
 

  
Abstract— The design of multi-agent systems is different from 

similar problems because the concept of agent involves the 
notions of autonomy and intelligence. As a consequence agent-
based software engineering approaches must learn from classical 
design approaches but should go further introducing an explicit 
representation of the previous cited notions as well as of 
ontology, communications, mobility and other agents related 
issues.  

Even if these arguments are more than sufficient to justify the 
study of specific approaches we also think that today a successful 
design methodology should include some other strategic factors: 
the use of a standard and well known design language (like 
UML), the support of a specific CASE tool to simplify the work 
of the designer and the attention for the automatic production of 
large parts of code. 

We propose PASSI (Process for Agent Societies Specification 
and Implementation) as a solution to the above arguments. It 
comprehends the construction of five models (System 
Requirements, Agent Society, Agent Implementation, Code 
Model and Deployment Model) which include several distinct 
phases. We also illustrates the contribute of an add-in that we 
have produced for a commercial UML-based CASE tool in order 
to have a dedicated design environment that proves more 
productive of the general purpose ones. 
 

Index Terms— CASE tools, Design Methodology, Multi-Agent 
Systems, Software Engineering. 
 

I. INTRODUCTION 
EVERAL works can be found in literature about the 
design and representation of multi-agents systems 

[21][22][23][24][25][26]. Some approaches propose 
representations involving abstractions of social phenomena 
and knowledge [21][25][26] obtaining an expressive 
representation of these aspects but maintaining a distance 
from the implementation level that introduces a difficulty in 
the production of the final code solution. On the contrary 
some others maintain an high level of attention both for 
analysis steps and implementation issues but are less 
interested in the representation of the social aspects of the 
MAS [22][23][24]. 
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We think that multi-agent systems (MAS) differ from non-
agent based systems because agents are intended to be 
autonomous units of intelligent functionality. As a 
consequence, agent-based software engineering methods must 
complement standard design activities and representations 
with models of the agent society. 

We give also a great importance for the success of a design 
methodology to some strategic factors: the use of a standard 
and well known design language (like UML), the support of a 
specific CASE tool to simplify the work of the designer and 
the attention for the automatic production of large parts of 
code (in order to increase the productivity and reduce the 
number of human errors). 

We propose PASSI (Process for Agent Societies 
Specification and Implementation) as a solution to the above 
arguments. This methodology is the result of a long period of 
study [1][2][3] and experimentation mainly in robotics [4][5]. 
It is composed of five models (System Requirements, Agent 
Society, Agent Implementation, Code Model and Deployment 
Model) which include several distinct phases. We also 
produced an add-in for a diffused commercial UML-based 
CASE tool (Rational Rose) in order to have a dedicated design 
environment that proves more productive of the general 
purpose ones. The code production phase is also strongly 
supported by the automatic generation of a great amount of 
code. This is possible thanks to the simplicity of the structure 
of the FIPA architecture [27] that we assume as a reference 
for our approach, to the use of an XML content language for 
the messages between the agents (so that the content of each 
message can be straightforwardly derived from the design) 
and because of a library of reusable patterns of code. 

The following sections are organized as follows: in section 
two we provide a quick overview of the PASSI methodology, 
in section three we discuss the different phases of PASSI 
illustrating the contribute of the CASE tool add-in using a 
simple example coming from robotics, in section four we 
quickly review the main themes of the paper and address some 
of the future work issues. 

II. AN OVERALL VIEW OF THE DESIGN METHODOLOGY  
Several design methodologies have been proposed in 

literature (Gaia [26], MASE [9], CASSIOPEIA [28],…) but 
they didn’t satisfy some of the needs coming from our 
experiments with multi-agents systems applied to robotics. 
Several of the previous methodologies are lacking of 
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implementation level design support, some others not use a 
standard notation like UML or use a design philosophy that is 
far from the common experience of the greatest part of 
software engineers who are usually skilled with object-
oriented approaches. Another important aspect that we 
difficulty found in other methodologies was a specific 
attention towards code reuse or patterns.  

