort for the designer, since PTK (the tool that 

supports the design with the PASSI methodology) automatically builds it using information coming 

from previous diagrams. 
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Figure 14. The Multi-Agent Structure Definition diagram for the PPS-Bikes case study 

 

At this point, a new diagram, the Single-Agent Structure Definition (SASD) diagram is drawn 

for each agent in order to explore its internal composition and all of its tasks at a level of detail that 

is sufficient to generate the implementation code. This diagram is a UML class diagram and reports 

the agent main class and each agent task as a class, resembling the structure of the most common 

AP specifications (Jade [12], FIPA-OS [13], ). At this point, we set up attributes and methods of the 

agent class (e.g., the constructor and the shutdown method required by the FIPA-OS platform or 

just the constructor in JADE) and the task classes (e.g., the methods required to deal with 

communication events when the agent receives/sends a communicative act). 
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Figure 15. The Single-Agent Structure Definition (SASD) diagram for Customer of the PPS-Bikes case study 

An example of an SASD diagram is reported in Figure 15 and describes the internal structure of 

the Customer agent of the PPS-Bikes’ case study to be implemented in the JADE platform. The 

Customer main class is derived from the Agent base class of JADE. Among its attributes we find 

AGENT_TYPE, which usually contains the name of the agent type (Customer in this case), while in 

the operations compartment we find the register_WithDF method that contains the code necessary 

to register with the yellow pages service of the platform (Directory Facilitator). 

As regards the agent’s tasks (called Behaviors in JADE), we can consider SendOrderData and 

OrderNotification, which are represented as two classes extending the JADE Behavior super class, 

and whose duties entail dealing with the agent communications (as can be seen in Figure 14, this 

agent has relationships with both the Production and Administration agents); for example, 

SendOrderData adopts a Request protocol to delegate the Administration to take care of the 

introduction of a new order in the manufacturing schedule. 

A different structure is proposed for CustomerDataGUI, OrderDataGUI and 

DataBaseUpdater, which are inherited from the JADE OneShotBehavior (a behavior that performs 

a single operation and then terminates its existence). This kind of solution is a valid option for 

controlling graphical interfaces, i.e., once the interaction with the user is completed, there is no 

reason for the behavior to remain active. 

The agent behavior at the multi-agent level is described by the Multi-Agent Behavior 

Description (MABD) diagram. This is a UML activity diagram used to illustrate the dynamics of 

the system during the agents’ life. Figure 16 reports an example of MABD; it illustrates the 

activities occurring during the Request communication between the Customer and Administration 
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agents. In the diagram, all the involved classes (both of agents and tasks) are represented with 

swim-lanes (such as Customer and Customer.SendOrderData), while operations are displayed as an 

activity (rectangles with rounded corners, like SendOrderData.PrepareRequest, which is the 

constructor method of the SendOrderData behavior in Figure 16). In these diagrams, transitions 

among activities indicate an event as a method invocation (if relating activities in the same swim-

lane), a new behavior instantiation (if relating activities of the same agent but in different swim-

lanes) or a message (if two different agents are involved). The communication described in the 

example initiates a request message and then, according to a decision process (not described), the 

Administration agent replies with a refuse or agree message. Each message is detailed with the 

communication name and the communicative act. 

The Single Agent Behavior Description (SASD) is the last phase of the Agent Implementation 

Model. The approach we use in this activity is quite common. The aim of this phase is to produce a 

design of the inner part of methods introduced in the SASD diagrams in order to prepare their 

implementation. The designer is free to describe these features as he/she sees most fitting and 

appropriate (e.g., using flow charts, state diagrams or semi-formal text descriptions). It should be 

noted that, because in many instances operations performed according to a method are not complex 

enough to justify so much attention, a textual description is often sufficient. 
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Figure 16. Multi-Agent Behavior Description (M.A.B.D.) diagram used to describe the interaction of two agents 

during a FIPA Request Communication 

 

5.4.5 The Code Model 

The Code Model is a model of the solution at the code level. In this phase the developer is 

aided by a tool (AgentFactory) developed in the order to grant the code reuse. AgentFactory  may 

work inside PTK or as a standalone application, its key feature being that it allows the easy 
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construction of a substantial part of an MAS reusing elements of its pattern repository (specifically 

realized to solve agent-oriented problems and therefore different from a common object-oriented 

one).  

An agent pattern, according to the PASSI conception, derives from object-oriented design 

patterns [14], and describes a tested solution for a recurrent design problem. This pattern [15][16] is 

presented as a set of diagrams of the PASSI methodology, each describing the different aspects of 

the problem at different abstraction levels and covering one or more phases of the design process. 

