

A Cooperative Agent Based Architecture for Environmental Exploration and
Knowledge Sharing by Vision

Andrea Ruisi1, Massimo Cossentino2, Ignazio Infantino2, Antonio Chella1 and Roberto Pirrone1

1DINFO, University of Palermo, Palermo, Italy, [ruisi, chella, pirrone]@unipa.it
2ICAR - CNR, sez. di Palermo, Palermo, Italy,[cossentino, infantino]@cere.pa.cnr.it

Abstract

A comprehensive approach to the design and
implementation of multi-robots cooperative systems is
described. It focuses on a design process that uses the
Unified Modeling Language and on a detailed ontology
description with the goal of sharing the knowledge on
environments that robots can acquire through the use of
their vision sub-system. We base the implementation of
our robotics vision system on agents inserted in a
generic multi-level architectures. The first objective of
this work is to provide a framework to perform a
rigorous agent-based design process for scenarios where
many robots are involved in different operations. Then
we introduce a system for describing, upgrading and
sharing knowledge about operating environments of a
cooperative robot fleet. As a consequence we design a
multi-level, agent-based vision architecture that takes
advantage of the distribution over several different
robots. Details of the methodology, of the ontological
approach, of system implementation using FIPA-OS
environment, along with real experiments are reported.

1. Introduction

In recent years, mobile robots have been involved in
more and more complex tasks often requiring the
collaboration among several individuals that in general
differ in their skills, and in the way they perceive the
external environment. In such a context, the research
activity in the field of robotics has been mainly focused
on the development of complex algorithms to
accomplish the specific robotic tasks like path-planning,
vision, localization, and so on. From the architectural
point of view, two different philosophies have been
carried on: the reactive and the behaviour-based
paradigms. Our approach starts from these experiences
and elaborates an architecture based on the cooperation
of different levels of abstractions addressing three main
robot’s features: perception, cognitive components and
actuators. The presence of a fleet of robots, each one
deploying several agents, realizes a huge system whose
management raises at least two kinds of problems: the
complexity of the software needs a specific design

methodology [4] while the ontology design and sharing
needs a particular attention throughout all the phases of
the process.
We consider the sharing of the ontology as one of the
key issues in cooperative robotics because different
robots can coordinate their work towards a common
goal only if they can share the representation of the
concepts and actions of their operating environment.
Starting from the previous considerations, we apply a
novel methodology to the design of multi-agent robotic
systems using the Unified Modeling Language. From a
robotic point of view we refer to the behavior-based
approach. Particularly, the proposed methodology uses
behavior-based philosophy as a part of a wider process
which begins with the requirements analysis for the
whole system, identifies agents, and then defines
behaviors [2]. The agents defined in such a way are
deployed on the required hardware platforms, thus
allowing both single robot and multi-robot scenarios.
For the ontology design, the architecture we adopt is
based on the fundamental assumption that robots can
obtain environmental experience from three different
and conceptually divided channels: (i) the metric
channel, giving quantitative information about the
environment (lasers, sonars, odometers); (ii) the visual
channel, giving snapshots of the environment (cameras);
(iii) the semantic channel, giving support for the
association of a semantic valence (a category) to spatial
entities. The last channel is introduced as a way to face
the well known anchoring problem [20]; in order to deal
with the symbolic representation of the environment, a
suitable ontology model has been devised which relates
the couples (symbol, entity) that are present/discovered
in the environment itself. We start from a meta-ontology
(Ontology Identification Phase) from which we identify
the ontological description suitable for the specific
problem (Ontology Description Phase). In describing the
structure of the knowledge we use UML in one of the
phases of the design process (Domain Ontology
Description). The proposed architecture can be extended
towards the definition of the objectives of the different
agents using methodologies like desirability functions
[16,17] or generally behavior-based architectures [18].

The identified structures are then used to model the
communications in the Communication Ontology
Description phase. The paper is arranged as follows:
Section 2 deals with the overall description of the agent
based architecture; section 3 explains the design
methodology; section 4 deals with the description of the
domain ontology; section 5 reports the multi-level
vision architecture with experimental results, and finally
in section 6 some conclusions are drawn.