A definition of what is an agent in our approach can be 
helpful for the explanation of PASSI. We think at an agent as 
the instance of an agent class that is the software 
implementation of an autonomous entity capable of pursuing 
an objective through its autonomous decisions, actions and 
social relationships. An agent may occupy several functional 
roles to achieve its goals. A role is the function temporarily 
assumed by the agent in the society while pursuing a sub-goal. 
During this activity the agent uses one or more of its tasks. A 
task is a series of elementary pieces of behavior (actions) 
necessary for a specific purpose. Each task carries out one of 
the agent’s decisions/actions/social relationships.  

In this definition we can find the concepts of agent, role, 
task and action. These are some of the elements that will 
compose our system. In the following we will discuss the way 
we use to define these component to obtain the desired 
behavior.  

In order to better understand our approach it can be useful 
to specify that the implementation of each agent will be done 
using a class derived from the base-agent type of the chosen 
platform; the tasks will be implemented as subclasses of the 
agent-class and the actions are methods of these classes. In 
this perspective, a role will be the result of a series of 
behaviors realized by the actions of several different tasks of 
the same agent. 

We will illustrate the methodology with an example coming 
from robotics: we will design a multi-agent system in order to 
obtain some specific behaviors from a robot provided with 
video, IR and odometry sensors. 

We will illustrate the methodology with an example coming 
from robotics: we will design a multi-agent system in order to 
obtain some specific behaviors from a robot provided with 
video, IR and odometry sensors. 
The models and phases of PASSI are: 

1. System Requirements Model. A model of the 
system requirements in terms of agency and purpose. 

It is composed of four phases: (a) Domain 
Description (D.D.): A functional description of the 
system using conventional use-case diagrams. (b) 
Agent Identification (A.Id.): The phase of attribution 
of responsibility to agents, represented as stereotyped 
UML packages. (c) Role Identification (R.Id.): A 
series of sequence diagrams exploring the 
responsibilities of each agent through role-specific 
scenarios. (d) Task Specification (T.Sp.): 
Specification of the capabilities of each agent with 
activity diagrams. 

2. Agent Society Model. A model of the social 
interactions and dependencies among the agents 
involved in the solution. Developing this model 
involves three steps in addition to part of the 
previous model: (a) Role Identification (R.Id.): See 
the System Requirements Model. (b) Ontology 
Description (O.D.): Use of class diagrams and OCL 
constraints to describe the knowledge ascribed to 
individual agents and the pragmatics of their 
interactions. (c) Role Description (R.D.). Class 
diagrams are used to show the roles played by agents, 
the tasks involved, communication capabilities and 
inter-agent dependencies. (d) Protocol Description 
(P.D.). Use of sequence diagrams to specify the 
grammar of each pragmatic communication protocol 
in terms of speech-act performatives. 

3. Agent Implementation Model. A classical model of 
the solution architecture in terms of classes and 
methods, the most important difference with common 
Object-oriented approach is that we have two 
different levels of abstraction, the social (multi-
agent) level and the single-agent level. This model is 
composed of the following steps: (a) Agent Structure 
Definition (A.S.D.): Conventional class diagrams 
describe the structure of solution agent classes. (b) 
Agent Behavior Description (A.B.D.): Activity 
diagrams or statecharts describe the behavior of 
individual agents. 

4. Code Model. A model of the solution at the code 
level requiring the following steps to produce: (a) 
Generation of code from the model using one of the 
functionalities of the PASSI add-in. It is possible to 
generate not only the skeletons but also largely 
reusable parts of the methods implementation based 

Deployment Model

System Requirements Model

Tasks
Specification

Roles
Identification

Agent Implementation Model

Structure
Definition

Behavior
Description

Code Model

Code
Production

Ontology
Description

Roles
Description

Protocols
Description

Agent Society Model

Initial
Requirements

Agents
Identification

Domain
Description

Deployment
Configuration

Multi-Agent
Structure
Definition

Behavior
Description

Single-Agent

Agent
Test

Society
Test

Next Iteration

Fig. 1. The models and phases of the PASSI methodology 



 

on a library of code and associated design 
descriptions. (b) Manual completion of the source 
code. 

5. Deployment Model. A model of the distribution of 
the parts of the system across hardware processing 
units, and their migration between processing units. It 
involves one step: Deployment Configuration (D.C.): 
deployment diagrams describe the allocation of 
agents to the available processing units and any 
constraints on migration and mobility. 