Typically, diagrams used to describe a pattern are classified in one of two categories: structural or 

behavioral, the most common diagrams used in the pattern description are the Task Specification, 

DOD, COD, SASD and MABD. Starting from these representations and from a description of the 

solution with an XML-based meta-language, AgentFactory can instantiate the implementation code 

for both the FIPA-OS and JADE platforms. Obviously, the code generation engine also considers 

the needs emerging from the composition of different parts to create a complex agent structure and 

can solve all the ensuing problems.  

Communication patterns are among the most frequently used by the AgentFactory repository. 

As an example, the FIPARequest pattern introduces one possible solution to the recurrent problem 

to create a conversation among two agents according the FIPA Request agent interaction protocol 

(see subsection 5.2.3.3). 

The structure of the two agents involved in the communication is described by two SASD 

diagrams (Figure 17), which illustrate what attributes and methods will be added to the initiator and 

participant agents when the pattern is applied to them. A plethora of methods are specifically related 

to protocol communicative acts; these methods have the preamble “handle” followed by the name 

of the communicative act, e.g., handleAgree or handleInform are the methods where messages 

containing the Agree of Inform performatives will be managed.  

 
initiator agent participant agent 

TaskShell

FIPARequestInitiatorTask

request_content : String
agent_to_request : AID

FIPARequestInitiatorTask()
handleAgree()
handleRefuse()
handleFailure()
handleNotUnderstood()
handleInform()
handleOutOfSequence()
handleAllResponses()
handleAllResultNotifications()
prepareRequests()

<<Task>>

AgentShell

initiator
<<Agent>>

 

TaskShell

FIPARequestParticipantTask

FIPARequestParticipantTask()
sendAgree()
sendNotUnderstood()
sendRefuse()
sendInform()
setMessageTemplate()
prepareResponse()
prepareResultNotification()

<<Task>>

AgentShell

participant
<<Agent>>

 



 27 

Figure 17. Two class diagrams representing the static structure of the agents involved in a FIPA Request 

communication 

These two diagrams do not suffice to describe all the features of the FIPA protocol 

management, since they do not provide any dynamic representation. An MABD diagram is 

therefore needed to complete the pattern description: this is useful to describe the activities 

performed by the two agents involved in the communication (Figure 18) in a form that can be easily 

reused as a portion of the actual design of the system (in fact, once a pattern is applied to the 

project, PTK automatically introduces it in the corresponding diagrams). 
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Figure 18. A Multi-Agent Behavior Description diagram used to describe the FIPA Request pattern  

The MABD reported in Figure 18 illustrates that the request_initiator agent sends a message to 

the request_participant agent with the prepareRequest method (see also Figure 17). The responding 

agent receives it with the handleRequest method and according to its will responds with a message 

containing one of the Request interaction protocol performatives (Refuse, Agree,…) sent by the 

correspondent method (sendRefuse, sendAgree,…). 

Since a significant part of the design and an even more substantial part of the code 

automatically descend from (depend/are contingent on) the appropriate choice of the right pattern 

for a specific situation, this activity becomes a strategic one and should not be neglected by the 

designer.  
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5.4.6 The Deployment Model  

The Deployment Model is the response to the need to detail the position of the agents in a 

distributed system or in mobile-agent contexts. The Deployment Configuration diagram (Figure 19) 

is useful to depict where the agents will be located during their life (i.e., the processing units where 

they live), their movement and their communication support. 

The standard UML notation is useful for representing the elaborating units, here shown as 3-D 

boxes, and the agents, which are depicted as components; since an agent may be instantiated more 

than once, agent (instance) names are in the form agent-name:agent-class.  

 

Figure 19. Deployment Configuration diagram for the agents of the PPS-Bikes’ system 

5.4.7 Agent and Society Test 

The testing activity in PASSI has been split into two different steps: the (single) agent test and 

the society test. During the agent test, the aim is to verify whether each single agent respects its 

specifications as these can be derived from the different design steps. Most test cases can be derived 

from the use cases that constitute the agent functionality specification as described in the Agent 

Identification diagram.  

In the society test, the validation of the correct interaction of the agents is performed to 

ascertain that they concur in solving problems requiring cooperation. Only at this stage is it possible 

to verify whether the expected social behavior is achieved and the agents interoperate correctly 

without any problems. This is also the moment for evaluating the system performance in terms of: 
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• the results provided by the different agents making it up (i.e., if they are able to offer 

the required services, or to deal with the required amount of data) while interacting 

with the others in the real operating configuration; 

• the effect that the operating environment (network capabilities, host platforms 

elaboration power and configurations) has on the system. 

