

Abstract - In this paper a design process for agent
oriented software design is presented that uses the
Unified Modeling Language. It starts with use-case
diagrams in which at a certain level of abstraction some
use-case are identified with agents (agents identification
phase). Then the structure of the agents is designed in a
class diagram. Each class in this diagram contains all the
methods that the following description of the agents’
behaviors phase proves necessary. These two phases are
iterated to introduce all the behaviors. The whole process
can be repeated until all the requirements have been
implemented.

I. INTRODUCTION

In the last years there has been a great increase in
the number and dimension of agent-based software.
Problems that proved difficult to be managed with
traditional object oriented solutions have been
successfully solved with agents.

We can, unfortunately, observe that instead of such
encouraging results i n application, the design and
developing techniques are slowly growing. Many
authors have given very interesting contributes to the
argument ([1], [2], [3], [4], [5], [6]) but the discussion
is still opened.

In this paper, we look at multi-agent systems and
propose a design method that is based upon the well
known UML (Unified Modeling Language). We have
chosen this language primarily because it is widely
accepted both in the academic and industrial worlds
and secondarily because it has some extension
possibilities (constraints, tagged values and
stereotypes) that permits us to better fit the
requirements of an agent-oriented design. These
extensions proved useful when we had to face some
agent specific aspects of the design and helped us to
solve some of the problems. Moreover we think that
specifically agent-oriented UML extensions are needed
and we make a proposal that we compare with the
ideas of other authors. In the discussion of our
approach we also identify some strategy of use (and
therefore of design) for an agent dedicated UML
CASE tool.

II. THEORETICAL BACKGROUND

UML is a language that can be used to analyse,
specify, construct and document a software artefact. It
is not conceived to support a specific design process
even though some of the most important contributors
to its growth, in the past, have developed well-known

 The authors are with the Dipartimento di Ingegneria Automatica ed
Informatica of the University of Palermo, Italy.
 E-mail: {maxco, chella, lofaso}@unipa.it

methodologies (Booch’s OOADA, Jacobson’s OOSE,
Rumbaugh’s OMT and others).

Several different kinds of diagram permits to deal with
the different aspects of the object oriented software design.

The use-case diagrams represent the interactions of the
entities which are external to the system (called actors)
with the system itself which is represented through its
functionalities (called use-cases). These diagrams are often
used in the analysis phase.

The structure of the system can be depicted through the
class diagram in which classes (entities of the system) and
their relationships are shown. Classes could contain
attributes and methods (addressing the behaviour of the
system).

The system’s dynamic behaviour can be described
using several different diagrams: collaboration, sequence,
state and activity diagrams. Collaboration and sequence
diagrams give a different point of view of the same
scenario. Scenarios are paths around use-cases illustrating
one of the possible behaviour of the software. In
collaboration diagrams the attention is focused upon the
message exchanged between the entities; the diagram well
illustrates the communication aspect (who sends
something to someone else). Sequence diagrams again
show messages but arranged in time order (showing when
a message is sent). Traditional finite state and activity
diagrams (in which transitions are triggered by the
completion of the activities to be performed in each state)
can be used to describe a certain procedure or the life of a
class.

Some coding aspects can be detailed in the component
diagrams in which classes are associated with components
(executables, libraries, ...) that will be created. At last, in
the deployment diagram processes and nodes (execution
units or other devices) can be defined together with their
connections.

III. DESIGNING AGENT BASED SOFTWARE

Many authors agreed that agent oriented software can
be profitably used in order to solve complex problems
[17], [18]. In such a context, designers usually face some
specific aspects:

a) a complex problem will probably lead to a multi
agent solution in which communication (and
collaboration) between agents is a strategical
issue;

b) it is also possible that different parts of the system
will run on different elaboration units;

c) the resulting system is quite complex and a
rigorous design method has to be pursued also in
order to obtain a flexible, efficient architectural
structure (probably hierarchical [6]) .

Designing agent-based systems with UML

Massimo Cossentino, Antonio Chella and Umberto Lo Faso,

Fig. 1. Iterations in the AODPU (Agent-Oriented Design Process
with UML)

We will particular deal with “distributed problem
solving system” [8] in which system components are
expected to cooperate to achieve the system goal. In
“open systems” we should also take into account the
arrival of external self-interested agents that could
interact with the others; obviously this situation may
need a different approach and we will not consider this
eventuality.

