

Abstract— The design of multi-agent systems is different from

similar problems because the concept of agent involves the
notions of autonomy and intelligence. As a consequence agent-
based software engineering approaches must learn from classical
design approaches but should go further introducing an explicit
representation of the previous cited notions as well as of
ontology, communications, mobility and other agents related
issues.

Even if these arguments are more than sufficient to justify the
study of specific approaches we also think that today a successful
design methodology should include some other strategic factors:
the use of a standard and well known design language (like
UML), the support of a specific CASE tool to simplify the work
of the designer and the attention for the automatic production of
large parts of code.

We propose PASSI (Process for Agent Societies Specification
and Implementation) as a solution to the above arguments. It
comprehends the construction of five models (System
Requirements, Agent Society, Agent Implementation, Code
Model and Deployment Model) which include several distinct
phases. We also illustrates the contribute of an add-in that we
have produced for a commercial UML-based CASE tool in order
to have a dedicated design environment that proves more
productive of the general purpose ones.

Index Terms— CASE tools, Design Methodology, Multi-Agent
Systems, Software Engineering.

I. INTRODUCTION
EVERAL works can be found in literature about the
design and representation of multi-agents systems

[21][22][23][24][25][26]. Some approaches propose
representations involving abstractions of social phenomena
and knowledge [21][25][26] obtaining an expressive
representation of these aspects but maintaining a distance
from the implementation level that introduces a difficulty in
the production of the final code solution. On the contrary
some others maintain an high level of attention both for
analysis steps and implementation issues but are less
interested in the representation of the social aspects of the
MAS [22][23][24].

Massimo Cossentino is with the CERE/CNR (Centro di Studi sulle Reti di

Elaboratori-Consiglio Nazionale delle Ricerche), V.le delle Scienze c/o Centro
Univ. Calcolo, 90128 Palermo Italy. (phone: +39-091.6566274; fax:
+39.0916529124; e-mail: cossentino@cere.pa.cnr.it).

Colin Potts is with the College of Computing of the Georgia Institute of
Technology, Atlanta (GA) 30332-0280 USA (e-mail: potts@cc.gatech.edu).

We think that multi-agent systems (MAS) differ from non-
agent based systems because agents are intended to be
autonomous units of intelligent functionality. As a
consequence, agent-based software engineering methods must
complement standard design activities and representations
with models of the agent society.

We give also a great importance for the success of a design
methodology to some strategic factors: the use of a standard
and well known design language (like UML), the support of a
specific CASE tool to simplify the work of the designer and
the attention for the automatic production of large parts of
code (in order to increase the productivity and reduce the
number of human errors).

We propose PASSI (Process for Agent Societies
Specification and Implementation) as a solution to the above
arguments. This methodology is the result of a long period of
study [1][2][3] and experimentation mainly in robotics [4][5].
It is composed of five models (System Requirements, Agent
Society, Agent Implementation, Code Model and Deployment
Model) which include several distinct phases. We also
produced an add-in for a diffused commercial UML-based
CASE tool (Rational Rose) in order to have a dedicated design
environment that proves more productive of the general
purpose ones. The code production phase is also strongly
supported by the automatic generation of a great amount of
code. This is possible thanks to the simplicity of the structure
of the FIPA architecture [27] that we assume as a reference
for our approach, to the use of an XML content language for
the messages between the agents (so that the content of each
message can be straightforwardly derived from the design)
and because of a library of reusable patterns of code.

The following sections are organized as follows: in section
two we provide a quick overview of the PASSI methodology,
in section three we discuss the different phases of PASSI
illustrating the contribute of the CASE tool add-in using a
simple example coming from robotics, in section four we
quickly review the main themes of the paper and address some
of the future work issues.

II. AN OVERALL VIEW OF THE DESIGN METHODOLOGY
Several design methodologies have been proposed in

literature (Gaia [26], MASE [9], CASSIOPEIA [28],…) but
they didn’t satisfy some of the needs coming from our
experiments with multi-agents systems applied to robotics.
Several of the previous methodologies are lacking of

A CASE tool supported methodology for the
design of multi-agent systems

Massimo Cossentino, Colin Potts

S

implementation level design support, some others not use a
standard notation like UML or use a design philosophy that is
far from the common experience of the greatest part of
software engineers who are usually skilled with object-
oriented approaches. Another important aspect that we
difficulty found in other methodologies was a specific
attention towards code reuse or patterns.

