
Intentional Agent Patterns with the PRACTIONIST Framework

V. Morrealea G. Francavigliaa F. Centineoa M. Puccioa

M. Cossentinobc

a R&D Laboratory - ENGINEERING Ingegneria Informatica S.p.A., Italy
b SET-Universit de Technologie Belfort - Montbliard, France

c ICAR - Italian National Research Council

Abstract

When developing BDI agent-based systems, some design patterns such as incompatible

intentions, multiple strategies, intention decomposition, etc. would be very useful in order to

catch some desired agent behaviours. As BDI agent programmers, our desire would be to have

a framework that natively support such common patterns.

The PRACTIONIST framework provides a goal-oriented approach for developing agent

systems according to the BDI model. In this paper we first describe the goal model of PRAC-

TIONIST agents and how they use such a model to reason about goals during their delibera-

tion process and means-ends reasoning. Then, we show how some useful BDI agent patterns

can be directly and actually implemented with our framework, which natively supports such

design-level solutions. In other words, in our framework we wanted solve some common de-

sign problems, by providing some built-in solutions that programmers can easily adopt when

developing their intentional agents.

1 Introduction

One of the most interesting agent models is the BDI [13], which derives from the philosophical
tradition of practical reasoning. It states that agents decide, moment by moment, which actions
to perform in order to pursue their goals. Practical reasoning involves a deliberation process, to
decide what states of affairs to achieve, and a means-ends reasoning, to decide how to achieve them.

When developing BDI agent-based systems, some common design problems are often addressed
at several levels of abstraction (i.e. organization, agent, task and so forth). According to [15] design
patterns are explicit formulations of good proven solutions to recurring problems that arise within
some contexts. Thus patterns make easies the reuse of good software design. A design pattern
explains the insight and good practices that have evolved to solve a given problem and it provides
a concise definition of common elements, context, and essential requirements for a solution [8].
Moreover, patterns reduce the development time, communicate knowledge and help people to learn
a new design paradigm[14]. The adoption of design patterns also improves the quality of software,
as they are validated by the experience rather than from testing [6].

Some common design patterns such as incompatible intentions, multiple strategy, intention
decomposition, etc. would be very useful in order to catch some desired behaviours of intentional
agents. Unfortunately, some BDI agent frameworks do not directly support such patterns and
usually require too much work to actually implemented them. As BDI agent programmers, our
desire would be to have a framework that natively support such patterns.

We believe that the explicit representation of goals and the ability to reason about them play
an important role in the definition of several intentional design patterns.

Therefore our PRACTIONIST framework [9] adopts a goal-oriented approach to develop BDI
agents and stresses the separation between the deliberation process and the means-ends reasoning,
with the abstraction of goal used to formally define both desires and intentions during the delib-
eration phase. In PRACTIONIST a goal is considered as an analysis, design, and implementation
abstraction compliant to the semantics described in this paper. In other words, agents can be

programmed in terms of goals, which then will be related to either desires or intentions according
to whether some specific conditions are satisfied or not.

Actually, other BDI agent platforms natively use the concept of goal (e.g. JACK [2] and JAM [5]
use goals instead of desires). However, the actual implementations of mental states differ somewhat
from their original semantics: desires (or goals) are treated as event types (such as in AgentSpeak(L)
[11]) or procedures (such as in 3APL [4]) and intentions are executing plans. Therefore the deliber-
ation process and means-ends reasoning are not well separated, as being committed to an intention
(ends) is the same as executing a plan (means). In our view, this reduces the opportunity of defining
useful design patterns. [16],

Moreover, since some available BDI agent platforms do not support the explicit representation
and implementation of goals or desires with their properties and relations, the ability to reason
about goals is lost, along with the ability to know if goals are impossible, achieved, incompatible
with other goals, and so forth. Thus, even the support for the commitment strategies of agents and
their ability to autonomously drop, reconsider, replace or pursue goals is strongly decreased.

Only a few BDI agent platforms deal with declarative goals, such as JADEX, where goals are
explicitly represented according to a generic model, enabling the agents to handle their life cycle and
reasoning about them [1]. Nevertheless, the model defined in JADEX does not deal with relations
among goals.

In the following sections we show that some useful BDI agent patterns can be directly and
actually implemented with the PRACTIONIST framework, which natively supports some design-
level solutions. In other words, in our framework we wanted solve some of most common design
problems at the agent level, by providing some built-in solutions that programmers can easily adopt
when developing their agents.