In drawing a model of a software the designer has
the possibility to look at implementation at different
levels of details. In [21] Robbins et al. define the
fidelity of the model as the distance between the model
and its implementation. Low fidelity models result in a
problem-oriented description while high fidelity
models are more solution-oriented.

In our approach we aim at drawing a model
belonging to the second category; starting from the
problem description (that gives places to a not detailed,
low fidelity model) we will iterate and arrive to a
precise high fidelity description of the system
implementation.

IV. AN OVERVIEW OF THE AODPU

We can divide the traditional software development
process in two fundamental steps: the analysis phase in
which system requirements are to be captured and the
design phase where the identified system
functionalities are implemented. In other words, while
in the system analysis phase we focus on “what”, in the
implementation phase we focus on “how”.

Dealing with the design of agent based software,
we propose a slight different approach: the AODPU
(Agent-Oriented Design Process with UML). We mix
the two phases together basing our idea on the fact that
the use-case diagram (probably the most significant
step of the analysis phase) can properly represent
agents and their behaviour (implementation aspects of
the design).

Iteration allows successive refinement of the
system both from the functional and the
implementation point of view. In fact, in several cases,
we have realised that a linear development process is
not sufficient in order to solve complex problems and
that some iterative procedures is needed [7].

In order to deal only with one of the possible
iterations we will proceed as follows (see fig.1):

a) Identification of the agents. A functional
description of the system is provided through

an hierarchical series of use-case diagrams. The
first diagram (we could consider it as some kind
of ‘context’ diagram) will only represent one use-
case (the system), some actors in the environment
and any external entity interacting with the
system. Other use-case diagrams will give more
details on the system. As we will see later, in
these diagrams the functions of the system and
the agent-based solution will be formalised
having in mind the correspondence between use-
cases and agents that is demonstrated in the
following paragraph [20].

b) Definition of the agents’ structure. In the use-
case diagrams some agents are identified and
their roles are described (each agent can play a
certain role during his interactions with the
others; this role can also be depicted through the
involved relationships). At this point of the
process, a specification of the structure of each
agent can be provided through a class diagram in
which the methods of each class correspond to
the subtasks that each agent is able to perform.
Each agent can play his own role in the system
organisation using his own methods and
interactions with other agents [8]. In the class
diagram the various kinds of interactions can be
introduced and typed.

c) Description of the behaviours. We can describe
the scenarios relative to the use-cases diagrams
using some sequence diagrams: by this way we
can also detail the agents’ behaviour taking into
account the time variable that is one of the key
factors in real-time problems (for example in
robotics). Similarly, we can describe the
cooperation between agents in a scenario by the
collaboration diagram.
Using activity diagrams we can clearly show the
contemporaneous actions of the various agents
that cooperate to achieve the system goal. We can
describe ‘what’ each agent is able to do, his
behaviour and his interaction with the
environment and/or the other agents.

We see the “agent structure identification” and the
“behaviour description” as mutually dependent and
cyclically performed to define agent implementation.

At the end of this process all the requirements are fixed
(for this iteration) and the implementation can start.

A. Identification of the agents
The first step in this phase is the identification of the

entities external to (and, somehow, interacting with) the
system.

From this analysis we will draw a context diagram in
which the system will be represented within its own
application environment; this description can be helpful
when focusing the interactions between the system and the
external world.

The following steps detail the previous description
further more. We can stop this process when the use-cases
depict precise roles each of which can be assigned to a
single agent.

We think that the use-case diagram is useful to
describe the agent system from a social point of view

Fig. 2. An use-case diagram of a simple football player robot

because it “shows actors and use-cases together with
their relationships”[9]. We will show that, in our
approach, use-cases at a certain level of abstraction can
represent agents while actors can represent external
entities (environment, other interacting software
systems, users, …).

In order to illustrate our idea clearly, it is worth to
declare the definitions of agent and of use-case that we
have in mind:

“An agent is an encapsulated computer system that
is situated in some environment and that is capable of
flexible, autonomous action in that environment in
order to meet its design objectives”[1].

In the UML standard [9], about a use-case we can
find that:

“A use case is a kind of classifier representing a
coherent unit of functionality provided by a system, a
subsystem, or a class as manifested by sequences of
messages exchanged among the system and one or
more outside interactors (called actors) together with
actions performed by the system.”