A definition of what is an agent in our approach can be
helpful for the explanation of PASSI. We think at an agent as
the instance of an agent class that is the software
implementation of an autonomous entity capable of pursuing
an objective through its autonomous decisions, actions and
social relationships. An agent may occupy several functional
roles to achieve its goals. A role is the function temporarily
assumed by the agent in the society while pursuing a sub-goal.
During this activity the agent uses one or more of its tasks. A
task is a series of elementary pieces of behavior (actions)
necessary for a specific purpose. Each task carries out one of
the agent’s decisions/actions/social relationships.

In this definition we can find the concepts of agent, role,
task and action. These are some of the elements that will
compose our system. In the following we will discuss the way
we use to define these component to obtain the desired
behavior.

In order to better understand our approach it can be useful
to specify that the implementation of each agent will be done
using a class derived from the base-agent type of the chosen
platform; the tasks will be implemented as subclasses of the
agent-class and the actions are methods of these classes. In
this perspective, a role will be the result of a series of
behaviors realized by the actions of several different tasks of
the same agent.

We will illustrate the methodology with an example coming
from robotics: we will design a multi-agent system in order to
obtain some specific behaviors from a robot provided with
video, IR and odometry sensors.

We will illustrate the methodology with an example coming
from robotics: we will design a multi-agent system in order to
obtain some specific behaviors from a robot provided with
video, IR and odometry sensors.
The models and phases of PASSI are:

1. System Requirements Model. A model of the
system requirements in terms of agency and purpose.

It is composed of four phases: (a) Domain
Description (D.D.): A functional description of the
system using conventional use-case diagrams. (b)
Agent Identification (A.Id.): The phase of attribution
of responsibility to agents, represented as stereotyped
UML packages. (c) Role Identification (R.Id.): A
series of sequence diagrams exploring the
responsibilities of each agent through role-specific
scenarios. (d) Task Specification (T.Sp.):
Specification of the capabilities of each agent with
activity diagrams.

2. Agent Society Model. A model of the social
interactions and dependencies among the agents
involved in the solution. Developing this model
involves three steps in addition to part of the
previous model: (a) Role Identification (R.Id.): See
the System Requirements Model. (b) Ontology
Description (O.D.): Use of class diagrams and OCL
constraints to describe the knowledge ascribed to
individual agents and the pragmatics of their
interactions. (c) Role Description (R.D.). Class
diagrams are used to show the roles played by agents,
the tasks involved, communication capabilities and
inter-agent dependencies. (d) Protocol Description
(P.D.). Use of sequence diagrams to specify the
grammar of each pragmatic communication protocol
in terms of speech-act performatives.

3. Agent Implementation Model. A classical model of
the solution architecture in terms of classes and
methods, the most important difference with common
Object-oriented approach is that we have two
different levels of abstraction, the social (multi-
agent) level and the single-agent level. This model is
composed of the following steps: (a) Agent Structure
Definition (A.S.D.): Conventional class diagrams
describe the structure of solution agent classes. (b)
Agent Behavior Description (A.B.D.): Activity
diagrams or statecharts describe the behavior of
individual agents.

4. Code Model. A model of the solution at the code
level requiring the following steps to produce: (a)
Generation of code from the model using one of the
functionalities of the PASSI add-in. It is possible to
generate not only the skeletons but also largely
reusable parts of the methods implementation based

Deployment Model

System Requirements Model

Tasks
Specification

Roles
Identification

Agent Implementation Model

Structure
Definition

Behavior
Description

Code Model

Code
Production

Ontology
Description

Roles
Description

Protocols
Description

Agent Society Model

Initial
Requirements

Agents
Identification

Domain
Description

Deployment
Configuration

Multi-Agent
Structure
Definition

Behavior
Description

Single-Agent

Agent
Test

Society
Test

Next Iteration

Fig. 1. The models and phases of the PASSI methodology

on a library of code and associated design
descriptions. (b) Manual completion of the source
code.

5. Deployment Model. A model of the distribution of
the parts of the system across hardware processing
units, and their migration between processing units. It
involves one step: Deployment Configuration (D.C.):
deployment diagrams describe the allocation of
agents to the available processing units and any
constraints on migration and mobility.