Testing: the testing activity has been divided into two 
different steps: the single-agent test is devoted to verifying the 
behavior of each agent regarding the original requirements for 
the system solved by the specific agent. During the society 
test, it is carried on the validation of the overall results of this 
iteration and of the integration of the different agents. 
In the PASSI methodology we can identify several iterations. 
The requirements increment/evolution iteration is used to 
incrementally design/implement the software. It is a common 
practice and it proved useful also in agent-based software. The 
multi-agent/single-agent iteration (in the agent implementation 
model) describes the dependencies between the multi-agent 
level (where each agent interacts with the others) and the 
single-agent level (where the focus is the structure and 
behavior needed for each specific agent). 

III. THE PHASES OF PASSI 

A. Domain Description Phase 
Both in object-oriented [6][7][8] and agent-oriented [9] 

design practice, it is common, during requirements analysis, to 
focus on the identification of the system goals. In PASSI we 
chose a different approach. The requirements are expressed in 
terms of use-case diagrams using classical object-oriented 
methods [10][11] or through the informal application of a 
scenario-based method such as GBRAM [7] or ScenIC [12]. 
The result is a hierarchical series of use-case diagrams where 
scenarios could be detailed using sequence diagrams. 

B. Agent Identification Phase 
Very different methods are proposed in literature in order to 

identify agents. Some authors [13][9] after having discussed 
roles define the agents assigning one or more roles to them. 
We still look at the system through the decomposition of its 
functionalities and therefore we prefer to proceed in the agent 
identification grouping some functionality into one agent. 
According to our definition of agent, we can think of an agent 
as an use case or package of use cases. Therefore, starting 
from the use-case diagrams of the previous phase we use 
packages to illustrate the functionalities assigned to each 
agent. What is important to do is to cover all the use-cases that 
compose the system functional description. 

This is the first step where our approach is strongly 
different from the others. From the Domain Description 
diagram, using our Rational Rose Add-in we identify the 
agent by selecting the option “Identify new agent” from a pop-
up menu after having selected all the use-cases that will 

compose it. The result is: (a) the creation of the Agenti 
Identification diagram where all the agents are automatically 
represented as a package and their functionalities described by 
the use cases selected as part of the agent; (b) the creation of 
the activity diagram for the task specification of this agent.  

C. Role Identification phase 
In Fig. 1 we can see that this phase is considered to be part 

of both the System Requirements and Agent Society models. 
This is the logical consequence of the fact that here we want 
to explore scenarios coming from the previous phase. This is a 
functional/behavioral description of the agent and therefore 
part of the System Requirement model but it is also a 
representation of its relations with the other agents and as a 
consequence a part of the Agent Society model.  

We use to illustrate these scenarios with a set of sequence 
diagrams. This set is identified starting from the analysis of 
the different paths that is possible to identify in the A.Id. 
diagram. The roles that the agent can play in its life are not 
different from the classical obiejct-oriented concept of role of 
an object. They are represented in the design as objects in 
R.Id. sequence diagrams using the syntax: <name of the 
role>:<name of the agent>. 

Each communication identified between different agents, 
needs to be discussed from several different point of views. 
Referring to FIPA standards [27] we can see the 
communication as characterized by: a sender and a receiver 
agent, an interaction protocol, an ontology and a content 
language. The sender and receiver agents have been identified 
in this phase, in order to describe the other elements we 
should refer to the O.D. diagrams of the system. 

D. Task Specification phase 
In the task specification phase we draw one activity 

diagram for each agent. We now want to decide which tasks 
are needed to realize the functionalities described in the 
previous steps. After having identified the agents and their 
roles we are now facing the third element of our definition of 
agent (the task); the last element (the actions) will be 
described in the phases of the Implementation Model. As 
already discussed, if we think at a FIPA-based agent 
implementation of the system each task can be realized with a 
sub-class of the main agent class and each of the actions 
within the tasks can be the methods of the task-class. 

Each specific T.Sp. diagram is divided into two swimlanes: 
in the right one we introduce the tasks of the specific agent, in 
the left one we introduce the tasks of the interacting agents in 
order to represent the relationships of this agent with the 
others. 

Thanks to the support of our PASSI add-in for Rose, if 
AgentA sends a message to AgentB and the relted task has 
been specified in the T.Sp. diagram of AgentA, the situation is 
automatically reported in the diagram of AgentB when we 
initiate its composition.  