Using these two definitions we will try to establish
a precise correspondence between use cases and agents
and between the environment and the “outside
interactors”.

First of all, we have seen that an agent “is capable
of flexible, autonomous action” then we can describe
this through a use case that represents “a coherent unit
of functionality”. In so doing we represent the
vocational behaviour of an agent with the use case
illustrating his role.

Other important elements to deal with are agent’s
interactions; these interactions (with the real world and
other agents) together with the agent design objectives,
obviously, determine his own behaviours.

In the use case diagram these interactions can be
related to the “messages exchanged”. UML defines
several kinds of standard relationships: association,
extend, generalization, include. Other types can be user
defined in order to fit the design needs.

With regards to the environment in which the agent
is operating we can represent it as an actor that in UML
“defines a coherent set of roles that users of an entity
can play when interacting with the entity” [9]. In fact
we can think that external stimuli give the agent the
reason to perform a certain behaviour. Moreover we
have already seen that the use case diagram definition
refers to “one or more outside interactors (called
actors)”.

Now we could also identify as actor any agent who
triggers some behaviour in another agent.

Fig. 3. Communications via a dashboard system

On this assumption however, we should proceed warily
because about actors in the UML definition we can also
find that “Actors model parties outside an entity, such as a
system, a subsystem, or a class, which interact with the
entity…” and therefore it’s likely that this identification
could be rightful (and useful) only in a specific moment of
the life of the system (for example a scenario involving
many use cases).

According to our experience, in agent software design
it’s often better to model agents internal to the system as
use cases and all other external entities as actors.

This idea starts also from this sentence: “Since an
actor is outside the entity, its internal structure is not
defined but only its external view as seen from the
entity”[9].

This argumentation brings to well known and
interesting considerations about action and intention (see
[10], [11]).

Representing agents as use cases, external entities and
environment as actors and interactions among agents with
relationships we can fully describe our system from a
functional, external point of view. We can also observe
that this representation (from the implementation aspect)
is:
a) structural because it gives evidence of the agents

involved, of their relationships and of the type of
relationships to be supported in the following steps
(this is not different from the UML rigorous
definition of the use case diagram because in our
approach each use case that is still a functional aspect
of the system represents an agent that will be
implemented in the following steps becoming a
structural element).

b) static because it doesn’t clearly represent the
dynamics of the interactions by which the agents
achieve their scope (this description can be provided
by the exploration of the possible scenarios);

B. Definition of the agents’ structure
We will now define each agent as a class and will place

it in a class diagram with his relationships with the other
parts of the system.

In this step of the design we must be aware of the
difference between agent based software and conventional
object-oriented software.

This difference pertains not only to the discretional
behaviour of an agent but particularly to his
communicative possibilities.

In the previous phase we have spoken of some kind of
relationships between the agents of our system: these
relationships can be supported by the architecture that we

Fig. 4. An example of a scenario involving various agents

are going to establish in this phase. We should expect
to find relationships supporting method invocations,
event reactions, interactions among different agents
[12].

Interactions are very important because can give
place to the birth of an agent society. One of the most
common way of implementing this feature is the
publication/ subscription method. In the UML class
diagram, two classes can be related through a
“Subscribe” relationship that just denotes that “objects
of the source class (called the subscriber) will be
notified when a particular event has occurred in
objects of the target class (called the publisher)”.

Obviously it is also likely to find “use” or
“communicate” relationships.

Note that in common object oriented programming,
to each message corresponds one action (method
invocation mechanism, cardinality one to one); this is a
very poor situation if we want to implement an agent
society.

Many agent environments (for example Ethnos:
[22], [23]) support a one to many communication
paradigm through the publication/ subscription
method. Each agent subscribes the kind of messages he
is interested in. When an agent has an information to
communicate to the other agents who are interested, he
publishes it and the others will read it from an
interchange area (for example a dashboard system).

Looking at this architecture from a low level point
of view we can see that each agent will perform a
method invocation (the publisher to the dashboard and
the reader also to the dashboard) but the cardinality of
the communication is turned to one-many.

Consider the use case diagram of fig. 2 describing a
simple football player robot.

