

SIMULATION-DRIVEN DEVELOPMENT OF MULTI-AGENT SYSTEMS

Giancarlo Fortino, Alfredo Garro, Wilma Russo Roberto Caico, Massimo Cossentino, Francesco Termine
Dipartimento di Elettronica, Informatica e Sistemistica

Università della Calabria
Via P.Bucci, cubo 41C, 87036 Rende (CS)

Italy
E-mail: {g.fortino, garro, w.russo}@unical.it

ICAR
Italian National Research Council

Viale delle Scienze, 90128 Palermo
Italy

E-mail: {caico, cossentino, termine}@pa.icar.cnr.it

KEYWORDS
Multi-Agent Systems, Discrete-Event Simulation, Agent
Oriented Software Engineering

ABSTRACT

This paper presents a simulation-driven development process
for multi-agent systems (MAS) which integrates a
Statecharts-based simulation methodology into the well
known and established PASSI methodology. It can be
effectively used as an experimental tool in the context of the
Agent Oriented Software Engineering for quantifying the
benefits of using simulation for MAS development. To
exemplify this process and demonstrate its effectiveness, a
case study concerning with the design and simulation of a
complex MAS is defined and detailed.

1. INRODUCTION

Simulation is being greatly applied in many industrial fields,
such as aerospace, automotive or energy production, but its
application in support of software products and processes is
to date still under estimated. Despite of its limited
exploitation in software engineering, Simulation has been
recognized to be an effective tool to support software
engineering experimentations involving requirements
management, project management, training, process
improvement, architecture and COTS (Commercial Off-The-
Shelf) integration, product-line practices, risk management,
and acquisition management (Christie 1999; Mayrhauser 1993).
With the emergence of Agent Oriented Software
Engineering (AOSE) as a new discipline (Luck et al. 2004)
which aims at identifying and defining models and
techniques suitable for the development of complex software
systems in terms of MASs (Multi-Agent Systems), we
wonder if Simulation could play a more strategic role in the
development of MASs than that played in the development
of traditional and/or conventional software systems, and,
more specifically, if Simulation could provide a substantial
added-value when applied to support the development
process of MASs (Uhrmacher 2002).
The answer to our first question lies in the complexity of
MASs with respect to the complexity of traditional software
systems. A MAS is a system composed of several agents,
capable of reaching goals that are difficult to achieve by an
individual system (Woolridge 2002). MASs can manifest
self-organization and complex behaviors even when the
individual strategies of all their agents are simple. Thus, the
use of Simulation can be crucial in the analysis of the MAS
under-development at different scales of observation (macro,
micro and meso levels) (Zambonelli and Omicini 2004) and,
also, for the discovery of emergent properties which were

not taken into account or were not considered at all in the
design phase.
To answer the second question we need to quantify the
claimed added-value in using simulation for MAS
development through actual experimentations covering the
whole software development lifecycle of MASs:
requirements capture, analysis, design, implementation,
deployment, and testing. To date a few MAS development
processes have been proposed in the literature (Electronic
Institutions (Sierra et al. 2004), DynDEVS/James (Rohl and
Uhrmacher 2004), CaseLP (Martelli et al. 1999),
GAIA/MASSIMO (Fortino et al. 2005a),
TuCSon/Simulation (Gardelli et al. 2005), Joint Measure
(Sarjoughian et al. 2001), etc) which incorporate Simulation
to support the design phase of the MAS development
lifecycle with the main focus on the validation and
performance evaluation of the designed MAS model.
However, to quantify the benefits of using Simulation for
MAS development further research work need to be carried
out in the aforementioned direction and in further directions
encompassing all the phases of the MAS development
lifecycle. The major benefits would be product quality
improvement and project risk minimization. These would
derive from the use of Simulation in pinning down MAS
requirements early in the development lifecycle, in testing
out alternate modifications of requirements, in safely
examining alternate architectures and designs, and in gaining
insights with timing, resource usage and bottlenecking.
In this paper we propose a simulation-driven development
process which is obtained by integrating a Statecharts-based
simulation methodology for MASs (Fortino et al. 2005a,
Fortino et al. 2005b) with PASSI, a well-known
development process for MASs (Cossentino 2005). This
allows us, on one hand, to enrich PASSI with the potential
benefits deriving from the exploitation of Simulation and,
from another hand, to concretely experiment with a process
supporting simulation-driven development of MAS. The
obtained development process is exemplified through a case
study concerning with the design and simulation of a MAS
which represents a consumer-driven e-marketplace (CEM).
In particular, the simulation phase allows for the validation
of the correct behavior of the CEM under-development and
for the evaluation of the CEM efficiency, in terms of
completion time for buying a product, and efficacy, in terms
of probability of buying a product at the desired price.
The rest of the paper is organized as follows. Section 2
describes the proposed agent-oriented simulation-driven
development process. Section 3 is devoted to detail the
proposed case study. Section 4 discusses some related agent-
based design and development approaches incorporating
simulation. Finally some conclusions are drawn and
directions of future research briefly elucidated.

2. AN AGENT-ORIENTED SIMULATION-DRIVEN
DEVELOPMENT PROCESS

In this section we present an agent-oriented simulation-
driven development process for building MAS. It is obtained
through the integration of MASSIMO (Multi-Agent System
SIMulator framewOrk) and its supporting Statecharts-based
simulation methodology (Fortino et al. 2005a) into PASSI
(Process for Agent Societies Specification and
Implementation), a development process for MAS
(Cossentino 2005). The obtained development process can
use simulation to support the following phases of PASSI:
system requirements, agent society and agent
implementation. In particular, in this paper, we concentrate
on the simulation of the Agent Implementation Model, i.e.
the work product of the agent implementation phase
describing the complex structure and behaviour of the MAS
under-development, both for validation and for performance
evaluation purposes. In the following subsections we first
provide a brief description of PASSI and the Statecharts-
based simulation methodology, and, then, we present their
integration.