Testing: the testing activity has been divided into two
different steps: the single-agent test is devoted to verifying the
behavior of each agent regarding the original requirements for
the system solved by the specific agent. During the society
test, it is carried on the validation of the overall results of this
iteration and of the integration of the different agents.
In the PASSI methodology we can identify several iterations.
The requirements increment/evolution iteration is used to
incrementally design/implement the software. It is a common
practice and it proved useful also in agent-based software. The
multi-agent/single-agent iteration (in the agent implementation
model) describes the dependencies between the multi-agent
level (where each agent interacts with the others) and the
single-agent level (where the focus is the structure and
behavior needed for each specific agent).

III. THE PHASES OF PASSI

A. Domain Description Phase
Both in object-oriented [6][7][8] and agent-oriented [9]

design practice, it is common, during requirements analysis, to
focus on the identification of the system goals. In PASSI we
chose a different approach. The requirements are expressed in
terms of use-case diagrams using classical object-oriented
methods [10][11] or through the informal application of a
scenario-based method such as GBRAM [7] or ScenIC [12].
The result is a hierarchical series of use-case diagrams where
scenarios could be detailed using sequence diagrams.

B. Agent Identification Phase
Very different methods are proposed in literature in order to

identify agents. Some authors [13][9] after having discussed
roles define the agents assigning one or more roles to them.
We still look at the system through the decomposition of its
functionalities and therefore we prefer to proceed in the agent
identification grouping some functionality into one agent.
According to our definition of agent, we can think of an agent
as an use case or package of use cases. Therefore, starting
from the use-case diagrams of the previous phase we use
packages to illustrate the functionalities assigned to each
agent. What is important to do is to cover all the use-cases that
compose the system functional description.

This is the first step where our approach is strongly
different from the others. From the Domain Description
diagram, using our Rational Rose Add-in we identify the
agent by selecting the option “Identify new agent” from a pop-
up menu after having selected all the use-cases that will

compose it. The result is: (a) the creation of the Agenti
Identification diagram where all the agents are automatically
represented as a package and their functionalities described by
the use cases selected as part of the agent; (b) the creation of
the activity diagram for the task specification of this agent.

C. Role Identification phase
In Fig. 1 we can see that this phase is considered to be part

of both the System Requirements and Agent Society models.
This is the logical consequence of the fact that here we want
to explore scenarios coming from the previous phase. This is a
functional/behavioral description of the agent and therefore
part of the System Requirement model but it is also a
representation of its relations with the other agents and as a
consequence a part of the Agent Society model.

We use to illustrate these scenarios with a set of sequence
diagrams. This set is identified starting from the analysis of
the different paths that is possible to identify in the A.Id.
diagram. The roles that the agent can play in its life are not
different from the classical obiejct-oriented concept of role of
an object. They are represented in the design as objects in
R.Id. sequence diagrams using the syntax: <name of the
role>:<name of the agent>.

Each communication identified between different agents,
needs to be discussed from several different point of views.
Referring to FIPA standards [27] we can see the
communication as characterized by: a sender and a receiver
agent, an interaction protocol, an ontology and a content
language. The sender and receiver agents have been identified
in this phase, in order to describe the other elements we
should refer to the O.D. diagrams of the system.

D. Task Specification phase
In the task specification phase we draw one activity

diagram for each agent. We now want to decide which tasks
are needed to realize the functionalities described in the
previous steps. After having identified the agents and their
roles we are now facing the third element of our definition of
agent (the task); the last element (the actions) will be
described in the phases of the Implementation Model. As
already discussed, if we think at a FIPA-based agent
implementation of the system each task can be realized with a
sub-class of the main agent class and each of the actions
within the tasks can be the methods of the task-class.

Each specific T.Sp. diagram is divided into two swimlanes:
in the right one we introduce the tasks of the specific agent, in
the left one we introduce the tasks of the interacting agents in
order to represent the relationships of this agent with the
others.

Thanks to the support of our PASSI add-in for Rose, if
AgentA sends a message to AgentB and the relted task has
been specified in the T.Sp. diagram of AgentA, the situation is
automatically reported in the diagram of AgentB when we
initiate its composition.

E. Ontology Description phase
In the Ontology Description phase we want to describe the

agent society from the ontological point of view. Two
elements are therefore particularly important: the domain
ontology and the exchange of information among the agents.
Although it is possible to discuss both of them in the same
diagram we often prefer to create two different diagrams: the
Domain Ontology Description (DOD) and the Communication
Ontology Description (COD).

In the DOD we represent the ontology as an XML schema
[16]. In Fig. 2 we can find an example of our notation.
Consider the IRObstDistance element. It is mapped to an XSD
complextype element composed of the Direction attribute
(representing the angle between the obstacle position and the
robot front direction) and another complextype element,
ObstDist, that represents the position of the obstacles. The
elements presented in this diagram will be used to define the
pieces of knowledge of the agents and the ontology of their
communications.