5.5 Agent implementation 

A distinguishing feature of the PASSI methodology is that it covers the whole development 

process from requirements analysis to code implementation. The aim of this section is to conclude 

the overview of the agent modeling process with a concrete realization of an agent , starting with 

the requirements analysis (System Requirements Model) and continuing up to the social 

representations (Agent Society Model) of the agents involved and their architectural 

implementation details (Agent Implementation and Deployment models). 

In this section a brief description of the programming code derived naturally from the process 

diagrams will be given. Part of this code has been generated by PTK, and only a few lines have 

been added manually. The solution presented is an implementation in JADE of a portion of the 

Administration agent already described in the previous design phases (namely, the part dealing with 

the main agent class and a behavior that initiates a Request communication). 
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public class Customer extends Agent { 

   private final String AGENT_NAME = "customer" ; 

   private Order order; 

   private CustomerBook book; 

 

   public Customer() { 

        initialize_customer_book(); 

   } 

 

 public void setup ( ) { 

            register_to_df(); 

        GUIManagerTask gui = new GUIManagerTask(this); 

        addBehavior(gui); 

 } 

 

 public void register_to_df ( ) { 

  /* this block enables DF registration */ 

  try { 

   // create the agent description of itself 

   DFAgentDescription dfd = new DFAgentDescription(); 

   dfd.setName(getAID()); 

 

   // register the description with the DF 

   DFService.register(this, dfd); 

  } catch (FIPAException e) { 

   e.printStackTrace(); 

  } 

 } 

 

 public class RequestWork extends AchieveREInitiator { 

  ... 

 } 

 

    ... 

} 

Figure 20. A portion of the code for the Customer agent base class 

Figure 20 shows a portion of the code for the Customer agent. the internal structure of the 

RequestWork behavior has by now been omitted (at lines 30-62) because in a first phase we focus 

on another issue, that is the agent inner structure represented by its base class. 

Line 1 is the declaration of the Customer agent as a Java class inherited by the JADE Agent 

class (i.e., the mother class of all JADE agents; see also section 5.2.4). Line 2 defines an agent 

attribute, called AGENT_NAME; there is no difference between an agent attribute and a class 

attribute, since both of them follow the same (Java) syntax. This attributeknown (a String constant), 

has been introduced in the agent to contain its name; this value may be used in order to register 

some agent services to the local Directory Facilitator (DF). 
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The constructor method (Customer) in this case is used to call another method where the 

customer book is initialized (not dealt with by our example). Agents’ constructors are often used 

only to initialize data structures, while the agent behavior is delegated to the methods that follow.  

The agent setup method is declared at line 10. An agent may contain several methods, but some 

of them are reserved for specific goals. The setup method is one of them and it is a mandatory 

element, since it represents the starting point for all agent activities. Once an agent instance has 

been created (and its base class constructor executed), the platform registers it automatically to the 

local Agent Management Service (AMS); it then invokes the agent setup method.  

In our example, the Customer agent setup method contains only three instructions:  

• (line 11) an invocation to the register_to_df method defined some lines later (lines 16-28). 

This method inserts a new record in the local DF register. The instruction used for this 

operation is at line 24 (DFService.register(this, dfd)); it is put inside a try – catch construct 

to intercept possible exceptions arising during the registration. The dfd parameter is a 

DFAgentDescription object and represent the record used to describe the agent to the 

community. At line 21 this record is initialized with the agent ID value. 

• (line 12,13) the GUIManagerTask behavior is created and then scheduled with the 

addbehaviour instruction. This is the classic way to start a new agent behavior in JADE. As 

can be deduced from the MABD diagram reported in Figure 16, this behavior will interact 

with the user and then call another behavior (the RequestWork behavior) that is described 

more in detail below. 