2.1. PASSI (Process for Agent Societies Specification and
Implementation)

The PASSI methodology is a step-by-step requirements-to-
code methodology for designing and developing multi-agent
societies. It adopts design models and concepts from the
UML that is adapted in order to represent the different
elements and abstractions of a multi-agent system. The
methodology is supported by the PASSI Toolkit (PTK), a
Rational Rose plug-in, and by a repository of agent patterns.
In PASSI, during the initial steps of the design, an agent is
seen as an autonomous entity capable of pursuing an
objective through its autonomous decisions, actions and
social relationships. This helps in preparing a solution that is
later implemented referring to the agent as a significant
software unit. An agent may undertake several functional
roles during interactions with other agents to achieve its
goals. A role is a collection of tasks performed by the agent
in pursuing a sub-goal or offering some service to the other
members of the society. A task is defined as a purposeful
unit of individual or interactive behavior. Each agent has a
representation of the world in terms of an ontology that is
also referred to in all the messages the agents exchange.
PASSI is composed of the following five models regarding
the different abstraction levels of the process (see Fig. 1):
- System Requirements Model. The initial part of this model

is similar to other common object-oriented methodologies
(requirements analysis phase), then an agent-based
solution to the problem is drafted by assigning system
functionalities to agents.

- Agent Society Model. This describes the details of the
system solution in terms of agent society concepts like
ontology, communications and roles.

- Agent Implementation Model. The previous models are
used to obtain a detailed description of the agent society
in terms of both structure and behavior that can be used to
produce the code of the system.

- Code Model. In order to streamline and speed up the
development of a new system, code is partially obtained

from the application of patterns. A conventional code
completion activity is then carried out.

- Deployment Model. Mobile agents require that a specific
attention is paid to the specification of their needs in
terms of both software environments (e.g., libraries
available in the host platform), hardware capabilities and
performance (e.g., amount of available network
bandwidth); these are the issues defined in the
deployment model.

Agent Society Model Deployment Model

System Requirements Model

Tasks
Specification

Roles
Identification

Agent Implementation Model

Structure
Definition

Behavior
Description

Code Model

Code
Production

Domain
Ontology

Description
Roles

Description
Protocols

Description

Initial
Requirements

Agents
Identification

Domain
Description

Deployment
Configuration

Multi-Agent
Structure
Definition

Behavior
Description

Single-Agent

Agent
Test

Society
Test

Next Iteration

Code Reuse

Communication
Ontology

Description

Figure 1: The different steps and models of PASSI

2.2. A Statecharts-based simulation methodology for
multi-agent systems

The simulation methodology (Fortino et al. 2005a) is based
on the following three iterable phases: Modeling, Coding and
Simulation of the MAS under-development (see Figure 2).

Modeling

MASDSC

Coding Simulation

C(MASDSC) ResultSet

[new iteration]
Figure 2: The simulation process

The Modeling phase is enabled by the Distilled StateCharts
(DSCs) formalism (Fortino et al. 2004) which supports the
specification of the behavior of the agent types and the
interaction protocols among the agent types of a MAS.
DSCs, were derived from Statecharts (Harel and Gery 1997)
and allow for the specification of the behavior of event-
driven lightweight agents (ELAs) which are single-threaded
entities capable of transparent migration and executing
chains of atomic actions.
The DSC-based specification of a MAS, denoted as
MASDSC, is expressed as MASDSC = {Beh(AT1), …,
Beh(ATn)}, where Beh(ATi) = <SBeh(ATi), EBeh(ATi)> is the
DSC specification of the dynamic behavior of the i-th agent
type. In particular, SBeh(ATi) is a hierarchical state machine
incorporating the activity and the event handling of the i-th
agent type and EBeh(ATi) is the related set of events to be
handled triggering state transitions in SBeh(ATi). In
particular, SBeh(ATi) is designed on the basis of a template
compliant with the FIPA agent lifecycle (FIPA 2001) (see
Figure 3). The Active Distilled StateChart (ADSC), inside
the Active state, is to be refined by the agent designer. The
deep history connector (H*) inside the Active state allows
for agent migration based on a coarse-grained strong
mobility model (Fortino et al 2004).
The Coding (or prototying) phase is supported by the Mobile
Active Object Framework (MAO Framework) (Fortino et al
2004), currently implemented in Java. Given the MASDSC, it
produces C(MASDSC) representing the code of MASDSC.

Beh(ATi) is translated into a composite object, which is the
object-based representation of SBeh(ATi), and into a set of
related event objects of the MAOEvent type which represent
EBeh(ATi).