In this schema the ‘Vision’ agent communicates to
the ‘FootballPlayer’ through a simple method
invocation. It calls a method to update the
‘FootballPlayer’ agent knowledge.

In the example of fig. 3, the same communication is
performed via a dashboard.

Note that the communication starts from Vision and
arrives to FootballPlayer. As already seen, this
information exchange is performed through two
method invocation: Vision use a post method of
Dashboard and FootballPlayer use a read method of the
same Dashboard.

If another agent (i.e. MovementCtrl) is interested in
this message can read it too.

We can also discuss about the differences of this two
types of communication from an execution time point of
view but this is not the aim of this paper.

At this point indeed we have few elements to fix the
internal structure of each agent. By now we can only
create one class for each agent.

To complete the structure of each class we need a
complete description of the scenarios depicting each use
case (and therefore each agent behaviour). The importance
of scenarios in requirements definition and modelling has
been discussed by several authors (see [13] for a brief
overview, other hints in [14], [15], [16]) and we will not
go further on into this argument.

C. Description of the behaviours
The behaviour of the agents has to be captured in the

various paths that can be identified in the use case
diagram. In the description of these paths (scenarios) we
will identify each agent’s capability.

To proceed to the identification of a scenario we first
have to formally define what is it. A scenario is “a specific
sequence of actions that illustrates behaviors. A scenario
may be used to illustrate an interaction or the execution of
a use case instance”.

Looking at this definition from the agent design point
of view, in the diagram of fig. 3 we can identify and
describe the following scenario:

“the Vision agent identifies the ball at a certain
position and publishes a message to the dashboard. The
FootballPlayer reads this message and decides to go
towards the ball; then he orders to the movement control
agent (MovementCtrl) to direct the robot towards a
certain point.”

Note that we have fixed a series of conditions, events
and agents’ choices generating this specific scenario. A
different hypothesis has to be modelled in alternative
scenarios: this also produces evidence for the
nondeterministic nature of agent based software.

This scenario walks through several use cases and
involves the participation of an actor. This is in accordance
with the UML definition and is particular useful to
describe the agent society interactions.

To design it we can use various diagrams: state/activity
diagrams (showing the flow of processing, particularly
useful to illustrate the concurrent execution of different
tasks), sequence diagrams (showing the chronological
series of communications), collaboration diagrams
(showing the interactions between the agents/classes).

Sequence and collaboration diagrams are called
‘interaction’ diagrams because they show interactions
between different parts of the system. In the sequence
diagrams interactions are performed among instances
through stimuli arranged in time sequence. Associations
among these objects are not put into evidence in these
diagrams: conversely, they are shown in the collaboration
diagrams. In the following we will use the sequence
diagram which is more indicated to deal with real-time
systems for its time based ordering.

We can now illustrate the scenario previously seen by a
sequence diagram (see fig.4).

In designing this diagram we use also the class diagram
proceeding as described below. The agent Vision can post
his message only if the agent Dashboard has the method

Fig. 5. The class diagram of the system

PutMsg. Then we have to:
a) create the two classes in the class diagram,
b) relate them with a relationship showing their

interaction,
c) add the “PutMsg” method to the Dashboard

class,
d) introduce the message “PutMsg” in the

sequence diagram.
Both the structures of our agents (their methods and

relationships as depicted in the class diagram) and the
descriptions of their predicted behaviours grow
together. This is one of the central ideas of our design
process.

During this discussion we have thought had in our
mind (but not talked about) the use of an UML CASE
tool to design the software. At this stage, some
requirements could be drawn for this tool too. To
support this procedure the CASE tool should permit us
to use method invocation as messages in the sequence
diagram (this functionality is supported by several
tools). The resulting class diagram is shown in fig. 5.

UML provides some possibilities for the software
development process (entity, control, boundary, …)
but none of them models the specific characteristics of
an agent. For this reason we are used to define an
“agent” stereotype.

What kind of stereotype is able to distinguish these
classes? In the analysis phase three standard class
stereotypes are provided by UML: entity (a passive
class), control (it controls interactions between
collections of objects) and boundary (it is on the
boundary of the system and interacts with outside
actors). No standard stereotypes are provided for
design classes.

In our system, classes represent agents and in this
perspective, it is not possible to model them as entity
class. Our aim is to put into evidence that classes are
active. For this reason we often define them with the
user-defined ‘agent’ stereotype.