Therefore, in this paper we first present a brief overview of the general structure of PRACTION-
IST agents and their execution model (section 2) and the definition of the goal model (section 3).
Then we describe how PRACTIONIST agents are able to reason about available goals according to
their goal model, current beliefs, desires, and intentions (section 4). Finally, some agent-level de-
sign patterns are presented and the implementation with the PRACTIONIST framework is briefly
illustrated (section 5). The last section outlines some conclusions and our intentions about further
and future work.

2 PRACTIONIST Agents

The PRACTIONIST framework, defined on top of JADE1, supports the development of BDI agents
endowed with the following elements (figure 1):

• a set of perceptors that listen to some relevant external stimuli (perceptions);

• a set of beliefs (represented through a prolog-like language) that the agent has got about both
its internal state and the external environment;

• a goal model including: (i) a set of goals each agent could pursue, which represent some
states of affairs to bring about or activities to perform and can be related to either desires or
intentions ; and (ii) a set of goal relations to use during its deliberation process and means-
ends reasoning;

• a set of plans that are the means to achieve the intentions;

• a set of actions the agent can perform to act over its environment; and

• a set of effectors that actually execute such actions.

In the PRACTIONIST framework plans represent an important container in which developers
define the actual behaviours and strategies of agents. Each agent may own a declared set of plans
(the plan library), each specifying the course of acts the agent will undertake in order to pursue its
intentions, or to handle incoming perceptions, or to react to changes of its beliefs.

1http://jade.tilab.com

Figure 1: PRACTIONIST Agent Architecture.

PRACTIONIST plans have a set of properties, which the agents can use during their means-
ends reasoning and the actual execution of their activities. Some of these slots are: the trigger
event, which defines the event (i.e. goals, perceptions, and belief updating) each plan is supposed
to handle; the context, a set of conditions that must be believed true before performing the plan;
the body, which include the acts the agent performs during the execution of the plan. Within the
body several acts are possible, such as sending messages, desiring to bring about some states of
affairs or perform some action, modifying beliefs, and so forth.

Further details about the structure of PRACTIONIST agents and its components can be found
in [9].

During its main cycle the agent performs the following steps:

1. through the perceptors, it searches for perceptions from the environment and transforms them
into (external) events, which in turn are put into an event queue;

2. it selects and extracts an event from such a queue, according to some logic;

3. it handles the selected event through the following means-ends reasoning process: (i) the
agent figures out the practical plans, which are those plans whose trigger event matches the
selected event; (ii) among practical plans, the agent detects the applicable ones, which are
those plan whose context is believed true, and selects one of them (the main plan); (iii)
it builds the intended means, which will contain the main plan and the other alternative
practical plans. Each intented means is put within a stack according to the following criteria:
if the event that has generated the intended means is related to the intention to pursue a
goal, it is put on top of the intended means that is committed to that intention; otherwise, a
new stack is created with that intented means.

It should be noted that every intended means stack can contain several intended means, each
able to handle a given event, possibly through several alternative means. Moreover all intended
means stacks are concurrently executed, so that each PRACTIONIST agent can perform several
activities in parallel.

3 Goal Model

In the PRACTIONIST framework, a goal is an objective to pursue and we use it as a mean to
transform desires into intentions through the satisfaction of some properties. In other words, our
agents are programmed in terms of goals, which then will be related to either desires or intentions
according to whether some specific conditions are satisfied or not.

Formally, a PRACTIONIST goal g is defined as follows:

g = 〈σg, πg〉 (1)

where:

• σg is the success condition of the goal g;

• πg is the possibility condition of the goal g stating whether g can be achieved or not.

Since we consider such elements as local properties of goals, in the PRACTIONIST framework
we defined them as operations that have to be implemented for each kind of goal (figure 5).

In order to describe the goal model, we first provide some definitions about the properties of
goals.

Definition 1 A goal g1 is inconsistent with a goal g2 (g1⊥g2) if and only if when g1 succeeds,
then g2 fails.

Definition 2 A goal g1 entails a goal g2 or equivalently g2 is entailed by g1 (g1 → g2) if and
only if when g1 succeeds, then also g2 succeeds.