INITIATED

Top State

ACTIVE

H*Invoke

Execute

Move Wait

Wake_UP

Resume

Suspend

QuitDestroy

ADSC

SUSPENDED

WAITINGTRANSIT

Figure 3: The FIPA-compliant DSC template

The Simulation phase is supported by MASSIMO (Multi-
Agent System SIMulator framewOrk), a Java-based discrete-
event simulation framework for MAS which allows for the
validation and evaluation of:
- the dynamic behavior (computations, communications,

and migrations) of individual and cooperating agents;
- the basic mechanisms of the distributed architectures

supporting agents, namely agent platforms;
- the functionalities and emergent behaviors of applications

and systems based on agents.
In particular the architecture of MASSIMO (Fortino et al
2005b) is composed of four basic layers:
(i) Low-level simulation framework, which provides the
basic classes (Agent, MetaAgent, Message and Timer) and
the discrete-event simulation engine to program and simulate
general purpose agent-oriented systems;
(ii) Agent platform, which is built atop the low-level
simulation framework layer and provides two basic
abstractions: the AgentServer, which represents the
infrastructure where event-driven lightweight DSC-based
agents (ELAs) run, and the VirtualNetwork, which
represents a network of hosts on which AgentServers can be
mapped. AgentServers interact with each other through
signaling messages (MSG).
(iii) ELA adapter, which extends the MAAF (Mobile Agent
Adaptation Framework) (Fortino et al 2004) and allows to
map ELAs, programmed through the MAO Framework, onto
the agent platform layer.
(iv) User, which makes it available two abstract classes
UserAgent and UserAgentGenerator which are extensions of
Agent. UserAgent represents a user directly connected to an
AgentServer who can create, launch and interact with ELAs.
UserAgentGenerator models the generation process of
UserAgents. Moreover, the Start message allows for the
activation of a UserAgent or a UserAgentGenerator, whereas
the Reporting message which targets a UserAgent contains a
report sent from an ELA owned by the UserAgent.
On the basis of MASSIMO, a simulator program can be
implemented and executed to obtain a ResultSet containing
validation traces and performance parameter values. The
validation of agent behaviors and interactions is carried out
on execution traces automatically generated, whereas the
performance evaluation relies on the specific MAS to be
analyzed; the performance evaluation parameters are
therefore set ad-hoc. The ResultSet can notably be used to
feed back the Modeling phase.
2.3. Integrating MASSIMO into PASSI

Although the simulation methodology overviewed in the
previous section could be used to validate the work products
of the system requirements, agent society and agent
implementation phases of PASSI, it is currently used for the
validation of the Agent Implementation Model (AIM).
PASSI is therefore enhanced with a further “step” involving
the simulation of the AIM which must previously be
translated into a MASDSC.
The semi-automatic translation process of the AIM (see Fig.
1) into the MASDSC is carried out as follows:
- The ATs are derived from the agent types of the Multi-

Agent Structure Definition (MASD) through a one-to-one
mapping.

- The interactions in terms of events exchanged between
the ATs are derived from the Multi-Agent Behavior
Definition (MABD).

- The Beh(ATi) ∀i is derived from the SASD (Single-Agent
Structure Definition) and the SABD (Single-Agent
Behavior Definition) of the i-th agent type.

A translation example based on the proposed case study will
be presented in section 3.2. After the simulation phase, the
designers can either proceed with the remaining part of the
PASSI process, if they want to implement the software final
release, or use the results of the simulation to feedback the
System Requirement phase and/or the Agent Society phase.

3. A CASE STUDY

This section shows the application of the proposed approach
to the analysis and design of a Consumer-driven E-
Marketplace (CEM) system. A CEM system is a distributed
software system which provides e-commerce services to
end-users (or consumers) which drive the exchange of goods
within the e-Marketplace. In particular, users according to
their needs, browse the e-Marketplace, search for the
vendors offering a given product, evaluate the vendors’
offers, contract product price with the vendors and, finally,
decide to buy a product from a selected vendor. The payment
phase is supported by an e-cash-based system mediated by a
bank.
In subsection 3.1 PASSI is used to design the CEM.
Subsection 3.2 shows the translation of a single agent
behaviour description into a DSC model. Finally subsection
3.3 shows the simulation phase for a given CEM scenario.

3.1 Designing the CEM system with PASSI

In the following subsections the obtained system
requirements, agent society and agent implementation
models will be described.

3.1.1 The System Requirements Model
The System Requirements Model is a model of the system
requirements in terms of agency and purpose. The
methodology is use case driven and starts with the
requirements analysis, where the designer models the system
as a set of use case diagrams. Some of these diagrams, the
Domain (Requirements) Description diagrams, are drawn to
represent the actors and the use cases identified for the
system. A use case represents a portion of the system
behavior while an actor is an external entity interacting with
the system; we identified the actors User, Vendor and Bank.

In PASSI, each agent receives the responsibility for a part of
the functionalities of the whole system; this is represented in
a use case diagram, called Agent Identification (AId)
diagram, by grouping some of the use cases within a package
and giving it the name of the agent.
Figure 4 depicts the AId diagram for our system which
includes the following identified agents:
- User Assistant Agent (UAA) is associated with a user and
assists her/him in looking for a specific product that meets
her/his needs and buying the product according to a specific
buying policy.

- Yellow Pages Agent (YPA) represents an entry point of the
federated yellow pages service (or “Yellow Pages”) which
provides the location of agents selling a given product.

- Vendor Agent (VA) represents the vendor of specific goods.
- Mobile Consumer Agent (MCA) is an autonomous mobile
agent dealing with searching, contracting, evaluation, and
payment of goods.

- Access Point Agent (APA) represents the entry point for the
e-marketplace. It accepts requests for buying a product from
a registered UAA and fulfils them by generating a specific
MCA.

- Bank Agent (BA) represents a reference bank of MCA and
VA.

In the reported diagram, these agents are displayed as
packages containing the use cases coming from the Domain
(Requirements) Description Diagram that has been omitted
because of space concerns. Each agent is responsible for
accomplishing the functionalities associated with the use
cases included in its package. Because of the specific nature
of this diagram (a functional view), we cannot describe here
agents interactions; this consideration finds an exception in
the communicate relationship substituting the include/extend
relationships occurring between use cases of different agents
(being an agent an autonomous entity, it makes no sense to
design an include dependency between two different ones).