About control and boundary class we think that
they should be deeper detailed by the ‘agent’ postfix
(i.e. ‘control agent’, ‘boundary agent’).

Considering that Vision class is directly connected
with an actor external to the system it could be
considered as a ‘boundary agent’ class; note that its
BallAcquire method is not really invoked by the Ball
actor but it is his autonomous behaviour (probably
invoked by the agent operating system).

In some specific application environment we can

a) b)

Fig. 6. Two different proposals for an extension of the sequence diagram
notation

also further detail this stereotype introducing some time-
related activation particular (for example: periodic,
aperiodic, background).

Supporting Concurrency
Agent based software often comprehend concurrent

operations that are not yet supported by UML standard
sequence diagram. The OMG Agent Work Group is still
working upon this and several other proposals of extension
to UML [18].

J. Odell proposes to extend the sequence diagram
notation in order to support concurrent communications
through various techniques [19]. The diagram in fig. 6,a
shows a proposal of these.

In this example the first agent originates three different
concurrent communications to the second agent who plays
three different roles (or responds to three different
communications). Other suggested extensions provide a
decision box and an exclusive or.

This notation, in our opinion, is not coherent with the
nature of a sequence diagram. In the definition of the
UML sequence diagram we can found that: “A sequence
diagram shows an interaction arranged in time sequence”
and “… it shows the instances participating in the
interaction … and the stimuli they exchange arranged in
time sequence”. We can deduce that throwing away the
time axis from this diagram is not an extension but a
radical modification of it. The three communications of
fig. 6 can be concurrent only if the vertical time axis does
not exist.

A way of introducing the concurrency, saving the
nature of this context, could be done introducing a third
dimension along which concurrent items could be
represented maintaining their time sequence. We think that
it is not difficult to create a suitable CASE tool supporting
such a spatial diagram. The only big problem is
representing on paper this diagram. Some solutions are
possible (e.g.: perspective views for an overall sight of the
diagram, sections and orthogonal projection in order to
illustrate any detail) but a bi-dimensional representation is
undoubtedly somehow difficult.

To avoid this problem though maintaining the nature of
the sequence diagram we propose a different
representation for concurrency.

Starting from a ‘concurrency point’ several messages
can go towards different agents or agent’s roles (see fig.
6,b). They reach the lifeline of each agent’s role at the
same height (i.e. the same time); this clearly illustrates the
concurrent execution of the three different roles

Fig. 7. Two agents concurrency in an activity diagram

In the previously seen scenario we have depicted a
logical (and sequential) series of events but probably
the agents will run in a concurrent environment in
which several scenarios can take place at the same
time.

Consider, for example, a second scenario in which
an obstacle avoidance agent acts to avoid that the robot
going towards the ball could hit something.

The FootballPlayer and ObstAvoid agents
concurrently play their roles in order to achieve their
scopes.

This situation can be depicted in an activity
diagram (see fig. 7).

Note that in this diagram only ‘behavioural’ agents
are depicted and as a consequence the communication
to the dashboard is omitted.

Considering this way of using the activity diagram
we can deduce another requirement for an UML CASE
tool: it should be possible to introduce methods as
elements of an activity diagram.

Iterating this process will lead to a complete design
of the system. It is now necessary to create a
component diagram to put each agent in an appropriate
component and then deploy each component in its
running unit (showing it with a deployment diagram).

V. FUTURE WORK

We are developing a CASE tool to support the
AODPU. This tool will produce standard C++ code
and will use an agent-software development library.

We are also making some efforts to study a way to
the application of the ISO 9000-3 standard in the
design of agent-oriented software. This will probably
lead to a design process joining some aspects of the
AODPU and the documents prescribed by the ISO rule.

REFERENCES
[1] J. Albus, H. McCain, and R. Lumia, “NASA/NBS Standard

Reference Model for Telerobot Control System Architecture
(NASREM)”, NBS Technical Note 1235, Robot Systems
Division, NIST, 1987.

[2] D. Lyons, and M. Arbib, “A Formal Model of Computation
for sensory-Based Robotics”, IEEE Trans. on Robotics and
Automation, vol. 6, no. 3, pp. 280-293, 1989.

