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Abstract 
 
A relevant problem of simulation (but also of real 

systems) is the knowledge that robots have of the 
environment. Generally this is very poor, or quite lacking, 
and the robots have to explore the world around them with 
their sensors. 

In a simulation process, sensor bearings are 
particularly lacking and the knowledge of the environment 
should be built using informations obtained in other way.  

We have designed an environment description 
language for multi-robot agent-based simulators. The result 
of our approach is a complete test system for robots that 
operate in indoor environments whose behaviors are based 
upon agents. The resulting language was called EDL. 

 
1. Introduction 

 
Robotics applications and behaviors are becoming 

more and more complex and, as a consequence, their testing 
more and more onerous. Examples are in transportation of 
things on demand or on schedule in hospitals and 
communities, night surveillance tasks in large buldings like 
museums, banks, and so on. We could also enumerate all 
tasks where the human presence may be dangerous for the 
human health, such as chemical or nuclear industrial 
process, space experiments, and so on.   

In addition, to test cooperative behaviors of multirobot 
systems, it is necessary to involve several robots. This kind 
of test could be a problem, because each robot is an 
expensive resource, and the same robots are shared among 
several different projects at the same time. 

In such a scenario, simulation has proved very 
important to perform initial tests of multi-robot systems. 

A relevant role in an intelligent system, and 
specifically in a multi-robot system, is played by its 
knowledge. The knowledge about the environment is 
particularly important because from the environment the 
robot receives a lot of  perceptions, that it uses to plan its 
own actions in order to meet its design objectives. Then a 
relevant problem is that the necessary knowledge is initially 
very poor, or quite lacking, and the robots have to acquire it 
by exploring the world around them. In a real system they 
can use their sensors, but in a simulation process sensor 

bearings are particularly lacking, and the  knowledge should 
be built using informations obtained in other way. 

In the following sections we present EDL 
(Environment Description Language), an environment 
description language designed to be used in conjunction 
with a multi-robot agent-based simulator. EDL  has been 
thought to generate indoor environments description in a 
very simple way, but it is enough flexible to deal with 
complex problems. 

Using EDL is possible to simulate the robots learning 
about environment in very simple manner, because the user 
defined map of these environments, is always available for 
the vision agent of the robots, and so it can get which parts 
of the map its sensors are “seeing” during the navigation. 

 
2. The language 

 
EDL can describe and represent in a simple manner, 

but also with great precision, the features of an indoor 
environment. The result is a map that contains the 
description of  all the elements and can be profitable used in 
robot simulations. 

The simulation area is contained in a rectangular 
motion field, and its dimensions (length and width) are user-
defined. These dimensions are real numbers that refer to a 
Cartesian co-ordinates system with its origin point in the 
bottom left-hand corner of the map. The user has to specify 
the components of the environment, and their specific 
attributes; these parameters are real numbers representing 
the specific geometric features of  each component, for 
example its length, its width, and its position referring to a 
Cartesian co-ordinates system. All the values are measured 
in centimetres. 

In EDL the components of the environment are called 
members. Members currently supported are: 

 
- Point, representing a point of the plane;  
- Corridor, representing a corridor inside the 

environment; 
- Wall, representing a partition wall; 
- Door, representing a passage through a partition wall ;  
- Junction, representing corridors crossing; 
- Notice, representing a graphical element of the 

environment (for example a painting). 
 



To define the structure of  the EDL members we 
referred to Saphira artifacts geometry [3]. 
 
2.1 Point 

 
The point member is used to represent an oriented 

point of the Cartesian plane. Its parameters are the values of 
abscissa and ordinate in the Cartesian co-ordinates system, 
but also its orientation, referring to the global co-ordinates 
system. It is the angle (α in fig. 1) formed between the local 
co-ordinates system fixed on the point, and the global co-
ordinates system.  

Figure 1:     orientation of the point 
 

We adopted the oriented point instead of a simple not 
oriented point because it can be useful in the description of 
the movement of a robot. In fact, in this situation, the target 
of the motion is often represented not only by the co-
ordinates but also by the orientation that the robot should 
have. 

 
2.2 Corridor 
 

The corridor member is used to represent a corridor of 
the environment. Its parameters are the length, the width and 
the position of its barycentre. The  location of this element 
inside the environment is obtained by the specification of 
the point P in the middle of the corridor; obviously, it is 
oriented in the same direction of its length. 

 

Figure 2:   example a corridor 
 

2.3 Wall 
 
The wall member is used to represent a partition wall 

or any other not crossable obstacle inside the environment. 
Its parameters are the length, and the co-ordinates of the 
point P in the middle of the wall. The orientation of P is in 
the direction of the length of the wall. 