UserAssistantAgent
<<Agent>>

AccessPointAgent
<<Agent>>

MobileConsumerAgent
<<Agent>>

YellowPagesAgent
<<Agent>>

BankAgent

<<Agent>>

VendorAgent
<<Agent>>

Autenticate_User

Evaluate_Offer

Request_an_Offer

Vendors_Search_Engine

Negotiate_Offer

<<include>>

<<include>>

Pay_for_Goods

Search_for_Vendors

<<communicate>>

Login

<<communicate>>

Transaction_Management

<<include>>

<<include>>

<<include>>

User

Validate_User_Request

<<communicate>>

Look_for_goods

<<communicate>>

Vendor_and_Goods_Re

gister_Service

Propose_an_Offer

Vendor

Register_Vendor_Data

<<communicate>>

Bank

Vendor_Management

<<include>>

<<include>>

Supervising_Money_Tra

nsaction

Bank_Transaction

<<include>>

<<communicate>>

Figure 4: The AId diagram for the proposed case study

Once all the use cases have been assigned to agents that will
be responsible for accomplishing them, the designer can
explore the scenarios in which these agents will be involved.
We usually do it with a set of UML sequence diagrams (Role
Identification diagrams); in these diagrams each agent may
be involved in several different activities and may appear
more than once in each scenario playing different roles.

Searcher :

MobileConsumerAgent
UserRequestValidator

AndForwarder : AccessPointAgent

VendorListProvider :
YellowPagesAgent

Contr&Eval :
MobileConsumerAgent

OfferProposer :
VendorAgent

Payer :
MobileConsumerAgent

12: SelectBestOffer

1: ValidateOrder

2: ForwardProductRequest

3: RequestVendorList

4: CreateList

5: ReturnVendorsList

6: * [for each vendor] MoveToVendorLocation
7: SendMeYourOffer

8: GenerateOffer

9: ReturnOffer

10: EvaluationOffer

11: ContactNextVendor

Figure 5: A portion of a RId diagram regarding a specific-
product vendors search scenario

An example of a Role Identification (RId) diagram is shown
in Figure 5 where the APA, playing the role of
UserRequestValidatorAndForwarder, after validating the
order, forwards it to the MCA, playing the Searcher role;
hence the MCA asks for the vendor list to the YPA. Once the
MCA gets the list, it contacts all the VAs and asks them for
their offers.
The initial description of the dynamic behavior of each agent
is the last step of the System Requirements Model. This
phase is performed with a set of Task Specification
Diagrams (one for each identified agent). The Task
Specification Diagram is a UML activity diagram that
represents the agent activity plan using two swim-lanes (see
Figure 6): the right-hand contains a collection of roles
including activities, while the left-hand reports some roles
from other agents involved in interactions with this one; in
this diagram the activities performed by the agent within
each of its roles (Searcher, Contr&Eval, Payer, Reporter)
are hidden.
The example reported in Figure 6, regards the MCA that is
involved in searching the vendors list through a query to the
YPA (Searcher role), then in the contracting and evaluation
phase (Contr&Eval role) with the VA, in buying the product
from the best bidder (Payer role) and in reporting (Reporter
role) the transaction results to the UAA. At this point the
MCA can play again its first role or it can be terminated.

YellowPagesAgent.
VendorListProvider

VendorAgent.
OfferProposer

VendorAgent.Biller

UserAssistantAgent.
ProductBuyer

AccessPointAgent.
UserRequestValidatorandForwarder

Interacting Agents

Searcher

Contr&Eval

Payer

Reporter

Mobile Consumer Agent

Figure 6: The Task Specification diagram for the MCA

3.1.2 The Agent Society Model
The next PASSI model is the Agent Society Model that
represents social interactions and dependencies among
agents involved in the solution. It begins with the ontology
design that is performed in the Domain Ontology
Description (DOD) phase with the use of a class diagram. A
DOD diagram describes the ontology in terms of concepts

(categories, entities of the domain), predicates (assertions on
properties of concepts) and actions (performed in the
domain). This diagram can also be regarded as an XML
schema that can be used to obtain a Resource Description
Framework (RDF) (FIPA 2001; RDF 1999) encoding of the
ontological structure.

OfferPrice

Theproduct : Product

<<predicate>>

RegisterProduct

Actor = VendorAgent
Receiver = YellowPagesAgent

<<act>> Register()

<<action>>

BuyProduct

Actor = MobileConsumerAgent
Receiver = AccessPointAgent

<<act>> Negotiate_and_buy()

<<action>>

Offer

Quantity : int
Price : int
DeliveryDate : Date

<<concept>>
VendorsList

Theproduct : Product

<<predicate>>

Product

Name : String
Type : String
Quantity : int

<<concept>>

TheProduct

TheProduct

11..n 11..n

Vendor

Social_Name : String
Personal_Name : String
Personal_Surname : String
Country : String
Address : String
CAP : String