[3] L. Kaelbling and S. Rosenschein, “Action and Planning in
Embedded Agents” in: P.Maes (ed.): Designing
Autonomous Agents, MIT Press, Cambridge, MA, pp. 35-

48, 1991.
[4] R. Brooks, “The Behavior Language”, AI Memo 1227, MIT AI

Laboratory, 1990.
[5] M. Wooldridge, N.R. Jennings and D. Kinny, “The Gaia

methodology for agent-oriented analysis and designs”, Internat.
J. Autonoums Agents and Multi-Agent Systems 3(2000).

[6] N.R. Jennings, “On agent-based software engineering”, Artificial
Intelligence 117 (2000), 277-296

[7] I. Jacobson, G. Booch, J. Rumbaugh, “The Unified Process”,
IEEE Software, May/June 1999, pp. 96-102.

[8] F. Zambonelli, N.R. Jennings, and M. Wooldridge,
"Organisational Abstractions for the Analysis and Design of
Multi-Agent Systems", Proc. 1st Int. Workshop on Agent-
Oriented Software Engineering, Limerick, Ireland, pp. 127-141.

[9] OMG Unified Modeling Language, version 1.3, June 99, Object
Management Group document ad/99-06-08. Available from
http://cgi.omg.org/docs/ad/99-06-08.pdf

[10] J. R. Searle, “Minds, brains and programs” in “The behavioural
and Brain Sciences”, Cambridge University Press, 1980.

[11] D.R.Hofstadter, D.C.Dennett: “The Mind's I”, Basic Books,
1981.

[12] J. Odell, “Objects and Agents: how do they differ?”. On-line at:
www.jamesodell.com/publications.html

[13] M. Jarke, “Scenarios for modelling”, Communications of the
ACM, Jan 99, vol. 42-1, pp. 47-78.

[14] I. Jacobson, M. Christerson, P. Jonsson and G. Overgaard,
“Object-Oriented Software Engineering: A Use Case Driven
Approach”, Addison-Wesley, 1992.

[15] A.G. Sutcliffe, N.A.M. Maiden, S. Minocha, D. Manuel,
“Supporting Scenario-Based Requirements Engineering”, IEEE
Trans. On Soft. Eng., Dec. 98, vol. 24-12, pp. 1072-1088.

[16] J.M. Caroll, M.B. Rosson, G. Chin Jr., J. Koenemann,
“Requirements Development in Scenario-Based Design”, IEEE
Trans. On Soft. Eng., Dec. 98, vol. 24-12

[17] N.R. Jennings and M. Wooldridge, “Agent-Oriented Software
Engineering”, Handbook of Agent Technology (ed. J. Bradshaw)
AAAI/MIT Press. (to appear).

[18] J. Odell, H. Van Dyke Parunak and Bernhard Bauer, “Extending
UML for Agents”, Proc. of the Agent-Oriented Information
Systems Workshop at the 17th National conference on Artificial
Intelligence, Gerd Wagner, Yves Lesperance, and Eric Yu eds.,
Austin, TX, pp. 3-17, accepted paper, AOIS Worshop at AAAI
2000.

[19] J. Odell, H. Van Dyke Parunak and C. Bock. “Representing
agent interaction protocols in UML”. In OMG Document/ad99-
12-01. Intellicorp Inc., December 1999.

[20] A. Chella, M. Cossentino, U. Lo Faso, “Applying UML use case
diagrams to agents representation”, Proc. of AI*IA 2000,
Milano (Italy), 13-15 Sept. 2000, pp. 123-126.

[21] J.E. Robbins, N. Medvidovic, D.F. Redmiles, D.S. Rosenblum,
“Integrating Architecture Description Languages with a Standard
Design Method”, II EDCS Cross Cluster Meeting in Austin,
Texas, on-line at: www.ics.uci.edu/pub/arch/uml/research/.

[22] M. Piaggio and R. Zaccaria, “An Efficient Cognitive
Architecture for Service Robots”, The Journal of Intelligent
Systems, Freund & Pettman, Endholmes Hall, England, Vol 9:2,
March-April 1999.

[23] M. Piaggio and R. Zaccaria, “Distributing a Robotic System on a
Network - the ETHNOS Approach”, Advanced Robotics, The
International Journal of the Robotics Society of Japan, Vol. 12,
N.8, VSP Publisher, Aprile1998.