Definition 3 A goal g1 is a precondition of a goal g2 (g1 7→ g2) if and only if g1 must succeed
in order to be possible to pursue g2.

Definition 4 A goal g1 depends on a goal g2 (g1 ↪→ g2) if and only if g2 is precondition of g1

and g2 must be successful while pursuing g1.

Therefore the dependence is a stronger form of precondition. Both definitions let us specify
that some goals must be successful before (and during, in case of dependency) pursuing some other
goals (refer to section 4 for more details).

Now, given a set G of goals and based on the above definitions, it is also possible to define some
relations between those goals.

Definition 5 The inconsistency Γ ⊆ G×G is a binary symmetric relation on G, defining goals
that are inconsistent with each other. Formally,

Γ = {(gi, gj) i, j = 1, ..., |G| : gi⊥gj} . (2)

When two goals are inconsistent with each other, it might be useful to specify that one is pre-
ferred to the other. We denote that gi is preferred to gj with gi � gj .

Definition 6 The relation of preference Γ
′

⊆ Γ defines the pair of goals (gi, gj) where gi⊥gj

and gi � gj . Formally,

Γ′ = {(gi, gj) ∈ Γ : gi � gj} . (3)

Therefore if there is no preference between two inconsistent goals, the corresponding pair does
not belong to the set Γ

′

. Moreover, since several goals can be pursued in parallel, there is no need
to prefer some goal to another goal if they are not inconsistent each other.

Definition 7 The entailment Ξ ⊆ G × G is a binary relation on G, defining which goals entail
other goals. Formally,

Ξ = {(gi, gj) i, j = 1, ..., |G| : gi → gj} . (4)

check if the goal

is possible

check if the goal

succeeds

check if the goal is

inconsistent with active goals

exception: the goal

cannot be pursued

check if the goal is entailed

by some active goal

synchronize with the

entailing goal

check about goal

preconditions

[goal is not possible]

[goal inconsistent AND not preferred]

[goal succeeds]

[goal is not entailed

 by any active goal]

Figure 2: Reasoning about goals: the deliberation phase.

Definition 8 The precondition set Π ⊆ G × G is a binary relation on G, defining which goals
are precondition of other goals. Formally,

Π = {(gi, gj) i, j = 1, ..., |G| : gi 7→ gj} . (5)

Definition 9 The dependence ∆ ⊆ G×G is a binary relation on G, defining which goals depend
on other goals. Formally,

∆ = {(gi, gj) i, j = 1, ..., |G| : gi ↪→ gj} . (6)

Finally, on the basis of the above properties and relations we can now define the structure of
the goal model of PRACTIONIST agents as follows

GM = 〈G, Γ, Γ′, Ξ, Π, ∆〉 (7)

where:

• G is the set of goals the agent could pursue;

• Γ is the inconsistency relation among goals;

• Γ′ is the preference relation among inconsistent goals;

• Ξ is the entailment relation among goals;

• Π is the precondition relation among goals;

• ∆ is the dependence relation among goals.

4 Reasoning about goals

In this section we show how the goal elements previously defined are used by PRACTIONIST agents
when reasoning about goals during their deliberation process and the means-ends reasoning. We
also highlight the actual relations between them and mental attitudes, i.e. desires and intentions.

In PRACTIONIST agents goals and their properties are defined on the basis of what agents
believe. Thus, an agent will believe that a goal g = 〈σg, πg〉 has succeeded if it believes that its
success condition σg is true. The same holds for the other properties.

It is important to note that, in PRACTIONIST, desires and intentions are mental attitudes
towards goals, which are in turn considered as descriptions of objectives. Thus, referring to a goal,
an agent can just relate it to a desire, which it is not committed to because of several possible
reasons (e.g. it believes that the goal is not possible). On the other hand, a goal can be related to
an intention, that is the agent is actually and actively committed to pursue it.

Let GM = 〈G, Γ, Γ′, Ξ, Π, ∆〉 be a goal model of a PRACTIONIST agent α and, at a
given time, G′ ⊆ G be the set of its active goals, which are those goals that the agent is already
committed to.

Suppose that α starts its deliberation process and generates the goal g = 〈σg, πg〉 as an option.
Therefore the agent would like to commit to g, that is its desire is to bring about the goal g.
However, since an agent will not be able to achieve all its desires, it performs the following process

in the context of its deliberation phase (figure 2): the agent checks if it believes that the goal g is
possible and not inconsistent (see definition 1) with active goals (belonging to G′).