<<concept>>

1..n

1

1..n

1

Figure 7: A portion of the DOD diagram

Figure 7 shows a portion of the DOD diagram obtained for
the case study, where we can see some of the concepts,
predicates and actions used to define the problem domain.
For instance the Vendor concept (representing the vendor of
the real-world scenario) is related with the Product(s) it sells.
A vendor registers its products in the agent-based yellow
pages service by executing the RegisterProduct action which
is performed by the VA and its outcome received by the
YPA.
The Communication Ontology Description (COD) is a class
diagram that shows all agents and all of their
communications (relationships among agents). This diagram
is drawn starting from the results of the AId phase. A class is
introduced for each agent, and an association is introduced
for each communication between two agents. Obviously,
according to the principles of an iterative/incremental design
process, in further refinement communications can be added,
merged or removed as a consequence of the arising needs.
Being communications a way to exchange knowledge, it is
also important to introduce the proper data structure (coming
from the entities described in the DOD) in each agent in
order to store it. The association line that represents each
communication is drawn from the initiator of the
conversation to the other agent (participant) as can be
deduced from the description of their interaction performed
in the RId phase. Each communication is characterized by
three attributes, (Ontology, Agent Interaction Protocol and
Content Language) which we group into an association class.
This is the characterization of the communication itself and
its name is used to uniquely identify it (this communication
can have, obviously, several instances at runtime).
In Figure 8 an example of COD diagram is reported. It
represents three agents (APA, VA, MCA) and two
communications among them (Forward_Product_Request,
Offer_Request). In particular, the Offer_Request
communication happens when, in the scenario reported in
Figure 5, the MCA asks the VA for the best offer.

Forward_Product_Request

Ontology : BuyProduct

Language : RDF

Protocol : FIPARequest

<<Communication>>

Offer_Request

Ontology : OfferPrice

Language : RDF

Protocol : FIPAQuery

<<Communication>>

AccessPointAgent

UserData

ProductParameters

LoginUser

FindProduct

<<Agent>>

MobileConsumerAgent

ProductParameters

UserData

VendorList

Offer

Bill

FindProduct

CreateVendorList

NegotiateOffer

SendBill

<<Agent>>

UserRequestValidatorAndForwarder

Searcher

VendorAgent

Vendor

Product

Offer

Bill

RegisterProduct

DoTransaction

NegotiateOffer

SendBill

User

UserData

Transaction

<<Agent>>

Contr&Eval OfferProposer

Figure 8: A portion of the COD diagram

This communication refers to the OfferPrice predicate from
the ontology of Figure 7 and adopts the FIPAQuery agent
interaction protocol and the RDF content language.
Roles played by agents during the interaction (as described
in the RId diagrams) are reported at the beginning and the
end of the association line.
As it has already been discussed in previous sub-section,
PASSI roles are initially identified in the AId diagrams.
Their definition is then completed with the Role Description
(RD) diagram that is a UML class diagram in which classes
are used to represent roles; each role uses several elementary
tasks to implement its complex behavior; finally, roles are
grouped in packages representing agents.
The Agent Society Model ends with the Protocol Description
phase which is required only when the FIPA standard
protocols are not sufficient to solve some communication
problem (this is not the case for our case study).

3.1.2 The Agent Implementation Model
The Agent Implementation Model is a model of the solution
architecture. It is composed of two different phases, each
performed at both the multi- and single-agent level of
abstraction. The multi-agent level deals with the agent
society and reports low details about agent implementation;
however, it fittingly documents the overall structure of the
system (behaviors of each agent, communications, etc.).
The single-agent level of abstraction focuses on the
implementation details of each agent and specifies whatever
is needed in order to prepare the coding phase.
The two phases that are performed at the multi- and single-
agent levels are:
o Agent Structure Definition (ASD); that uses

conventional class diagrams to describe the structure of
solution agent classes;

o Agent Behavior Description (ABD); that uses activity
diagrams or state-charts to describe the behavior of
individual agents.

In the Multi-Agent Structure Definition (MASD) diagram,
automatically generated by the PTK tool on the basis of the
previous diagrams, the focus is on the general architecture of
the system. The MASD diagram is an overview of the multi-
agent system from the structural point of view. In this
diagram, agents are represented as classes with their
behaviors in the operation compartment and attributes
specifying the agent knowledge.

AccessPointAgent

UserData

ProductParameters

LoginUser

FindProduct

ValidateAndForwardUserRequest()

ValidateAutentication()

<<Agent>>

MobileConsumerAgent

ProductParameters

UserData

VendorList

Of f er

Bill

FindProduct

CreateVendorList

NegotiateOf f er

SendBill

Searching()

Contr&Ev al()

PayFor()

Reporting()

<<Agent>>VendorAgent

Vendor

Product

Of f er

Bill

RegisterProduct

DoTransaction

NegotiateOf f er

SendBill

User

UserData

Transaction

ProposeOf f er()

Billing()

RegisterData()

<<Agent>>

Vendor

Figure 9: A portion of the MASD diagram

In Figure 9 we report the portion of the MASD describing
the structure of the VA, MCA and APA agents. It is worth to
note that the VA is in relationship with an (human) actor;
this is an extension of UML that we consider useful to
represent in a unique diagram all the agents relationships
(communications and GUI-based interactions with the user).
The agent behavior at the multi-agent level is described by
the Multi-Agent Behavior Description (MABD) diagram.
This is a UML activity diagram used to illustrate the
dynamics of the system during the agents’ lifecycle. In the
diagram, the involved agents and their tasks are represented
with swim-lanes, while operations are displayed as activities.
In this diagram, transitions among activities represent events
like method invocations (if relating activities in the same
swim-lane), new behavior instantiations/invocations (if
relating activities of the same agent but in different swim-
lanes) or messages (if activities from two different agents are
involved). Figure 10 reports a portion of the obtained MABD
diagram which illustrates the activities occurring during the
Request communication between MCA and YPA and the
Query communication between MCA and VA. In particular,
it describes the request of the vendors list from the MCA to
the YPA; then, the MCA moves to the VA location and
begins the contract phase by asking for an offer which is
soon after evaluated.