 
 

Figure 3:   example of a wall 
 
2.4 Door 

 
The door member is used to represent a door, or any 

other passage in a partition wall inside the environment. Its 
parameters are the width of the passage and the co-ordinates 
of the point P in the middle of the door. The element is 
oriented along the perpendicular of the width. 

 
 

Figure 4:   example of a door 
 

2.5 Junction 
The junction member is used to represent the crossing 

between two corridors. When a corridor meets another one, 
it is necessary to define some junctions, if is possible for the 
robot to pass through corridors crossing. In fact, if we do not 
introduce the junction, the robot is obstacled by the 
boundary of the corridors because the two corridors are in 
superposition between them. 

The parameters of this member are its width and the 
co-ordinates of the point P in the middle of the junction. 
This point is oriented in the crossing direction (orthogonal to 
the width of the junction).   

 

 
Figure 5:   example of junction 

 
We can note that in a T junction, it is necessary to 

define three members, as showed in figures 5; on the 
contrary, if the junction is cross-shaped, it is necessary to 
define four members, as showed in fig. 6. 

 



 
Figure 6:   T junction and cross-shaped junction 

 
2.6 Notice 

 
The notice member is used to represent a graphical 

information about the neighbouring environment. A robot 
can use it to obtain an additional information, that can be of 
various kind. For example a notice can be an image that the 
vision agents of the robot can use to distinguish the various 
rooms of the environment. 

The sign can also be thought as a traffic signal, 
positioned at a fixed height from the floor. 

The information is contained into an image file, that 
the robot’s vision agents can obtain and process. The 
parameters of the notice member in the EDL language are 
the name of the image file, the co-ordinates of the 
barycentre, and the height from the floor. 

This last choice permits us to extend the two 
dimensional representation of the world obtaining a two and 
half dimensions model. 

 
2.7 Implementation 

 
To design the EDL language we used an object 

oriented approach. The coding phase has been performed in 
the C++ language.  
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Figure 7:   The EDL class diagram 
 

Each element of the language is derived from the class  
member (see fig.7 for a class diagram of the language 
architecture) 

The class member is an abstract class that represent a 
generic element of the map. In fact, a specific class has been 
defined for each element of the language inheriting it from 
the member class. 

Discussing the structure of the various member in the 
previous sections, we have already seen that all of them use 
a ‘point’ element to specify their own position. For this 
reason, in fig. 7 we can see that the same members  have a 
one to one ‘aggregate’ relationship with the ‘point’ class. 

The map of the environment is represented through the 
‘map’ class that can aggregate more instances of the EDL 
members. This aggregation gives place to the collection of 
elements that we can find in the environment described by 
the map. 

The map of an environment is represented in a plain 
text file that contains the dimensions of the motion field and 
the list of all the members of the map. For each member we 
have to specify its characteristic values too.  

The member’s list must be write in a prefixed format, 
according to the syntax rules that constitute the grammar of 
the language.  

In fig. 8 we can see the EDL description of the 
environment graphically depicted in fig. 9. 

We can notice that the grammar of the description is 
very simple and, consequently,  it can be modified by hand 
also in the case of very complex environments 

 
Figure 8: an example of map description text file 

 
This description file is not the file that is really 

processed by the simulator. In fact it should be processed by 
a language translator module, that produce a new file whose 
format is more suitable for the needs of the simulation 
program. This new format is characterised by the cfg 
extension.  

The syntax of this cfg file is designed so that it is very 
simple for the map class constructor method to read it and to 
build the list of the members. The cfg file is composed by 
one row for each member of the map plus one (the first) for 



the environment dimensions. Each row contains all the 
values of the corresponding member separated by a token . 

 
Figure 9:  the map described in the text file of fig.8 

 
Because during its navigation in the real world a robot 

can discover the position of the obstacles using its sensors 
and it cannot discriminate among all kind of members,  

The constructor of the class map, adds an additional  
wall to the member’s list. This wall is the border and it is 
used to prevent the robot from going out of the map. 

 
3. An example 

 
We applied the EDL language to a multi-robot 

simulation software built upon the Ethnos multi-agent 
operating system  that had been developed for the RoboCup 
research project. It implemented a rectangular soccer field 
with two goals.  We have modified this structure to support 
all the environments that can be described with EDL. 

Ethnos (Expert Tribe in a Hybrid Network Operative 
System, [1, 2]) is a real-time programming environment. It 
can be used to support agent-oriented multi-robot systems 
and can provide advanced communication capabilities 
among different agents (called experts) of the same robot 
and among different robots. An expert in Ethnos is a 
concurrent agent responsible for a specific deliberative or 
reactive behavior. All experts are members of a tribe which 
are distributed in separeted villages (network computers) 
depending on their computational task. 