2. Description of the Robotic Architecture

From the cognitive point of view, in our approach we
refer to the architecture of fig. 1a. In this structure it is
possible to devise three main components: the
perception, which is responsible to map the stream of
raw data in a symbolic form, that in turn is provided to
the cognitive component where the symbolic data
computation and, in general, deliberative behaviors of
the system are located. The cognitive part can also
support perception with some hints aimed to refine the
perceptive process, and focuses the attention on those
external stimuli that are judged to be more useful for the
current task completion. The third component is the
actuation one, which communicates with the other two,
in order to drive the robot hardware during perception
tasks, and in attention focusing. The perception-action
link allows also reactive behaviors. Some of the authors
already presented this architectural structure [3,7,10]. Its
main goal is to go beyond the classical behavior-based
model, and to provide the robot with true “symbol
grounding” capabilities due to the intermediate
representation of sensory data, that is used to instantiate
pieces of knowledge at the symbolic component.
Through this mechanism the robot is able to act more
effectively in a deliberative fashion. The aim of this
work is to provide a framework for our architecture
allowing us to define a rigorous design methodology
relying on the agent-based software paradigm. In
particular, the scheme reported in figure 1a can be
regarded as a categorization of the possible agents
typologies both if we look at the single robot
architecture and if we consider a multi-robot scenario. In
the second case we address the interaction between the
external actors, and the whole team in order to perform
cooperative tasks. In other words figure 1 is the highest
level of abstraction in the system design, without taking
into consideration the implementation details. Our
approach suggests a possible abstraction from the single
robot architecture to a multi robot team: the robot that is
itself a multi-agent system, can be viewed as a single
agent in the multi robot context in which it cooperates
with the others in order to reach the goals of the entire
system. Each robot can be thought as containing several
agents; some of them interact with the external
environment, some others process the knowledge to plan

a strategy of reaching the goal, and at the end, other
agents issue commands to the robot’s hardware. At the
same time it is also possible to zoom in the single robot
representation and to see it as composed of several
agents logically classifiable in the same three types
(Perception, Cognitive and Actuator). Furthermore we
can zoom in each single agent and find a perception
capability (necessary to be aware of the external
environment), a cognitive part (where the knowledge is
processed) and some actuator features (to realize the
decisions taken in order to reach the goal). It is simple to
identify these elements in a vision agent. It accesses to
an image using the driver of an hardware or through
some kind of interaction with another agent (for
example a message exchange), it processes the image
accordingly to its objective and at the end it
communicates the result to one or more agents interested
in further steps. In our experiments we refer to the FIPA
(Foundation for Intelligent Physical Agents) architecture
[1]. In this approach, each agent is composed by a
colony of tasks as described in fig. 2 and can play
different roles that can be put into relation with one of
the three areas reported in the general architecture of fig.
1. We suppose that there is a one-to-many relation
between each one of these three areas and the agents of
the system as depicted in fig. 1b.

3. The Design Methodology

In conceiving our design methodology we followed one
specific guideline: the use of standards whenever
possible. This justifies the use of UML as modeling
language, the use of the FIPA architecture for the
implementation of our agents and the use of XML in
order to represent the knowledge exchanged by the
agents in their messages.
Our methodology, called PASSI (Process for Agent
Societies Specification and Implementation) [5] is a
step-by-step requirement-to-code method for developing
multi-agent software that integrates design models and
philosophies from both object-oriented software
engineering and MAS using UML notation. It has
evolved from a long period of theory construction and
experiments in the development of embedded robotics
applications (see [6],[7],[9]). It is composed of five
models (System Requirements, Agent Society, Agent
Implementation, Code Model and Deployment Model)
which include several distinct phases (Fig. 2).
The code production phase is also strongly supported by
the automatic generation of a great amount of code
thanks to a library of reusable patterns of code and
pieces of design. The models and phases of PASSI are:
1. System Requirements Model. A model of the system
requirements in terms of agency and purpose.
It is composed of four phases: (a) Domain Description

(D.D.): A functional description of the system using
conventional use-case diagrams. (b) Agent Identification
(A.Id.): The phase of attribution of responsibility to
agents, represented as stereotyped UML packages. (c)
Role Identification (R.Id.): A series of sequence
diagrams exploring the responsibilities of each agent
through role-specific scenarios. (d) Task Specification
(T.Sp.): Specification of the capabilities of each agent
with activity diagrams.

Environment

Target

Cognitive Components

Hardware Actuators

User Perception

(a)

Agent i

agent i-1
Task 2Task1

<<communicate>>

Task3

agent i+1Task i

<<communicate>>

(b)

Figure 1: (a) The architecture of a single robot from
the cognitive point of view. (b) The internal structure
of the agent.