If both conditions hold the desire to pursue g will be promoted to an intention. Otherwise, in
case of inconsistency among g and some active goals, the desire to pursue g will become an intention
only if g is preferred to such inconsistent goals, which will in turn be dropped.

In any case, if the desire to pursue g is promoted to an intention, before starting the means-ends
reasoning, the agent α checks if it believes that the goal g succeeds (that is, if it believes that the
success condition σg holds) or whether the goal g is entailed (see definition 2) by some of the current
active goals. In case of both above conditions do not hold, the agent will perform the means-ends
reasoning, by either selecting a plan from a fixed plan library or dynamically generating a plan and
finally executing it (details on this means-ends reasoning can be found in [9]).

Indeed, if the goal g succeeds or is entailed by some current active goals (i.e. some other means
is working to achieve a goal that entails the goal g), there is no reason to pursue it. Therefore, the
agent does not need to make any means-ends reasoning to figure out how to pursue the goal g.

Otherwise, before starting the means-ends reasoning, if some declared goals are precondition
for g, the agent will first desire to pursue such goals and then the goal g.

In the PRACTIONIST framework, as a default, an agent will continue to maintain an intention
until it believes that either such an intention has been achieved or it is no longer possible to achieve
the intention. This commitment strategy to intention is called single-minded commitment [12]. In
order to perform such a behaviour, the agent continuously checks if it believes that the goal g has
just succeeded and that the goal g is still possible.

Moreover the agent checks if some dependee goal does not succeed. If so, it will desire to pursue
such a goal and then continue pursuing the goal g. When all dependee goals succeed, the agent
resumes the execution of the plan.

In order to be able to recover from plan failures and try other means to achieve an intention,
if the selected plan fails or is no longer appropriate to achieve the intention, then the agent selects
one of applicable alternative plans within the same intended means and executes it.

If none of the alternative plans was able to successfully pursue the goal g, the agent take into
consideration the goals that entail g. Thus the agent selects one of them and considers it as an
option, processing it in the way described in this section, from deliberation to means-ends reasoning.

If there is no plan to pursue alternative goals, the achievement of the intention has failed, as
the agent has not other ways to pursue its intention. Thus, according to agents beliefs, the goal
was possible, but the agent was no able to pursue it (i.e. there are no plans).

5 BDI Agent Patterns

The structure of patterns described in this section reflects a restricted version of the classical

structure of design patterns presented by GoF [3]. Each section is named with the pattern name,
which conveys the essence of the pattern succinctly. The intent states what the pattern does, its
rationale, what particular design issue or problem it addresses. The motivation is a scenario that
illustrates a design problem and how the entities in the pattern solve such a problem. The structure
is a graphical representation of the entities in the pattern using a notation based on the Unified
Modelling Language (UML). Then we provide more details about the entities participating in the
design pattern and their responsibilities in the participants section. Finally, the Implementation
describes how the proposed patterns can be implemented with the PRACTIONIST framework.

As stated above, intentions are mental attitudes towards goals, that is an intention always
concerns with being committed to pursuing some goal. Thus, declaring some relations between
goals according to the definition provided in section 3 and the agent reasoning presented in section
4 is equivalent to state the corresponding relations among the intentions to pursue each of those
goals. Therefore, altough most of patterns refer to intentions and relations among intentions,
the solution below are provided in terms of goals and relations among goals, given the semantics
discussed in previous sections.

The Tileworld example was initially introduced in [10] as a system with a highly parameterized

environment that could be used to investigate the reasoning in agents. The original Tileworld

consists of a grid of cells on which tiles, obstacles and holes (of different size and point value) can
exist. Each agent can move up, down left or right within the grid to pick up and move tiles in order
to fill the holes. Each hole has an associated score, which is awarded to the agent that has filled
the hole. The main goal of the agent is to score as many points as possible.

Tileworld simulations are dynamic and the environment changes continually over time. Since
this environment is highly parameterized, the experimenter can alter various aspects of it through
a set of available ”knobs”, such as the rate at which new holes appear (dynamism), the rate at
which obstacles appear (hostility), difference in hole scores (variability of utility), and so forth.