The description of the agent’s communications is performed
using the COD diagram (Fig. 3). It is a class diagram and
basically describe the agents’ knowledge and the ontology of
their communications. Communications according to the FIPA
standards are composed of speech acts [17], [18] whose
simplest form is: <i, act (j, C)> where i is the originator of the
speech act (we can refer to it as a message), act is the name of
the act, j is the target and C the semantic content. In the FIPA
Agent Communication Language [19] this can be mapped as
follows:

(act
:sender i
:receiver j
:content
C)
Note that speech acts (act in the example above) are

grouped by the FIPA standards in several interaction protocols
according to the intention they respond to. This example is
however incomplete because it is lacking of the language and
ontology specifications outside of which the content C makes
no sense.

From the previous argumentation we can deduct that for
each communication we need to specify three elements:
ontology, language and interaction protocol.

MotorOdometry
Speed : Integer
Position : Integer

Step

DeltaX : Double
DeltaY : Double
Speed : Double

Path

1..n+AStep 1..n

Double

Mot orHistory
DeltaPos : Integer

Odometry Reading

1

+Lef tReading

1 1

+RightReading

1

ObstPosition
Classif ication = Obstacle

TargetPosition
Classif icat ion = Target

ExtEnv Description

0..n+Obstacles 0..n 0..n +Target0..n

WorldDescription

1

+Env ironment

1

SuperQuadricDescription

n +Param etern

Self Position

Time : Date

1+My Position 1

Posit ion
X : Double
Y : Double
StimatedError : Double

1+ThePosition 1

VisionIdentif iedObstacle
Classif ication : String

1.. n +ShapeElement1.. n

1

+Env Object

1

IRReadings

IRSensorData

EstimatedDistance : Double

n +AReadingn

I RObstDistance

Direction : Integer

1+ObstDist 1

Fig. 2. In the Domain Ontology Diagram the ontology of the system is
designed using a syntax that allows an easy generation of XML code for the
description of the knowledge.

While several languages and interaction protocols are
standardized by FIPA, ontology that is often strictly related to
the problem is to be defined in the specific application and
therefore we can here refer to the structures defined in the
DOD.

For instance, suppose that in a scenario depicted using a
R.Id. diagram, the Planner agent asks to the Vision agent
information about the environment and the latter replies
providing the estimated positions of obstacles, targets and the
robot. We can represent this communication in the COD
diagram using an association that is drawn from the initiator
of the conversation to the other agent. As already discussed
each communication is characterized by three attributes. We
group them in an association class. This is the characterization
of the communication itself (a communication with different
ontology/ language/ protocol is certainly different from this
one) that is naturally represented as an association because it
relates the instances of the two agents class creating a
correspondence between the knowledge elements of them.

We can easily deduct the roles played by the agents in the
communications, looking at the sequence diagram of the R.Id.
phase where these communications has been previously
introduced. The contribute by our Rose add-in is that it can
automatically identify the roles if there is only one link
between the agents in the scenarios of the R.Id. phase or it can
suggest the roles if there are several of them.

F. Role Description Phase
In this phase we model the life of the agent looking at its

uppermost manifestations: roles. Each agent can play several
different roles composing the tasks that constitute its
behavioral archive in different ways. In this phase we can
introduce the social rules (organizational rules, [14]) and the
behavioral rules (as discussed by Newell in his “social level”
[15]) coming from the domain where the agent exists. For this
purpose, we can use OCL or other form of formal/semi-formal
description of the rules according to our preferences and
needs.

We represent the Role Description diagram as a class
diagram where roles are classes grouped in packages

PositionData
Vi sionData

Ontology : WorldDescription
Language : RDF
Protocol : Query

PlannedPath
Ontology : Path
Language : RDF
Protocol : Request

IRData
Ontology : IRReadings
Language : RDF
Protocol : Query

MotorsDa ta
Ontolo gy : Od ome tryRead ing
Langu age : RDF
Protocol : Request Wh en

WarningEngCtrl

Vision
Tgt [] : TargetPosit ion
Ob stacl es [] : ObstPosit ion
MyPos : SelfPosition

Odometry
LeftMotor : MotorHistory
RightMotor : MotorHistory

En gCt rl
Steps [] : Step

Planner
MyPos : SelfPosit io n
O bstacl es : ObstP osi ti on
TgtPos : Ta rgetPositi on
PathT oTarg et : P ath