2. Agent Society Model. A model of the social
interactions and dependencies among the agents
involved in the solution. Developing this model involves
three steps in addition to part of the previous model: (a)
Role Identification (R.Id.): See the System
Requirements Model. (b) Ontology Description (O.D.):
Use of class diagrams and OCL constraints to describe
the knowledge ascribed to individual agents and the
pragmatics of their interactions. (c) Role Description
(R.D.). Class diagrams are used to show the roles played
by agents, the tasks involved, communication
capabilities and inter-agent dependencies. (d) Protocol
Description (P.D.). Use of sequence diagrams to specify
the grammar of each pragmatic communication protocol
in terms of speech-act performatives.
3. Agent Implementation Model. A classical model of
the solution architecture in terms of classes and
methods; the most important difference with common

Object-oriented approach is that we have two different
levels of abstraction, the social (multi-agent) level and
the single-agent level. This model is composed of the
following steps: (a) Agent Structure Definition (A.S.D.):
Conventional class diagrams describe the structure of
solution agent classes. (b) Agent Behavior Description
(A.B.D.): Activity diagrams or state-charts describe the
behavior of individual agents.

Depl. Model

Syst. Req. Model

T.Sp.R.Id.

Ag. Impl. Model

A.S.D.

A.B.D.

Code Model

C.R.

C.C.

O.D. R.D. P.D.

Agent Society Model

Initial
Requirements New Requirements

A.Id.

D.D.

D.C.

Key:
D.D. – Domain Description
A.ID. – Agents Identification
R.Id.– Roles Identification
T.Sp. – Task Specification
A.S.D.–Ag. Structure Defin.
A.B.D.–Ag. Behavior Descr.

O.D. – Ontology Description
R.D. – Roles Description
P.D. – Protocols Description
C.R. – Code Reuse
C.C. – Code Completion
D.C. – Deployment Config.

Figure 2: The models and phases of the PASSI

methodology.

4. Code Model. A model of the solution at the code
level requiring the following steps to produce: (a)
Generation of code from the model using one of the
functionalities of the PASSI add-in. It is possible to
generate not only the skeletons but also largely reusable
parts of the methods implementation based on a library
of code and associated design descriptions. (b) Manual
completion of the source code.
5. Deployment Model. A model of the distribution of the
parts of the system across hardware processing units,
and their migration between processing units. It involves
one step: Deployment Configuration (D.C.): deployment
diagrams describe the allocation of agents to the
available processing units and any constraints on
migration and mobility.Testing: the testing activity has
been divided into two different steps: the single-agent
test is devoted to verifying the behavior of each agent
regarding the original requirements for the system
solved by the specific agent. During the society test an
integration verification is carried on together with the
validation of the overall results of this iteration.

symbolic layer

+name : String

landmark

1 *

+xposition : float
+yposition : float
+zposition : float
+pan : float
+tilt : float
+heigth : float
+thickness : float
+length : float

wall

+xposition : float
+yposition : float
+zposition : float
+pan : float
+tilt : float

obstacle

+xposition : float
+yposition : float
+zposition : float
+model : String

marker

+heigth : float
+width : float
+vert_offset_along_wall : float
+horiz_offset_along_wall : float

window

+open_flag : bool
+heigth : float
+width : float
+offset_along_wall : float

door

+heigth : float
+width : float
+offset_along_wall : float

opening

1

1

1

1

1

1
1

1

geometry

+eps1 : float
+eps2 : float
+x0 : float
+y0 : float
+z0 : float
+i : float
+j : float
+k : float
+rho : float
+theta : float
+phi : float
+k0 : float
+alpha : float
+kx : float
+ky : float

superquadric

1

*
+name : String

semantic

1

1

Figure 3: The ODM Static Symbolic Layer. This ODM sub-model actually represents (part of) the DOD model of our
domain: the knowledge structure we identified is then used to model the content of the communications in the COD
phase and finally to define the agent communication ontology.

The Agent Test is performed on the single agent before
of the deployment phase while the society test is carried
on the complete system after its deployment.
A more detailed description of the methodology is
beyond the scope of this paper. In the following section
we will deal with its steps that describe the ontology of
the domain and the robots’ knowledge exchange.