Such applications, with a potentially high degree of dynamism, can benefit from the adoption
of a goal-oriented design approach, where the abstraction of goal is used to declaratively represent
agents’ objectives and states of affairs that can be dynamically achieved through some means.

5.1 Dynamic Strategy Selection

Intent

An agent’s intention can be achieved through a family of strategies, which have the same
purpose but work in different operative conditions: the best strategy should be dynamically
selected by the agent at run time.

Motivation

One of the key features of practical reasoning agents is the clear separation among the delib-
eration process and the means-ends reasoning. In this sense, providing such agents with the
ability of dynamically selecting a strategy (better if it is the best one) to achieve the intention
figured out by the deliberation process plays an important role when developing BDI agents.

Usually developers want to provide the agents with different strategies to achieve a given
intention and let the agent be the responsible of applying the ”best” strategy according to its
beliefs and the current environment conditions. This would enable the development of more
flexible agents by adopting a more modular and declarative approach.

Moreover, with the increasing complexity and maintenance cost of advanced software sys-
tems, in recent years attention has fallen on self-* systems and particularly on the autonomic
computing approach and autonomic systems. In [7] authors argue that adopting a design
approach that supports the definition of a space of possible behaviours related to the same
function is one of the ways to make a system autonomic. Then the system should be able to
autonompusly select at runtime the proper behaviour on the basis of the current situation.

In the Tileworld example, a player agent must find the holes to fill within the environment.
In order to achieve such a intention, the agent could use several strategies according to the
environment conditions, such as (i) finding the first hole by randomly moving within the
grid, (ii) finding an hole by means of a breath first research, or (iii) finding the hole with the
greatest value.

Obviously some strategy is better than others in terms of agent scores, but perhaps it can-
not be applicable in certain environment conditions (e.g. very fastly changing conditions).
Moreover, when the agent is trying to find an hole with a given strategy, if the environment
conditions change, it can perceive this and dynamically change or adapt its research strategy
according to the new situation.

Structure

The agent is provided with some plans each implementing a different Strategy to pursue
a given goal. During the means-ends reasoning the agent performs the internal process
StrategySelector to figure out the best applicable strategy plan, according to the context
of declared plans and the current state of the world reflected into its belief s.

Participants

• Objective: some goals the agent can pursue during its life-cycle by means of several
strategies.

Figure 3: The structure of the Dynamic Strategy Selection pattern.

• Strategy: an abstract plan common to all concrete strategy plans that can be adopted
to pursue the same Objective.

• StrategyA, StrategyB: two concrete plans the agent can use to pursue the same
Objective in different ways.

• StrategySelector: an agent process that, in the context of the means-ends reasoning,
has the responsibility of selecting and adopting a given concrete Strategy to pursue
the Objective, if the conditions expressed by its context hold according to the agent’s
belief s. This provides the agent with some meta-level reasoning capabilities to select the
best applicable strategy under any operational condition.

Implementation

The StrategySelector process is provided within the PRACTIONIST framework with a
default behaviour that checks the context of each practical plan (see section 2), by invoking
the applicable method of the class Plan. Therefore, each concrete strategy should be im-
plemented as a sub-Plan of an abstract Plan which is practical for the considered goal. Each
strategy sub-Plan should at least override both applicable and body methods.

5.2 Intention Decomposition

Intent

An agent’s intention can be decomposed into a set of sub-intentions. Therefore, the main
intention will be achieved as soon as all its sub-intentions are achieved.

Motivation

Often an agent is not able to achieve some high-level intentions. However, if the agent is
aware that such an intention can be achieved if some other intentions are achieved, it can
commit to them and indirectly bring about the main intention.

Actually, several analysis and design methodologies adopt a functional decomposition princi-
ple to describe and represent the expected functionalities of a system. Therefore, the ability
to reason about intention decomposition relations can provide the agents with the capability
of looking for alternative ways of achieving those intentions which it does not have a direct
strategy/plan for.

In the Tileworld example, a player agent has to score as many points as possible. In order
to ”score points”, the agent can ”find a tile”, ”move to the (tile’s) position”, ”pick up the
tile”, ”move to the (hole’s) position”, and finally ”fill the hole”. All these objectives can be
considered as contributors of the main goal ”score points”. Therefore, at a given moment if
the agent is committed to ”scoring points”, it can autonomously commit itself to pursuing all
the above-mentioned contributors.