Now we can analyze the structure of the RequestWork behavior, which was omitted in Figure 20 

(lines 30-62); the complete code is reported in Figure 21. This is not the only behavior of the 

Customer agent (see also the agent structure described in Figure 14 and Figure 15), but it has been 

chosen because it is a classic communication task. The behavior is declared as a Customer agent 

inner class, and it inherits a JADE core super-class whose name is not univocally defined (as it was 

for the JADE Agent class used to define the agent); in fact, a complex hierarchy of behavior types is 

provided by this implementation platform and the choice is left to the developer. Each element of 

the hierarchy has its specific functionalities; for example, the CyclicBehavior may be used to create 

a behavior that cyclically repeats an operation, the SequentialBehavior to execute some activities in 

the specified order, and the FSMBehavior to implement a complex finite state machine.  
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public class RequestWork extends AchieveREInitiator { 

    private String request_content ; 

    private AID agent_to_request ; 

    private GUIManagerTask gui; 

 

    public RequestWork( Agent owner, AID id, String content, GUIManagerTask gui) { 

        super(owner, new ACLMessage(ACLMessage.REQUEST) ); 

        agent_to_request = id; 

        request_content = some_service; 

    } 

    public void handleAgree ( ACLMessage msg ) { 

        gui.notifyOrderAccepted(); 

    } 

    public void handleRefuse ( ACLMessage msg ) { 

        gui.notifyOrderRefused(); 

    } 

    public void handleInform ( ACLMessage msg ) { 

        gui.notifyOrderSheduled(); 

    } 

    public Vector prepareRequests ( ACLMessage msg ) { 

        //automatically invoked by the platform after the class constructor 

        msg.setPerformative(ACLMessage.REQUEST); 

        msg.setProtocol( FIPANames.InteractionProtocol.FIPA_REQUEST ); 

        msg.setSender(myAgent.getAID()); 

        msg.addReceiver(agent_to_request); 

        msg.setContent(request_content); 

 

        Vector l = new Vector(); 

        l.addElement(msg); 

        return l; 

    } 

} 

Figure 21. Portion of the code for the RequestWork behavior of the Customer agent 

The RequestWork behavior starts a Request conversation with the purpose to obtain some 

service from the Administration agent. The JADE API offers an off-the-shelf behavior to initiate a 

communication by adopting several communication protocols, the AchieveREInitiator and the 

AchieveREResponder to deal with the consequent incoming messages.  

Line 30 defines the behavior as a class (RequestWork) that extends the AchieveREInitiator 

super class. It also has some attributes defined at lines 31-33: request_content is a String containing 

the message content (coded in a specific content language, e.g., RDF) for the initial “request” 

communicative act. The other attribute, agent_to_request (used to address the receiver agent), is an 

instance of the AID class belonging to the JADE API framework; this is a container for the univocal 

identifier used to locate an agent within a specific platform. The gui attribute is used to store a 
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reference to the behavior that calls this (GUIManagerTask, see Figure 18) in order to notify it with 

the results of the communication. 

The RequestWork constructor is defined at lines 35-39. It requires four parameters: the owner (a 

reference to the agent), the AID (the receiver agent’s unique ID), the request_content (the content of 

the message to be sent) and the gui reference to the caller behavior (see above). The first command 

of this method is a call to the super class constructor that is invoked by specifying, with the first 

parameter, the owner agent and, with the second parameter, that the message to be used to initiate 

the protocol is a request communicative act. This last parameter is not of paramount importance, 

since the request message is better defined in the following prepareRequest method.  

Once the constructor is completed, the prepareRequest method (lines 49-60) is automatically 

invoked for all the AchieveREIntiator type behaviors. It returns a vector of ACLMessage objects 

used to initiate the communications with n different agents. The ACLMessage class represents the 

data structure used to contain the message payload of a message (in ACL language) as illustrated in 

subsection 5.2.3.2. In this method, the performative, protocol, sender, receiver and content fields of 

the message are filled in with necessary data. Then, at lines 57-59 the vector l is filled in with the 

message, and the method terminates by returning this vector as a result. At this point the 

AchieveREIntiator super-class actually sends the message to the receiver agent. 

Lines 40 to 48 show the definitions of the methods devoted to handling the incoming messages 

sent by the receiver agent during this communication. It is possible to observe a handleX method for 

each expected communicative act, where the X is the name of the performative (inform, 

agree,…).In this way, when an agree message reaches the agent the handleAgree method is 

invoked with this message as a parameter.  

What can be derived from the code described in this section is that coding FIPA agents under 

the JADE platform is essentially JAVA coding. The most important difference is not in the actual 

agent code, but in the communication infrastructure offered by the platform that acts like a 

middleware, enabling agents of our system to interact easily and relieving the designer of many 

decisions regarding details. For instance, the designer does not need to know where a mobile agent 

is at a given moment to code a message for it; the simple agent unique name is sufficient, and the 

AP will then take care of correctly delivering the message. This, in essence, is the mission of FIPA: 

to enable the interoperability of heterogeneous software agents. 
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