IRSensors
Readings [] : IRSensorDa ta

+MotionCtrlr+Sentinel

+MotionPlanner

+Se nti nel

WarningPlanner

Warni ng

Ontology : IRObstDistance
Language : RDF
Protocol : Propose

ControlData

+MotionCtrlr

+Motio nPlann er
+Se nsorDa taRcv

+Observer

+SensorDataRcv

+Processor

+SensorDataRcv

+Observer

+Moti onCtrlr

+Observe r

Fig. 3. The Communication Ontology Description (COD) diagram describes
the most important aspects of agents’ communications and knowledge.

representing the agents. Roles can be connected by
relationships representing changes of role, dependencies for a
service or the availability of a resource and communications.
Each role is obtained composing several tasks and their
resulting behavior for this reason we specify the tasks
involved in the operation compartment of each class. This
clearly expresses (at an abstraction level that is obviously still
high) the abilities involved in the role and it can be helpful in
the identification of reusable patterns.

As already discussed, in the Role Identification phase we
produce a series of sequence diagrams where several roles are
identified. Several activities are automatically performed by
our Rose add-in for the construction of the RD diagram: (1) It
begins the creation of the Role Description diagrams
collecting these roles and introducing them as classes in the
diagram. Each agent is represented by a package and its roles
are disposed in it. (2) If two roles are present in the same
sequence diagram and are connected by a link that establishes
a first-second relationship between them, the PASSI add-in
connects them in the R.D. diagram with a Role Change
relationship. (3) If two agents are connected in the
Communication Ontology Description diagram then a
communication relationship (represented with a solid line) is
introduced in this diagram between the corresponding roles
using the role labels of the relation in the COD diagram as the
keys to identify them.

As already discussed we introduce in this diagram rules
about the behavior of the agent. In Fig. 4 we have detailed the
trigger conditions for the change of role using notes attached
to the relationships. For example the Vision agent changes
from the Grabber to the Processor role each time a new image

Od ome try

IRSensors

Vi sio n

Planner

Grabber

CaptureImage()

<<Ro le >>

IF
Re ad ings[i].IRSe nsorDa ta.Estima tedDistan ce <
Pro xi mi tyTh reshold
THEN
<<Ch an ge Rol e to Se nt inel >>

If (CurrentStep<PathStepNumber)
And (NewPathArrived=True) Then
{
StopMovement
Reply "Refuse"
}

IF SelfPosition.Position .StimatedError>MaxErr Then
<<Change Role to Grabber>>

EngCtrl

Pro ce ssor

IdleTask()
ImageProcessing()
Autolocalisation()
RcvVisionDataRqst()

<<Role>>

Observer

IdleTask()
RcvIRDataRqst()

<<Role>>

SensorDataCollect

RqstVisionData()
RqstIRData()
RqstOdomData()
DataFusion()

<<Role>>

VisionData

IRData

Observer

IdleT ask()
Mo nitoring()
RcvOdo mDa taRq st()

<<Role>>

Po sit ionData

MotionPlanner

IdleTask()
RcvWarning()
MakePath()
SendPath()

<<Role>>

[ROLE CHANGE]

MotionCtrlr

IdleTask()
RcvNewPath()
ExecutePath()

<<Role>>

PlannedPath

Co ntrolDa ta

Sentinel

ProxWarning()

<<Role>>

Warning
Pla nner

[ROLE CHANGE]

WarningEngCtrl

ProximityWarning
<<Service>>

Motio nData
<<Resource>>

IF NewDataAvailable THEN
<<Change Role to
MotionPlanner>>

IF ImageCaptured Then
<<Change Role to Processor >>

[ROLE CHANGE]

[ROLE CHANGE]

Wo rld Description
<<Resource>>

ObstaclesPosition
<<Resource>>

Mo ve men tE xe cu tio n
< <Service>>

Positi on Estima tion
< <R esource>>

ProximityWarning
<<Service>>

Fig. 4. The Role Description (RD) diagram illustrates the change of roles, the
communications and the dependencies among the roles.

is captured and ready to be analyzed. We represent the change
of role as a dependency relationship because we want to
represent the dependency of the second role from the first for
the execution of some actions or the realization of a condition.
Sometime the trigger condition is not explicitly generated the
first role but its precedent appearance in the scenario justifies
the consideration that it is necessary to prepare the situation
that allows the second role to start.