4. Ontology Representation and Sharing

Multi-robot collaboration, in our approach, has a direct
consequence in the knowledge design and sharing. We
introduced the Ontology Description (OD) phase in the
design methodology in order to model both the
identification/representation of the domain ontology,
and the communications that the robots use to exchange
it. OD phase is composed by two sub-phases: the
Domain Ontology Description (DOD) and the
Communication Ontology Description (COD). In the
DOD we represent the ontology as an UML class
diagram that basically describes the overall domain
ontology. In the COD (another UML class diagram), we
describe the knowledge of each agent (thus addressing
the implementation of its data structures) and its
communications, from the ontological point of view,
referring to the elements of the previous drawn DOD
diagrams. The description of the domain ontology is
obviously one of the most difficult phases of the entire
process. We have developed a specific sub-process for
it, divided in two subsequent phases: Ontology
Identification Phase (OIP) and Ontology Description

Phase (ODP). The OIP is a multi-perspective study
driven by a functional analysis of the domain, and
allows the identification of the different types of
knowledge and of the related ontologies needed for the
implementation of particular classes of tasks and
functionalities. Result of the OIP is a general meta-
ontological model (Ontology Identification Model,
OIM) that encompasses a set of conceptually divided
ontological abstract sub-models. Each of them is
“generated” by a particular view that is assumed in front
of the operating environment in order to capture those
aspects that are meaningful for that particular class of
tasks [14]. OIM uses UML as a representative
formalism, grouping ontologies into more general
categories according to the dichotomy between quantity
and quality, and showing how consistency between these
groups is determined by causal models.
In the next phase (ODP), the results of OIP are used as a
framework to drive the actual definition of the Domain
Ontology. Through re-interpretation and finer-grained
specification of OIM abstract ontological sub-models,
we now produce a global and implementable
representational model (Ontology Description Model,
ODM). Since conceptually different ontologies relate, in
implementation optics, to different inner
representational formalisms, in ODM we use knowledge
layerisation to allow them to co-exist into an overall
domain model. Furthermore, in order to allow symbolic
manipulation of knowledge, and to avoid the problems
that a fully adaptive representation model could arise
[15], we augment quantitative information with

qualitative-semantic one (obtained through the semantic
acquisition channel) and vice-versa, and we decouple
static and dynamic knowledge. ODM layers are defined
at a detail level that is able to capture all the information
that is necessary for their implementation, and are
expressed using UML as a representation formalism. As
an example, the Static Symbolic ODM Layer is shown
in figure 3. Formally, this layer is composed by
landmarks representing structural static elements of
typical indoor office environments named upon their
semantic category. That is, walls and objects
(furnishings) that are statically present in a specific
position. Landmarks we have identified for office
environments are: (i) walls; (ii) doors; (iii) windows;
(iv) openings; (v) obstacles; (vi) markers. Each
landmark is tagged with an unique identifier (ID) in
order to distinguish it from others in the same category.
Attributes needed to formally identify a wall are: its
position and orientation (referring to a global coordinate
system), its thickness and its height. Inside each wall,
one or more windows, doors or openings can be present.
Each of them has an ID and some parameters needed to
identify its position relatively to the containing wall, its
width and its height. An obstacle is any generic motion
obstacle. Each obstacle has a geometry, modeled using a
set of deformable superquadrics, and is related to its
semantic through a name defining its category (a table, a
chair). Finally, a marker is a physical entity (i.e. a label)
that is easily distinguishable by the robot and can act as
a trigger for some kind of behavior (i.e. in museum
guide robot, reading a sign would cause a multimedia
presentation to start). It is formally identified by its
position and model description (a link to the file
containing its graphical representation). Among the
other layers we identified there are: the topological,
geometrical and grid-based ones. We developed an
XML based realization of the ODM through its
translation in XML DTDs/Schemas, thus treating a new
XML-based mark-up language (Environmental
Knowledge Markup Language, EKML) that we use for
knowledge representation. At present, we are testing the
introduction of XML DOM-Parsers into Fipa agents to
share and update knowledge stored in EKML data
structures.

5. The Multi-Level Vision Architecture

In the following we will describe the realized vision
architecture referring to an experiment performed using
a real robot equipment in an unstructured environment.
The robot was provided with obstacle avoidance
capabilities in order to reach a static target. The
implemented behaviour is quite simple because our
study was mainly focused on testing architecture

implementation rather than developing high quality
solutions to accomplish the robot's tasks. We were
particularly interested to stress multi platform
communication features of the FIPA environment, and
to cope with its lack of real-time control capabilities.
Our robot was a K-Team Koala equipped with IR
sensors, and controlled by a PC through a radio link.
Vision was provided by a calibrated camera looking at
the action field, and reporting localization information
to the rest of the system. In order to test distribution of
agents across multiple platforms, the camera was
connected to a separate PC running part of the vision
system code. Obstacle avoidance was simply
implemented by processing IR sensors readings in order
to detect obstacle proximity. Then the robot follows
obstacle's contour until it has free path to reach the goal.
Path planning consists of a series of “turn” and “go
straight” movements that are computed starting from
vision data. In what follows, a typical experiment as
long as the implementation of the multilevel vision
system will be reported in detail.