Structure

The agent is provided with the entailment relation MainThroughABCbetween the goal MainObjective
and its sub-goals (i.e. ObjectiveA, ObjectiveB, ObjectiveC).

Figure 4: The structure of the Intention Decomposition pattern.

This relation will be analysed by the agent during the deliberation in order to figure out
alternative intentions (i.e. pursuing contributor goals) as soon as it is not able (due to some
reason) to directly achieve the main intention (i.e. pursuing the main goal). In this case, all
contributors will be automatically pursued in place of the beneficiary.

Moreover, the above relation will be also analysed by the agent during its means-ends rea-
soning. Indeed, if the agent is committed to pursuing the MainObjective and the agent
is already committed to pursuing ObjectiveA, ObjectiveB, and ObjectiveC), there is no
reason to actually look for a plan to achieve the beneficiary, as it will be achieved as soon as
all its contributors are achieved.

Participants

• ObjectiveA, ObjectiveB, ObjectiveC: some goals the agent can pursue during its
life-cycle.

• MainObjective: a goal that the agent can pursue by pursuing all contributors.

• MainThroughABC: a relation stating that goal MainObjective succeeds if all its
contributors (i.e. ObjectiveA, ObjectiveB, ObjectiveC) succeed.

• EntailmentManager: an agent process that has the responsability of providing the set
of contributors of a given goal.

Implementation

The PRACTIONIST framework provides the support for the definition/handling of agent
goal models and the capabilities for reasoning about goals.

Figure 5 shows the actual structure of the GoalModel that each agent owns (PRACTIONISTAgent
is the abstract class that has to be extended when developing PRACTIONIST agents). Such a
model stores information about declared goals (with their internal properties, i.e. success and
possibility condition) and the four types of relations these goals are involved in. Specifically
the interface GoalRelation provides the super interface for all goal relations supported by
the PRACTIONIST framework (i.e. EntailmentRel, InconsistencyRel, DependencyRel,
and PreconditionRel) and defines the operation verifyRel, whose purpose is to check each
specific relation.

In order to exploit the features provided by the goal model and understand if a given goal the
agent desires to pursue is inconsistent with or implied by some active goals, the agent must

Figure 5: The structure of the support for the goal model in the PRACTIONIST framework.

have information about such active goals and whether them are related to either desires or
intentions. Therefore, each PRACTIONIST agent owns an ActiveGoalsHandler component,
which, with the aid of the GoalModel, has the responsibility of keeping track of all executing
intended means stacks with the corresponding waiting and executing goals and managing
requests made by the agent. Thus, at any given time, the ActiveGoalsHandler is aware of
current desires and intentions of the agent, referring them to active goals.

Therefore, the PRACTIONIST framework fully supports this pattern, as developers should
only define the entailment relation between a goal and the set of its contributors (by imple-
menting the interface EntailmentRel) and then add such relation into the agent’s GoalModel
(through the method add). Then the agent will use it as described in section 4.

5.3 Mutually Exclusive Intentions

Intent

An agent could have two incompatible intentions, which cannot be achieve simultaneously.

Motivation

When developers want to specify that an agent has two intentions that are inconsistent with
each other, the agent itself should not work to simultaneosly achieve both intentions. It
should choose only one of them and perform some activities to achieve it. The developer
should specify such a desired behaviour declaratively.

In the Tileworld environment, there are several inconsistent objectives that the agent must
avoid to pursue at the same time. As an example, a player agent should not simultaneosly
intend to go toward a hole and toward a different hole. Thus, the agent should work to achieve
only one of them and drop the other intention.

Structure

The agent is provided with an inconsistence relation (see definition 1) between the two goals
representing potential intentions (figure 6).

These relations will be analysed by the agent during the deliberation phase in order guarantee
that at any moment the agent itself is not trying to achieve both intentions (i.e. pursuing the
ObjectiveA and pursuing the ObjectiveB), by maintaining the preferred one and dropping
the other goal.

Participants

Figure 6: The structure of the Mutually Exclusive Intentions pattern.

• ObjectiveA, ObjectiveB: some goals the agent can pursue during its life-cycle.

• AxorB: a relation stating the inconsistence between the goals ObjectiveA and ObjectiveB.