G. Protocols Description phase
Several interaction protocols can be found in the FIPA

standards but it is possible that the designer needs a new
specific pattern of interaction and therefore decides to create a
new one. If this is the case he can describe the new protocol in
form of AUML sequence diagrams as discussed in [20]. In
this way he will define the initial communicative act, the
possible replies and the steps that will conclude the
communication.

H. Agents Structure Definition and Agents Behavior
Description phases

The design of the structure of MAS can be divided into two
logical levels of abstraction. In the first we look at the agent
society level (we call it multi-agent level) and each agent is
regarded as an element of this society. In the second, more
detailed, level (called single-agent level) we consider only one
agent at a time and we look at its fully detailed structure with
a granularity that can be used to produce code.

The Multi-Agent Structure Definition is represented with a
class diagram (see Fig. 5); each agent is represented by the
main agent class whose elements are: (i) the attributes
representing the knowledge as already discussed in the
ontology description, (ii) the methods representing the tasks
already identified in T.Sp. phase. The relationships connecting
two agents represent the communications existing between
them and this is the natural extension of the object-oriented
concept of association to the agent world. While an object can
instantiate another class to obtain a service from it, this is not
allowed to an agent. It cannot force another agent to do
something, it can only ask for the service (with a
communication) that will be provided only if the other agent
agrees.

Environment

Target

Vision
Tgt [] : TargetPosition
Obstacles [] : ObstPosition
MyPos : SelfPosition

IdleTask()
CaptureImage()
ImageProcessing()
Autolocalization()
RcvVisionDataRqst()

Hardware

IRSensors
Readings [] : IRSensorData

IdleTask()
RcvIRDataRqst()
ProxWarning() Planner

MyPos : SelfPosition
Obstacles : ObstPosit ion
TgtPos : TargetPosition
PathToTarget : Path

IdleTask()
RqstVisionData()
rqst IRData()
RqstOdomData()
DataFusion()
RcvWarning()
MakePath()
SendPath()

Odometry
LeftMotor : MotorHistory
RightMotor : MotorHistory

IdleTask()
Monitoring()
RcvOdomDataRqst()

EngCtrlr
Steps [] : Step

IdleTask()
RcvNewPath()
ExecutePath()

Fig. 5: The Multi-Agent Structure Definition (MASD) diagram is a class
diagram representing the structure of the system with a compact notation.

The elements of this diagram are already present in the
previous phases of the design and therefore it is automatically
drawn by the PASSI add-in. The names of the agents come
from the A.Id. phase, their knowledge from the
communication ontology description, their tasks and
communications (represented as association in this diagram)
from the T.Sp. and R.D. diagrams.

The Single-Agent Structure Definition phase is composed
of one different class diagram for each agent. Here we fully
exploit the structure of the agent detailing the main agent class
(inherited from the base agent class) with its attributes and
methods (for example constructor, destructor and the methods
needed to register the agent in the white/yellow pages
directories); each task of the agent is represented as a class
(inherited from the base task class) with the attributes needed
to perform the specific series of activities and the related
methods.

In the Multi-Agent Behavior Description we use an activity
diagram (see Fig.6) to represent the behavior of the system at
a level of detail that arrives to consider the single method of
the each agents/tasks. A swimlane is introduced for each class
(representing the implementation of an agent or a task), in this
place we introduce activities that represent methods of the
class. Each activity is connected with the others to represent
the flow of control and the events of the system. In our
experience this diagram represents the most useful level of
detail for the representation of a MAS. Several times we
obtained very large diagrams from this phase but they always
proved significant both for the exploration of the behavior and
for the debug of the system.

In the Single-Agent Behavior Description phase we focus
on the implementation of the methods of the classes. We can
design them using classical approach (like flowcharts, state
diagrams and so on) or even semi-formal text descriptions.

handleRequest

RcvVisionDataRqst.
RcvVisionDataRqst

new task(RcvVisionDataRqst (V isionData))

RcvVisionDataRqst.
StartTask

IdleTask.done_
RqstVisionData

RqstVisionData.
RqstVisionData

RqstVisionData.
S tartTask

message (VisionData, query-if)

handleIn form
message(VisionData, Inform)

done

DataFusion.
DataFusion

new Task(DataFusion)

DataFusion.
startTask

DataFusion.
UpdateVideoData

New task(RqstVisionData)

Planner.DataFusionPlanner.RqstVisionDataPlanner.IdleTaskVision.RcvVisionDataRqstVision.IdleTask

Fig.6. The Multi-Agent Behavior Description (MABD) represents the
behavior of all the agents using swimlanes to separate the responsibilities of
each class (agent/task).