Request_VAList

MoveToVendor
Location

Process_YPA_
Reply

[Contracting]

MobileConsumerAgent. Searching

Create_and_
Return_List

(Request; VendorsList; RDF)

(Inform; VendorsList; RDF)

YellowPagesAgent.
ProvideVendorsList

Request_An_Offer_
From_VATarget

Evaluate_
VAOffer

MobileConsumerAgent.Contr&Eval

GenerateOffer

(Query; OfferPrice; RDF)

(Inform; OfferPrice; RDF)

VendorAgent.ProposeOffer

...

Figure 10: A portion of the MABD diagram with some
interactions among MCA, YPA and VA

Although this representation is very useful and gives a
complete overview of the MAS, it is not sufficient to detail
the algorithm implemented in each of the agents within the
activities. This further refinement step is usually done at the
single-agent level through the Single-Agent Behavior
Description, which is an activity diagram in which the
swimlanes represent the tasks performed by the agent during
its lifecycle. Figure 11 shows the general SABD of the
MCA, which should be self-explanatory.
This is the point where we should consider whether to
implement the system or to simulate it. For simulation
purposes, we have to translate the SABD of each agent into a
DSC. In the next subsection we therefore use the DSC
formalism to detail the SABD of a specific MCA.

MoveTo_Next_
YPATarget

Request_VAList

Process_YPA_
Reply

MobileConsumerAgent.
Searching

Request_An_Offer
_from_VATarget

Evaluate_
VAOffer

MobileConsumerAgent.
Contr&Eval

MoveTo_Next_
VATarget

Pay_VATarget_
ForProduct

MobileConsumerAgent.
PayFor

MoveTo_VATarget_
Location

MoveTo_APA_
Location

ReportTo_UAA

MobileConsumerAgent.
Reporting

[Searching] [Contracting]

[Reporting]

[Contracting]

[BuyingSoon]

[MovingAndBuying]
[Reporting]

Figure 11: The SABD diagram for the MCA

3.2. The DSC-based SABD of an MCA

On the basis of the SABD shown in Figure 11, two types of
DSC-based MCA have been implemented: (i) Itinerary
Consumer Agent (ICA), which performs the Searching and
Contr&Eval phases by sequentially moving from one
location to another within the e-Marketplace; (ii) Parallel
Consumer Agent (PCA), which performs the Searching and
Contr&Eval phases by means of a set of parallel mobile
agents called workers (Fortino et al. 2005a).
Figure 12 shows the ADSC (see section 2.2) of the ICA
obtained from the SABD of the MCA (see Fig. 11) and from
the MABD (see Fig. 10).

SEARCHING

ANALIZE

WAIT4LIST

SEARCH

 / ac1; ac2

SQuery / ac3

VALISTINFORM / ac4

SQuery / ac3

PAYFOR

PAID

PAYING

/ ac7

PAYFORINFORM / ac8

CONTR&EVAL

EVALUATE

WAIT4PRICE

/ ac5

OFFERPRICEINFORM / ac6

Contract

Pay

SReport / ac9

REPORTING

NotifyUA / ac10

C
o

n
tr

ac
t

/
ac

5

SEARCH&BUY

UReport / ac9

ac1 : nextYPA=0;
ac2 : YPATarget=(MAOId)ypaList.elementAt(nextYPA++);
 generate(new Move(self(), YPATarget.getCurrLocation()));
 generate(new SQuery(self()));
ac3 : generate(new VALISTREQUEST (self(), YPATarget, vaListQuery));
ac4 : VALISTINFOR M reply = (VALISTINFORM)mevent;
 Proc proc = processYPAReply(reply);
 if (proc.continueSearching()) ac2();
 else if (proc.noVendors()) sa2();
 else { nextVA=0; sa1(); }
sa1 : VATarget=(MAOId)vaList.elementAt(nextVA++);
 generate(new Move(self(), VATarget.getCurrLocation()));
 generate(new Contract(self()));
sa2 : generate(new UReport(self()));
ac5 : generate(new OFFER PRICE QUERY (self(), VATarget, priceQuery));
ac6 : OFFER PRICE INFORM offer = (OFFER PRICE INFORM)mevent;
 Eval eval = evaluateVAOffer(offer);
 if (eval.buySoon()) generate(new Pay(self()));
 else if (eval.moveAndBuy()){
 generate(new MAOMove(self(), VATarget.getCurrLocation()));
 generate(new Pay(self()));}
 else if (eval.noBuy()) sa2();
 else sa1();
ac7 : bills = prepareBills(price); generate(new PAYFORREQUEST (self(), VATarget, bills);
ac8 : nbills = nbills – eval.price(); generate(new SReport(self()));
ac9 : generate(new Move(self(), self().getHomeLocation()));
 generate(new NotifyUAA(self()));
ac10: reportTransactionResult();

Figure 12: The ADSC of the ICA
In the ADSC of the ICA the events, which can be internal
(i.e. self-driving the agent behavior) or external (i.e.

targeting another agent), are generated through the primitive
generate(<mevent>(<param>)), where mevent is an event
instance and param is the list of formal parameters of
mevent. In addition, events are asynchronously received and
processed according to a run-to-completion semantics (i.e.
an event can be processed only if the processing of the
previous event has been fully completed) (Fortino et al.
2004).
The names of the composite states of the ADSC corresponds
to the names of the tasks of the MCA shown in the related
SABD. For the sake of modularity the SEARCHING and
CONTR&EVAL states are embodied into the SEARCH&BUY
state.
The activities reported in the SABD are implemented by the
action chains of the ADSC; the association between
activities and action chains is reported in Table 1.