E. Ontology Description phase 
In the Ontology Description phase we want to describe the 



 

agent society from the ontological point of view. Two 
elements are therefore particularly important: the domain 
ontology and the exchange of information among the agents. 
Although it is possible to discuss both of them in the same 
diagram we often prefer to create two different diagrams: the 
Domain Ontology Description (DOD) and the Communication 
Ontology Description (COD).  

In the DOD we represent the ontology as an XML schema 
[16]. In Fig. 2 we can find an example of our notation. 
Consider the IRObstDistance element. It is mapped to an XSD 
complextype element composed of the Direction attribute 
(representing the angle between the obstacle position and the 
robot front direction) and another complextype element, 
ObstDist, that represents the position of the obstacles. The 
elements presented in this diagram will be used to define the 
pieces of knowledge of the agents and the ontology of their 
communications.  

The description of the agent’s communications is performed 
using the COD diagram (Fig. 3). It is a class diagram and 
basically describe the agents’ knowledge and the ontology of 
their communications. Communications according to the FIPA 
standards are composed of speech acts [17], [18] whose 
simplest form is: <i, act (j, C)> where i is the originator of the 
speech act (we can refer to it as a message), act is the name of 
the act, j is the target and C the semantic content. In the FIPA 
Agent Communication Language [19] this can be mapped as 
follows: 

(act 
:sender i 
:receiver j 
:content 
C) 
Note that speech acts (act in the example above) are 

grouped by the FIPA standards in several interaction protocols 
according to the intention they respond to. This example is 
however incomplete because it is lacking of the language and 
ontology specifications outside of which the content C makes 
no sense.  

From the previous argumentation we can deduct that for 
each communication we need to specify three elements: 
ontology, language and interaction protocol. 
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Fig. 2. In the Domain Ontology Diagram the ontology of the system is 
designed using a syntax that allows an easy generation of XML code for the 
description of the knowledge. 

While several languages and interaction protocols are 
standardized by FIPA, ontology that is often strictly related to 
the problem is to be defined in the specific application and 
therefore we can here refer to the structures defined in the 
DOD. 

For instance, suppose that in a scenario depicted using a 
R.Id. diagram, the Planner agent asks to the Vision agent 
information about the environment and the latter replies 
providing the estimated positions of obstacles, targets and the 
robot. We can represent this communication in the COD 
diagram using an association that is drawn from the initiator 
of the conversation to the other agent. As already discussed 
each communication is characterized by three attributes. We 
group them in an association class. This is the characterization 
of the communication itself (a communication with different 
ontology/ language/ protocol is certainly different from this 
one) that is naturally represented as an association because it 
relates the instances of the two agents class creating a 
correspondence between the knowledge elements of them. 

We can easily deduct the roles played by the agents in the 
communications, looking at the sequence diagram of the R.Id. 
phase where these communications has been previously 
introduced. The contribute by our Rose add-in is that it can 
automatically identify the roles if there is only one link 
between the agents in the scenarios of the R.Id. phase or it can 
suggest the roles if there are several of them.  

F. Role Description Phase 
In this phase we model the life of the agent looking at its 

uppermost manifestations: roles. Each agent can play several 
different roles composing the tasks that constitute its 
behavioral archive in different ways. In this phase we can 
introduce the social rules (organizational rules, [14]) and the 
behavioral rules (as discussed by Newell in his “social level” 
[15]) coming from the domain where the agent exists. For this 
purpose, we can use OCL or other form of formal/semi-formal 
description of the rules according to our preferences and 
needs. 

We represent the Role Description diagram as a class 
diagram where roles are classes grouped in packages  
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Fig. 3. The Communication Ontology Description (COD) diagram describes 
the most important aspects of agents’ communications and knowledge. 



 

representing the agents. Roles can be connected by 
relationships representing changes of role, dependencies for a 
service or the availability of a resource and communications. 
Each role is obtained composing several tasks and their 
resulting behavior for this reason we specify the tasks 
involved in the operation compartment of each class. This 
clearly expresses (at an abstraction level that is obviously still 
high) the abilities involved in the role and it can be helpful in 
the identification of reusable patterns. 