• InconsistenceManager: the agent process that has the responsability of checking
whether two declared goals are inconsistent or not (i.e. checkInconsistentGoals).
Then, the agent must guarantee that at any moment inconsistent or incompatible goals
(e.g. ObjectiveA and ObjectiveB) are not pursued simultaneously.

Implementation

This pattern can be easily adopted when developing BDI agents with the PRACTIONIST
framework. With reference to figure 5, developers should only define the inconsistence relation
(by implementing the interface InconsistencyRel) and add such a relation into the agent’s
GoalModel (through the method add). Then the agent will use it during the deliberation
process as described in section 4.

It should be noted that with the PRACTIONIST framework developers can also specify the
preference between two inconsistent goals.

5.4 Necessary Intention

Intent

An agent must achieve an intention Id before trying to achieve a given intention I. Sometimes
the intention Id must be maintained even while the agent is pursuing the intention I.

Motivation

Sometimes it is useful to specify that some agent intentions must be achieved so that it is
possible working to achieve other intentions. In this case, when an agent is committed to
a given intention, if there are some dependee intentions that must be achieved before, the
agent should first perfom activities to achieve them. Often, the dependee intentions must be
achieved even when working to achieve the dependent intention.

In the Tileworld example, a player agent aims at maximizing its score by filling holes. How-
ever, a player agent should find a tile and hold it before working to actually fill a hole.
Therefore, the objective ”fill a hole” requires that the goals ”find a tile” and ”hold a tile”
have been achieved.

Structure

The agent is provided with some dependence relation between some goals. Since intentions
are mental attitudes towards goals, these relations will be analysed by the agent during the
deliberation phase in order to pursue dependee goals before (and sometimes while) pursuing
the dependent goal.

Figure 7: The structure of the Necessary Intention pattern.

Participants

• ObjectiveA, ObjectiveB: some goals the agent can pursue during its life-cycle.

• Necessary: a relation stating that the goal ObjectiveA depends on the goal ObjectiveB,
that is the latter should be achieved before (and in some cases even maintained while)
pursuing the former.

• DependenceManager: the agent process that has the responsability of checking if
there is some dependence relation between ObjectiveA and ObjectiveB, in order to let
the agent guarantee that the dependee goal is achieved before (and in some cases even
maintained while) pursuing the dependent goal.

Implementation

The PRACTIONIST framework supports the adoption of this pattern. With reference to
figure 5, developers should only define either the dependence or the precondition relation (by
implementing either the interface DependenceRel or PreconditionRel) according to whether
the dependee goal must be maintained while pursuing the dependent goal or not. Then the
relation has to be added into the agent’s GoalModel (through the method add). Then the
agent will use it during the deliberation process as described in section 4.

It should be noted that with the PRACTIONIST framework developers can also specify the
preference between two inconsistent goals.

6 Conclusions and Future Work

In the PRACTIONIST framework, desires and intentions are mental attitudes towards goals, which
are in turn considered as descriptions of objectives.

In this paper we described how a declarative representation of goals can support the definition of
desires and intentions in PRACTIONIST agents. It also supports the detection and the resolution
of conflicts among agents’ objectives and activities. This results in a reduction of the gap between
BDI theories and several available implementations.

We also described how goals and relations are used by PRACTIONIST agents during their
deliberation process and the execution of their activities; particularly it is described how agents
manages these activities by using the support for the goal model shown in the previous sections.

It should be noted that, unlike several BDI and non-BDI agent platforms, the PRACTIONIST
framework supports the declarative definition of goals and the relations among them, as described in
this paper. This provides the ability to believe if goals are impossible, already achieved, incompatible
with other goals, and so forth. This in turn supports the commitment strategies of agents and their
ability to autonomously drop, reconsider, replace or pursue intentions related to active goals.

The ability of PRACTIONIST agents to reason about goals and the relations among them
(as described in section 4) lets programmers implicitly specify several behaviours for several cir-
cumstances, without having to explicitly code such behaviours, letting agents figure out the right
activity to perform on the basis of the current state and the relations among its potential objectives.

Goals can be adopted throughout the whole development process. Thus, we are defining a
development methodology where goals play a central role and maintain the same semantics from
early requirements to the implementation phase.