Table 1: Association between the SABD activities of the
MCA and the ADSC action chains of the ICA

SABD ACTIVITY ADSC ACTION CHAIN
MoveTo_Next_YPATarget ac1, ac2
Request_VAList ac3
Process_YPA_Reply ac4
MoveTo_Next_VATarget sa1
Request_An_Offer_From_VA_Target ac5
Evaluate_VAOffer ac6
MoveTo_VATarget_Location ac6
Pay_VATarget_ForProduct ac7, ac8
MoveTo_APA_Location ac9
ReportTo_UAA ac10

The messages that the MCA exchanges with the YPA, VA,
and UAA agents during its lifecycle, reported in the MABD,
are implemented through external events in the ADSC; the
association between messages and events is reported in
Table 2 for the interactions with YPA and VA.

Table 2: Association between the MABD messages of the
MCA and the ADSC events of the ICA

MABD MESSAGE SENDERRECEIVER ADSC EVENT
(Request, VendorsList, RDF) MCA  YPA VAListRequest
(Inform, VendorsList, RDF) VA  YPA VAListInform
(Query, OfferPrice, RDF) MCA  VA OfferPriceQuery
(Inform, OfferPrice, RDF) VA  MCA OfferPriceInform
(Request, Payment, RDF) MCA  VA PayForRequest
(Inform, Payment, RDF) VA  MCA PayForInform

3.3. Simulation Phase

The simulation phase, supported by MASSIMO, allows for
the validation of the system’s requirements, the behavior of
each agent type and the related agent interactions, and the
evaluation of two specific performance indexes:
- the Buy Task Completion Time (TBTC), which is defined as

TBTC=TCREATION-TREPORT where, TCREATION is the creation
time of the MCA and TREPORT is the reception time of the
MCA report;

- the Probability of Successful Buy (PSB), which is defined
as the probability of successfully buying a desired product
within the e-Marketplace.

In particular, the simulation scenario was set up as follows:
- Each stationary agent (UAA, APA, YPA, VA, BA)

executes in a different agent server.
- Agent servers are mapped onto different network nodes

which are completely connected through links having the

same characteristics and modeling the communication
delay (δ) as a lognormally distributed random variable.

Moreover, to compare the simulation results obtained for the
evaluated performance indexes with the results of well
defined analytical models, the simulated e-marketplace was a
quite simple e-marketplace in which we supposed that each
VA is reachable from any YPA and sells the same set of
products, each product is always offered by a VA at a fixed
price, which is an integer number uniformly distributed
between a minimum (PPMIN) and a maximum (PPMAX), and
the user is willing to pay, for a desired product, a maximum
price PMAX, which is an integer value between PPMIN and
PPMAX.
Given the above described scenario, the evaluation of the
TBTC performance index is focused on an MCA adopting a
searching policy (SP) of the ALL type and a buying policy
(BP) of the MP type (see Table 3), moreover it is supposed
that PMAX=PPMAX so always guaranteeing a successful
purchase at the best price.
The results, obtained adopting a YPA organization in which
the YPAs are logically connected as a binary tree, are
reported in Figure 13 with NYPA={10, 100} and varying NVA,
where NYPA is the number of the YPA agents and NVA is the
number of the VA agents. The simulation results agree with
the results obtainable applying the analytical model reported
in (Wang et al. 2002) and confirm that the PCA, due to its
parallel dispatching mechanism, outperforms the ICA when
NVA increases.

Table 3. Searching and Buying Policies of MCA.
SEARCHING POLICY (SP)

ALL All YPA agents are contacted
PA-PARTIAL A subset of YPA agents are contacted
OS-ONE-SHOT Only one YPA agent is contacted

BUYING POLICY (BP)
MP-Minimum Price The MCA first interacts with all the VA agents;

then, it buys the product from the VA offering
the best acceptable price

FS-First Shot The MCA interacts with the VA agents until it
obtains an offer for the product at an
acceptable price, then it buys the product

FT-Fixed Trials The MCA interacts with a given number of VA
agents and buys the product from the VA which
offers the best acceptable price

RT-Random Trials The MCA interacts with a random number of
VA agents and buys the product from the VA
which offers the best acceptable price

On the basis of the assumptions made for the simulated e-
marketplace, PSB can be easily calculated as follows:
PSB =1-[(PPMAX-PMAX)/(PPMAX -PPMIN+1)]V, where: V is the
number of VA agents contacted by the MCA for buying the
product, PPMAX-PMAX represents the number of prices that
exceed PMAX (i.e. that are not acceptable for the user),
whereas PPMAX -PPMIN+1 represents the number of all the
possible prices for the product. V depends on the BP adopted
by the MCA; in particular: if BP is of the MP type or of the
FS type V=NVA; if BP is of the FT type V is VFT=NVA/2+1 as
in the simulations the MCA always performs NVA/2+1 trials;
if BP is of the RT type V belongs to the range [1..NVA].
The values of PSB calculated both analytically and through
simulation for each defined BP and with PPMAX=200,
PPMIN=100, PMAX=PPMIN, and NVA=100, are reported in
Figure 14. It is worth noting that the analytical value for
BP=RT is calculated by using the mean value of the uniform
distribution defined in the range [1..NVA].