I. Code Production Phase
Many CASE tools offer the possibility of automatically

generate the skeletons of the classes from their class diagrams
and some efforts can be done also in the production of the
inner parts of the methods. In order to obtain better results, we
are following a slight different approach; thanks to the
structure of the FIPA architecture implementation we have
successfully identified a series of standard pieces of code that
can be introduced in the body of the methods when some
graphical descriptions are found in the different steps of the
design.

We are also moving forward preparing the extraction from
the design diagrams of a representation of the agent in a meta-
language (XML-based) that we plan to use in order produce
the code for different FIPA platform implementations.

J. Deployment Configuration
This phase is particularly important if we deal with mobile

agents and with significant problems in the dissemination of
the agents of the system. The deployment configuration
diagram describes where the agents are located and which
different elaborating units need to communicate in order to
permit the communications among the agents. As usual,
elaborating units are shown as 3-D boxes. We show agents as
components, communications among agents are represented
by dashed lines with the communicate stereotype, directed as
in the R.D. diagram. For each communication described in the
R.D. diagram occurring between agents in different
elaborating units, a dashed line is drawn. The receiving agent
has an interface to show that it is capable of dealing with that
communication. (i.e. it understands the protocol used.) We
also use an extension of the UML syntax is used in order to
deal with mobile agents moving from one computer to
another. It is represented by a dashed line with the move_to
stereotype.

IV. CONCLUSIONS
We discussed PASSI, a design methodology for multi-agent

systems, and the support that it can receive by a specific add-
in we produced for Rational Rose. The use of UML with
minor extensions and the focus on highly structured
implementation platforms like the FIPA-compliant ones gave
us the opportunity of providing the designer with a very
helpful support both in the design activity and the code
production phase.

The different steps of PASSI are strictly connected in order
to permit the representation of MAS taking into account
different levels of abstractions and different points of view.
Important concepts of MAS like communications, ontology
and roles are present in more then one moment of the process
related to different aspects of the design. Ontology for
example is defined in the Domain Ontology Description, used
in the messages of the Communication Ontology Description
and it is part of the code production phase since we can extract
XML code from the diagram and we can use it as a content
language for the messages composing the communication.

We are still working to enhance the support offered by our
tool. Using a connection with a commercial word-processor
we are going to automatically produce the documentation of
the design using specific templates prepared for agent-based
systems. Great efforts can still be done in the code generation
introducing a library of patterns of agents/tasks and the
capability of automatically composing both the design and the
code starting from the functionalities of the agent/task selected
from the library. We are aware of the difficulty of the problem
but this is drastically simplified by the boundaries of our
choices: a fixed implementation platform (FIPA-
OS/JADE,…) allows us to prepare largely reusable parts of
the system elements, the use of XML for ontology description
allows us to skip (or largely reduce) the manual work of the
designer in the creation of the agent knowledge, the deduction
of an XML representation of the agent code from the design
allows a simple porting to the different platforms.

REFERENCES
[1] Chella, A., Cossentino, M., and Lo Faso, U. Applying UML use case

diagrams to agents representation. Proc. of AI*IA 2000 Conference.
(Milan, Italy, Sept. 2000).

[2] Chella, A., Cossentino, M., and Lo Faso, U. Designing agent-based
systems with UML in Proc. of ISRA'2000 (Monterrey, Mexico, Nov.
2000).

[3] Chella, A., Cossentino, M., Infantino, I., and Pirrone, R. An agent based
design process for cognitive architectures in robotics in proc. of
WOA’01 (Modena, Italy, Sept. 2001).

[4] Chella, A., Cossentino, M., Infantino, I., and Pirrone, R. A vision agent
in a distributed architecture for mobile robotics in Proc. Of Worskshop
“Intelligenza Artificiale, Visione e Pattern Recognition” in the VII Conf.
Of AI*IA (Bari, Italy, Sept. 2001).

[5] Chella, A., Cossentino, M., Tomasino, G. An environment description
language for multirobot simulations in proc. of ISR 2001 (Seoul, Korea,
Apr. 2001)

[6] Antón, A.I., McCracken, W.M., and Potts, C. Goal Decomposition and
Scenario Analysis in Business Process Reengineering in proc. of
Advanced Information System Engineering: 6th International
Conference, CAiSE '94 (Utrecht, The Netherlands, June 1994) 94-104.