From the communication perspective, Ethnos supports 
and optimises transparent inter-robot information exchange 
across different media (cable or wireless); in fact it permits 
the communication among different agents, through a public 
dashboard and a publish/subscribe method, either in the 
same robot or in different robots. From the runtime 
perspective it provides support for the real-time execution of 
periodic and aperiodic tasks, schedulability analysis, event 
handling, and resource allocation and synchronization. From 
the software engineering perspective, it provides support for 
rapid development, platform independence and software 
integration and re-use.  

To demonstrate the use of  the EDL language together 
with the Ethnos simulator we have chose a simple example 
in which a team of two robots pursues a single robot playing 
the role of the prey [12]. The environment is like a labyrinth, 
and it has been built using EDL. 

In the following description we will omit the 
description of the prey robot that is not very interesting. We 
will focus our attention upon the two pursuing robots. 

To develop each robot we have used a multi-agent 
architecture where each agent was dedicated to a specific 
task [11].  

 
Figure 10:  the architecture of our example 

 
We have used 6 agents. Five of them are present in 

both the robot and the last (the Coach) is supposed to run in 
another computer : 

• the Vision agent acquires information from 
the environment. It access the map and 
retrieve data about the elements that are near 
to the robot. 

• the Prey Identifier agent is responsible for 
detecting the prey. 

• the Localizer agent  retrieve all informations 
about the position of the robots of the team. 

• the Coach agent is responsible for the 
definition of the movement strategy of the 
team. At this end, it receives all necessary 
data from the Vision agent, the Prey Identifier 
agent and the Localizer agent. 



• The Pursuer agent defines the path from the 
robot to the prey according to the planned 
strategy.  

• The Player agent generates all movement 
commands for the robots simulated motors. 

 
In fig. 10 we can see the relations among the agents 

that we have used. 
During the simulation process, each robot moves in the 

environment. To ‘see’ the world it uses a vision agent.  
This agent reads the map and returns what a real robot 

would see if it would be in that position  (and orientation) in 
the real world. This is the only agent in the robot who is able 
to acces the map [8]. 

Obviously the vision agent has to be changed with an 
image processing agent that uses a real video acquisition 
device, before testing the software in a ‘real’ robot. 

In order to better simulate the reality, the robot can 
only ‘view’ the objects that are closer to itself, and that are 
not covered by other ones. In fact, generally the sensors of a 
real robot have natural limits in their range of sight. 

To co-ordinate and synchronise the actions of the 
pursuing robots, we have defined the Coach agent. It has not 
sensors to see the world or the prey and so it receives all the 
information from the other agents. From the Vision agent, it 
receives information about the portion of the environment 
map that each robot can see; from the Localizer agent, it 
receives informations about the position of each robot; from 
the Prey Identifier agent, it receives informations about the 
estimated position of the prey, if one robot can ‘see’ it [6]. 

By processing these informations, the Coach chooses 
the best strategy for the team. One of the options is to 
surround the prey with the two robots of the team. 
Obviously, if the prey has not been localised yet, a further 
exploration of the environment has  to be planned.  

Because the Coach agent is an high level agent, it 
doesn’t communicate directly with the robot team. On the 
contrary, it sends the strategy to the Pursuer agent that 
implements the directives. 

 

Figure 11: the labyrinth we have used for our example 
 

 
It plans the paths for the robots of the team [13, 14]. The 
result of its elaboration is the path that each robot has to 
follow[7]. This information is sent to the Player agent of 
each robot that directly controls the movement.  

The labyrinth we have used in the example, is 
represented in fig. 11.  

 
The following pictures present a sequence of images 

captured from the simulator. Note that only a part of the 
labyrinth is represented because of the chosen magnification 
factor. Two robots pursue a prey. The prey has been 
localised and according to its position and the position of the 
two robots, the surrounding strategy has been chosen. 

 

 
 

 

 

 
Figure 12: A sequence of simulation 

 
In figure 12 it is possible to see how EDL is used to 

represent the map of the environment.  
Only some elements of the environment are shown. 
In fact, the robots know only the part of the map that 

they have previously explored or that they have in sight.  



The black lines represent the walls of the map. The 
prey is the dark robot. 

 
4. Conclusion 

 
Using the EDL language we may build all kinds of 

structured environments including corridors, rooms, 
partition walls, doors, and so on. 

In these hypothesis, it is possible to represent domestic 
environments, offices, warehouses, and so on. 

This language has been thought to be used in 
conjunction with many different multi-robot simulators. 

It has proved very useful to support the design of many 
different examples during the test of some agent-oriented 
design process with UML [4, 5]. 

We are now developing a fipa-os [9, 10] simulator in 
Java that will use EDL to define the map of the simulation 
environment. 

A possible extension of the EDL towards the 
representation of three dimensional environments has been 
planned for the very next future. 
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