Unlike several BDI and non-BDI agent platforms, the PRACTIONIST framework supports
the declarative definition of goals and the relations among them. This provides the ability to
believe if goals are impossible, already achieved, incompatible with other goals, and so forth. This
in turn supports the commitment strategies of agents and their ability to autonomously drop,
reconsider, replace or pursue intentions related to active goals. The ability to reason about goals
and the relations among them lets PRACTIONIST agents to figure out the right activity to perform
on the basis of its actual and potential objectives and the current state of the world. In the
PRACTIONIST context is not easy speaking about ”a specific recurring design problem” due
to the lack in developing real application using this new framework; with the following pattern
definitions we will try to provide some guideline to take advantage from goal model and meta-level
reasoning that represent, in own opinion, an innovation in the goal oriented design of multi agent
system

As a part of our future strategy, we aims at extending the proposed model with further prop-
erties of goals and relations among them. Finally, we aim at applying the concepts and the model
described in this paper in the development of real-world applications based on BDI agents.

Acknowledgments. This work is partially supported by the Italian Ministry of Education, Uni-
versity and Research (MIUR) through the project PASAF.

References

[1] Lars Braubach, Alexander Pokahr, Winfried Lamersdorf, and Daniel Moldt. Goal representa-
tion for BDI agent systems. In Second International Workshop on Programming Multiagent
Systems: Languages and Tools, pages 9–20, 7 2004.

[2] P. Busetta, Ralph Rnnquist, Andrew Hodgson, and Andrew Lucas. Jack intelligent agents -
components for intelligent agents in java, 1999.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[4] K. V. Hindriks, F. S. De Boer, Hoek Wiebe van der, and J. Jc Meyer. Agent programming in
3APL. Autonomous Agents and Multi-Agent Systems, 2(4):357–401, 1999. Publisher: Kluwer
Academic Publishers, Netherlands.

[5] Marcus J. Huber. Jam: A BDI-theoretic mobile agent architecture. In Agents, pages 236–243,
1999.

[6] Prechelt L., Unger B., Philippsen M., and Tichy W. Two controlled experiments assessing the
usefulness of design pattern documentation in program maintenance. IEEE Transaction on
Software Engineering, 28(6):595–606, 2002.

[7] A. Lapouchnian, S. Liaskos, J. Mylopolous, and Y. Yu. Towards requirements-driven auto-
nomic systems design. Proceedings of the 2005 workshop on Design and evolution of autonomic
application software, pages 1–7, 2005. ACM Press, New York, NY, USA.

[8] J. Lind. Patterns in agent-oriented software engineering. In AOSE Workshop at AAMAS 2002,
2002.

[9] V. Morreale, S. Bonura, G. Francaviglia, M. Cossentino, and S. Gaglio. PRACTIONIST: a new
framework for BDI agents. In Proceedings of the Third European Workshop on Multi-Agent
Systems (EUMAS’05), page 236, 2005.

[10] M. E. Pollack and M. Ringuette. Introducing the tileworld: Experimentally evaluating agent
architectures. National Conference on Artificial Intelligence, pages 183 – 189, 1990.

[11] Anand S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
Rudy van Hoe, editor, Seventh European Workshop on Modelling Autonomous Agents in a
Multi-Agent World, Eindhoven, The Netherlands, 1996.

[12] Anand S. Rao and Michael P. Georgeff. Modeling rational agents within a BDI-architecture.
In Proceedings of the 2nd International Conference on Principles of Knowledge Representation
and Reasoning, pages 473–484. Morgan Kaufmann publishers Inc.: San Mateo, CA, USA, 1991.

[13] Anand S. Rao and Michael P. Georgeff. BDI agents: from theory to practice. In Proceedings
of the First International Conference on Multi—Agent Systems, pages 312–319, San Francisco,
CA, 1995. MIT Press.

[14] L. Sabatucci, M. Cossentino, and S. Gaglio. Building agents with agents and patterns. In
Proceedings of the Workshop on Objects and Agents, 2006.

[15] Yasuyuki Tahara, Akihiko Ohsuga, and Shinichi Honiden. Agent system development method
based on agent patterns. In ICSE ’99: Proceedings of the 21st international conference on
Software engineering, pages 356–367, Los Alamitos, CA, USA, 1999. IEEE Computer Society
Press.

[16] Michael Winikoff, Lin Padgham, James Harland, and John Thangarajah. Declarative & pro-
cedural goals in intelligent agent systems. In KR, pages 470–481, 2002.