[7] Antón, A.I., and Potts, C. The Use of Goals to Surface Requirements
for Evolving Systems, in proc. of International Conference on Software
Engineering (ICSE '98), (Kyoto, Japan, April 1998), 157-166

[8] van Lamsweerde, A., Darimont, R. and Massonet, P. Goal-Directed
Elaboration of Requirements for a Meeting Scheduler: Problems and
Lessons Learnt in Proc. 2nd International Symposium on Requirements
Engineering (RE'95) (York, UK, March 1995), 194-203

[9] DeLoach, S.A., Wood, M.F., and Sparkman, C.H. Multiagent Systems
Engineering. International Journal on Software Engineering and
Knowledge Engineering 11, 3, 231-258.

[10] Jacobson, I., Booch, G., Rumbaugh, J. The Unified Process. IEEE
Software (May/June 1999).

[11] Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G. Object-
Oriented Software Engineering: A Use Case Driven Approach. Addison-
Wesley (1992).

[12] Potts, C. ScenIC: A Strategy for Inquiry-Driven Requirements
Determination in proc. of IEEE Fourth International Symposium on
Requirements Engineering (RE'99), (Limerick, Ireland, June 1999), 58-
65.

[13] Wooldridge, M., Jennings, N.R., and Kinny, D. The Gaia Methodology
for Agent-Oriented Analysis and Design. Journal of Autonomous Agents
and Multi-Agent Systems. 3,3 (2000), 285-312.

[14] F. Zambonelli, N. Jennings, M. Wooldridge. Organizational Rules as an
Abstraction for the Analysis and Design of Multi-agent Systems. Journal
of Knowledge and Software Engineering, 2001, 11, 3, 303-328.

[15] Newell, A. The knowledge level, Artificial Intelligence, 18 (1982) 87–
127.

[16] David Carlson. Modeling XML Applications with UML: Practical E-
Business Applications. Boston: Addison-Wesley, 2001.

[17] Searle, J.R., Speech Acts. Cambridge University Press, 1969.
[18] FIPA Communicative Act Library Specification. Foundation for

Intelligent Physical Agents, Document FIPA00037 (2000).
http://www.fipa.org/specs/fipa00037/.

[19] FIPA ACL Message Structure Specification. Foundation for Intelligent
Physical Agents, Document FIPA XC00061E.
http://www.fipa.org/specs/fipa00061/XC00061E.html.

[20] J.Odell, H. Van Dyke Parunak, B. Bauer. Representing Agent Interaction
Protocols in UML, Agent-Oriented Software Engineering, P. Ciancarini
and M. Wooldridge eds., Springer-Verlag, Berlin (2001), 121–140.

[21] Jennings, N.R. On agent-based software engineering. In Artificial
Intelligence, 117 (2000), 277-296.

[22] DeLoach, S.A., Wood, M.F., and Sparkman, C.H. Multiagent Systems
Engineering. International Journal on Software Engineering and
Knowledge Engineering 11, 3, 231-258.

[23] Aridor, Y., and Lange, D. B. Agent Design Patterns: Elements of Agent
Application Design. In Proc. of the Second International Conference on
Autonomous Agents (Minneapolis, May 1998), 108–115.

[24] Kendall, E. A., Krishna, P. V. M., Pathak C. V. and Suresh C. B.
Patterns of intelligent and mobile agents. In Proc. of the Second
International Conference on Autonomous Agents, (Minneapolis, May
1998), 92–99.

[25] F. Zambonelli, N. Jennings, M. Wooldridge. Organizational Rules as an
Abstraction for the Analysis and Design of Multi-agent Systems. Journal
of Knowledge and Software Engineering, 2001, 11, 3, 303-328.

[26] Wooldridge, M., Jennings, N.R., and Kinny, D. The Gaia Methodology
for Agent-Oriented Analysis and Design. Journal of Autonomous Agents
and Multi-Agent Systems. 3,3 (2000), 285-312.

[27] FIPA Abstract Architecture Specification (Refinements). Foundation for
Intelligent Physical Agents, Document FIPA PC00094 (2001).
http://www.fipa.org/specs/ fipa00094/PC00094.html

[28] Collinot A.,Drogoul A. Using the Cassiopeia Method to Design a Soccer
Robot Team. Applied Articial Intelligence (AAI) Journal, 12, 2-3
(1998), 127-147.