As already discussed, in the Role Identification phase we 
produce a series of sequence diagrams where several roles are 
identified. Several activities are automatically performed by 
our Rose add-in for the construction of the RD diagram: (1) It 
begins the creation of the Role Description diagrams 
collecting these roles and introducing them as classes in the 
diagram. Each agent is represented by a package and its roles 
are disposed in it. (2) If two roles are present in the same 
sequence diagram and are connected by a link that establishes 
a first-second relationship between them, the PASSI add-in 
connects them in the R.D. diagram with a Role Change 
relationship. (3) If two agents are connected in the 
Communication Ontology Description diagram then a 
communication relationship (represented with a solid line) is 
introduced in this diagram between the corresponding roles 
using the role labels of the relation in the COD diagram as the 
keys to identify them. 

As already discussed we introduce in this diagram rules 
about the behavior of the agent. In Fig. 4  we have detailed the 
trigger conditions for the change of role using notes attached 
to the relationships. For example the Vision agent changes 
from the Grabber to the Processor role each time a new image 
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Fig. 4. The Role Description (RD) diagram illustrates the change of roles, the 
communications and the dependencies among the roles. 

is captured and ready to be analyzed. We represent the change 
of role as a dependency relationship because we want to 
represent the dependency of the second role from the first for 
the execution of some actions or the realization of a condition. 
Sometime the trigger condition is not explicitly generated the 
first role but its precedent appearance in the scenario justifies 
the consideration that it is necessary to prepare the situation 
that allows the second role to start. 

G. Protocols Description phase 
Several interaction protocols can be found in the FIPA 

standards but it is possible that the designer needs a new 
specific pattern of interaction and therefore decides to create a 
new one. If this is the case he can describe the new protocol in 
form of AUML sequence diagrams as discussed in [20]. In 
this way he will define the initial communicative act, the 
possible replies and the steps that will conclude the 
communication.  

H. Agents Structure Definition and Agents Behavior 
Description phases 

The design of the structure of MAS can be divided into two 
logical levels of abstraction. In the first we look at the agent 
society level (we call it multi-agent level) and each agent is 
regarded as an element of this society. In the second, more 
detailed, level (called single-agent level) we consider only one 
agent at a time and we look at its fully detailed structure with 
a granularity that can be used to produce code. 

The Multi-Agent Structure Definition is represented with a 
class diagram (see Fig. 5); each agent is represented by the 
main agent class whose elements are: (i) the attributes 
representing the knowledge as already discussed in the 
ontology description, (ii) the methods representing the tasks 
already identified in T.Sp. phase. The relationships connecting 
two agents represent the communications existing between 
them and this is the natural extension of the object-oriented 
concept of association to the agent world. While an object can 
instantiate another class to obtain a service from it, this is not 
allowed to an agent. It cannot force another agent to do 
something, it can only ask for the service (with a 
communication) that will be provided only if the other agent 
agrees.  

Environment

Target

Vision
Tgt [] : TargetPosition
Obstacles [] : ObstPosition
MyPos : SelfPosition

IdleTask()
CaptureImage()
ImageProcessing()
Autolocalization()
RcvVisionDataRqst()

Hardware

IRSensors
Readings [] : IRSensorData

IdleTask()
RcvIRDataRqst()
ProxWarning() Planner

MyPos : SelfPosition
Obstacles :  ObstPosit ion
TgtPos : TargetPosition
PathToTarget : Path

IdleTask()
RqstVisionData()
rqst IRData()
RqstOdomData()
DataFusion()
RcvWarning()
MakePath()
SendPath()

Odometry
LeftMotor : MotorHistory
RightMotor : MotorHistory

IdleTask()
Monitoring()
RcvOdomDataRqst()

EngCtrlr
Steps [] : Step

IdleTask()
RcvNewPath()
ExecutePath()

 
Fig. 5: The Multi-Agent Structure Definition (MASD) diagram is a class 
diagram representing the structure of the system with a compact notation. 



 

The elements of this diagram are already present in the 
previous phases of the design and therefore it is automatically 
drawn by the PASSI add-in. The names of the agents come 
from the A.Id. phase, their knowledge from the 
communication ontology description, their tasks and 
communications (represented as association in this diagram) 
from the T.Sp. and R.D. diagrams. 