1

10

100

1000

10000

100000

10 100 1000 10000

N VA

T
B

T
C

 [
t.

u
.] ICA with N YPA=100

PCA with N YPA=100

ICA with N YPA=10

PCA with N YPA=10

Figure 13: Evaluation of TBTC for an MCA with SP=ALL,

BP=MP, NYPA ={10, 100} and variable NVA

0,00
0,05
0,10
0,15
0,20
0,25
0,30
0,35
0,40
0,45
0,50
0,55
0,60
0,65
0,70
0,75
0,80
0,85
0,90
0,95
1,00

MP FS FT RT

BP

P
S
B Analytical

Simulation

Figure 14: Evaluation of PSB for the defined BPs with
PPMAX=200, PPMIN=100, PMAX=PPMIN, and NVA=100

4. CONCLUSION

This paper has proposed and exemplified through a case
study an agent-oriented simulation-driven development
process obtained by enhancing PASSI with a simulation step
based on a simulation methodology centered on Distilled
Statecharts and related tools. The resulting process
represents a novel contribution to the AOSE research area as
it is a new tool which promotes experimenting with the
design and the simulation of complex MASs to support the
development of higher-quality agent-based software systems.
Currently our research efforts are geared at applying the
simulation-driven development process for the construction
and analysis of self-organizing MASs.

REFERENCES

Christie, A.M. 1999. "Simulation - An Enabling Technology in

Software Engineering". Technical Article, The Software
Engineering Institute (SEI), Carnegie Mellon University.

 http://www.sei.cmu.edu/oublications/articles/christie-apr1999/christie-
apr1999.html

Cossentino, M. 2005. “From Requirements to Code with the PASSI
Methodology”. In Agent-Oriented Methodologies, B. Henderson-
Sellers and P. Giorgini (eds). Idea Group Inc., Hershey, PA,
USA.

Fortino, G.; A. Garro; and W. Russo. 2005. “An Integrated
Approach for the Development and Validation of Multi Agent

Systems”. In Computer Systems Science & Engineering, 20(4),
pp. 94-107, CRL Publishing Ltd., Leicester (UK), Jul.

Fortino, G.; A. Garro; and W. Russo. 2005. “A Discrete-Event
Simulation Framework for the Validation of Agent-based and
Multi-Agent Systems”. In Proc. of the Workshop on Objects and
Agents (WOA’05), Camerino (Italy), Nov 14-16.

Fortino, G.; W. Russo; and E. Zimeo. 2004. “A Statecharts-based
Software Development Process for Mobile Agents”. In
Information and Software Technology, 46(13), pp.907-921,
Elsevier, Amsterdam, The Netherlands.

FIPA (Foundation for Intelligent Physical Agents). 2001. FIPA
RDF Content Language Specification. Foundation for Intelligent
Physical Agents, Document FIPA XC00011B (2001/08/10).

 http://www.fipa.org/specs/ fipa00011/XC00011B.html
Gardelli, L.; M. Viroli; and A. Omicini. 2005. "On the Role of

Simulation in the Engineering of Self-Organising Systems:
Detecting Abnormal Behaviour in MAS”. In Proc. of Workshop
on Objects and Agents (WOA’05), Camerino (Italy), pp. 85-90.

Harel, D. and E. Gery. 1997. “Executable Object Modelling with
Statecharts”. IEEE Computer, 30(7), pp. 31-42.

Luck, M.; P. McBurney; and C. Preist. 2004. "A Manifesto for
Agent Technology: Towards Next Generation Computing".
Autonomous Agents and Multi-Agent Systems, 9(3), pp. 203-252.

Martelli M.; V. Mascardi; and F. Zini. 1999. “Specification and
Simulation of Multi-Agent Systems in CaseLP”. Proc. of Appia-
Gulp-Prode Joint Conf. on Declarative Programming, L'Aquila,
Italy. M.C. Meo and M. Vilares-Ferro (eds), pp. 13-28.

Mayrhauser, A. 1993. "The Role of Simulation in Software
Engineering Experimentation". H. Dieter Rombach, Victor R.
Basili, Richard W. Selby (eds.): Experimental Software
Engineering Issues: Critical Assessment and Future Directions,
Proc. of International Workshop Dagstuhl Castle, Germany,
September 14-18, 1992, Lecture Notes in Computer Science 706
Springer.

RDF (Resource Description Framework). 1999. Model and Syntax
Specification. W3C Recommendation. 22-02-1999.

 http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
Rohl, M. and A.M. Uhrmacher. 2004. "Controlled Experimentation

with Agents - Models and Implementations" In Proc. of 5th Int’l
Workshop Engineering Societies in the Agents World, Toulouse
(France), Oct 20-22.

Sarjoughian, H.S.; B.P. Zeigler, and S.B. Hall. 2001. "A Layered
Modeling and Simulation Architecture for Agent-based System
Development". Proceedings of the IEEE, 89 (2), pp. 201-213.

Sierra, C.; J. A. Rodríguez-Aguilar, P. Noriega, M. Esteva, and J.L.
Arcos. 2004. Engineering Multi-agent Systems as Electronic
Institutions. Novática, 170.

Uhrmacher, A.M. 2002. "Simulation for Agent-Oriented Software
Engineering". In Proc. of 1st Int’l Conference on Grand
Challenges for Modeling and Simulation, San Antonio (TX),
USA, Jan 27-31.

Wang, Y.; K-L. Tan; and J. Ren. 2002. “A Study of Building
Internet Marketplaces on the Basis of Mobile Agents for Parallel
Processing”. World Wide Web: Internet and Web Information
Systems, 5(1), pp. 41-66.

Wooldridge, M. 2002. An Introduction to MultiAgent Systems. John
Wiley & Sons Ltd.

Zambonelli F. and A. Omicini. 2004. "Challenges and Research
Directions in Agent Oriented Software Engineering,"
Autonomous Agents and Multi-Agent Systems, 9(3), pp. 253-
284.