The Single-Agent Structure Definition phase is composed 
of one different class diagram for each agent. Here we fully 
exploit the structure of the agent detailing the main agent class 
(inherited from the base agent class) with its attributes and 
methods (for example constructor, destructor and the methods 
needed to register the agent in the white/yellow pages 
directories); each task of the agent is represented as a class 
(inherited from the base task class) with the attributes needed 
to perform the specific series of activities and the related 
methods. 

In the Multi-Agent Behavior Description we use an activity 
diagram (see Fig.6) to represent the behavior of the system at 
a level of detail that arrives to consider the single method of 
the each agents/tasks. A swimlane is introduced for each class 
(representing the implementation of an agent or a task), in this 
place we introduce activities that represent methods of the 
class. Each activity is connected with the others to represent 
the flow of control and the events of the system. In our 
experience this diagram represents the most useful level of 
detail for the representation of a MAS. Several times we 
obtained very large diagrams from this phase but they always 
proved significant both for the exploration of the behavior and 
for the debug of the system.  

In the Single-Agent Behavior Description phase we focus 
on the implementation of the methods of the classes. We can 
design them using classical approach (like flowcharts, state 
diagrams and so on) or even semi-formal text descriptions. 
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Fig.6. The Multi-Agent Behavior Description (MABD) represents the 
behavior of all the agents using swimlanes to separate the responsibilities of 
each class (agent/task). 

I. Code Production Phase 
Many CASE tools offer the possibility of automatically 

generate the skeletons of the classes from their class diagrams 
and some efforts can be done also in the production of the 
inner parts of the methods. In order to obtain better results, we 
are following a slight different approach; thanks to the 
structure of the FIPA architecture implementation we have 
successfully identified a series of standard pieces of code that 
can be introduced in the body of the methods when some 
graphical descriptions are found in the different steps of the 
design.  

We are also moving forward preparing the extraction from 
the design diagrams of a representation of the agent in a meta-
language (XML-based) that we plan to use in order produce 
the code for different FIPA platform implementations.  

J. Deployment Configuration 
This phase is particularly important if we deal with mobile 

agents and with significant problems in the dissemination of 
the agents of the system. The deployment configuration 
diagram describes where the agents are located and which 
different elaborating units need to communicate in order to 
permit the communications among the agents. As usual, 
elaborating units are shown as 3-D boxes. We show agents as 
components, communications among agents are represented 
by dashed lines with the communicate stereotype, directed as 
in the R.D. diagram. For each communication described in the 
R.D. diagram occurring between agents in different 
elaborating units, a dashed line is drawn. The receiving agent 
has an interface to show that it is capable of dealing with that 
communication. (i.e. it understands the protocol used.) We 
also use an extension of the UML syntax is used in order to 
deal with mobile agents moving from one computer to 
another.  It is represented by a dashed line with the move_to 
stereotype. 

IV. CONCLUSIONS 
We discussed PASSI, a design methodology for multi-agent 

systems, and the support that it can receive by a specific add-
in we produced for Rational Rose. The use of UML with 
minor extensions and the focus on highly structured 
implementation platforms like the FIPA-compliant ones gave 
us the opportunity of providing the designer with a very 
helpful support both in the design activity and the code 
production phase. 

The different steps of PASSI are strictly connected in order 
to permit the representation of MAS taking into account 
different levels of abstractions and different points of view. 
Important concepts of MAS like communications, ontology 
and roles are present in more then one moment of the process 
related to different aspects of the design. Ontology for 
example is defined in the Domain Ontology Description, used 
in the messages of the Communication Ontology Description 
and it is part of the code production phase since we can extract 
XML code from the diagram and we can use it as a content 
language for the messages composing the communication. 



 

We are still working to enhance the support offered by our 
tool. Using a connection with a commercial word-processor 
we are going to automatically produce the documentation of 
the design using specific templates prepared for agent-based 
systems. Great efforts can still be done in the code generation 
introducing a library of patterns of agents/tasks and the 
capability of automatically composing both the design and the 
code starting from the functionalities of the agent/task selected 
from the library. We are aware of the difficulty of the problem 
but this is drastically simplified by the boundaries of our 
choices: a fixed implementation platform (FIPA-
OS/JADE,…) allows us to prepare largely reusable parts of 
the system elements, the use of XML for ontology description 
allows us to skip (or largely reduce) the manual work of the 
designer in the creation of the agent knowledge, the deduction 
of an XML representation of the agent code from  the design 
allows a simple porting to the different platforms. 
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