Figure 4: The proposed multilevel architecture is
based on various agents grouped in classes which have
different level of knowledge: low level (HW agents),
sub-symbolic level (Procedural agents and Services
agents), high level (Symbolic agent).

5.1 Distribution of agents across multiple platforms

The proposed multilevel architecture (see fig. 4) is
based on various agents grouped in classes which have
different level of knowledge: low sensorial level (HW
agents), sub-symbolic level (Procedural agents and
Services agents), high level (Symbolic agent). All the
agents can be located on different platforms and the
system provides them of the communications
capabilities. In fig. 7 it is depicted an example of the
agent activations during a generic planning task:
- The Planner Agent is part of the symbolic agent level

and it plays the fundamental role of activation and
coordination of the several agents involved. The most

HW agents

Procedural agents

Symbolic agents

Services agents

HW agents

Procedural agents

Symbolic agents

Services agents

important knowledge of this agent is the map of the
scene in which new data are added to the a-priori data
(see fig. 7.d). The Planner Agent uses two Procedural
Agents: Tracking Agent and 3D Reconstruction Agent.

- A Procedural Agent can receive collaboration from
several Services Agents in order to process its
knowledge. For example the 3D Reconstruction Agent
(see fig 7.c) owns images acquired by visual sensors
on which it requested to perform filtering, edge
extraction, camera calibration and so on.

- The level of Services Agents is a extensible collection
of simple low-processing agents (see fig. 7.b) useful to
perform various calculations requested by one or more
Procedural Agent.

- The source of visual data is the level of Hardware
Agents: the Devices Manager Agent is the interface
between video (or image) sources and Procedural
Agents that include this type of data in their
knowledge. Every video source has its specific camera
agent to communicate to Device Manager Agent (see
fig. 7.a).

5.2 The Sensorial Level and the Single Camera
Agent

We use a fixed CCD camera, connected to a computer,
viewing the scene (see fig. 5). The single camera agent
can run on a different machine from the one that runs the
rest of the system, communicating with it over the local
net. In this way we have the possibility of performing
the vision task in real time without adding high
computational costs to the whole system.

5.3 Service Agents contributing to sub-symbolic
knowledge

This section describes the process of localization of the
Koala robot during its task, in order to give useful
feedbacks to the planning agent [2,3,13]. The position
of the robot in the image is calculated by simple low-
level image processing operations performed by the
corresponding Services Agents. The current frame is
subtracted to the previous (gray level images), obtaining
the pixels related to moving objects in the viewed scene.
If more objects are moving, the Koala shape is selected
using color and textural features. Naturally, some
standard filtering operations are performed to reduce
noise. Moreover, a corner detector is applied in the
area of the image representing the Koala shape in order
to obtain feature points to track.

5.4 The Procedural Agents and the sub-symbolic
knowledge

The estimation of the position of the robot on the floor
is based on this tracked points. The valuable capabilities
of the 3d Reconstruction Agent and Tracking Agent in
the whole system are:

- to individuate and segment the Koala robot also in
contrasted and irregular backgrounds;
- to perform an estimation of the position of the robot by
camera images;
- to interpret the sequence of movements of the robot
giving information about the direction followed by it.
The implemented computer vision task can be
decomposed in three main steps:
- localization of the robot on the image by low-level
image processing of the single frame;
- estimation of the 2D location of the robot on the floor;
- reconstruction of the 3D position of the robot.
The position of the robot referred to a reference system
is estimated using the homography between the image
plane and the floor [11]. A generic 3D point X
generates the point w on image:

 []XtRKPXw ==λ
if the 3D points are on a plane (i.e. Z=0), the
transformation is simplified to a 3x3 matrix H:

 [] PP XtrrHXw 21==λ
where H is the homography matrix, decomposable on
the calibration 3x3 matrix K, and a 3x3 matrix that has
the first two columns of the rotation matrix R and the
translation vector t as third column. X and w are
indicated using homogeneous coordinates. During a
preliminary calibration process, the matrix H is
estimated using detected points belonging to the floor; a
grid placed in front of the camera is used to obtain the
calibration matrix K and to fix the rotation and
translation referred to the reference system. The tracked
points on image are translated in 2D coordinates using
estimated homography. The exact 3D position is
recovered using the known real dimensions of the koala
robot and the data coming from the calibration
framework [8]. The estimated 2D coordinates of the
robot and the direction of the detected movements are
communicated to the system with messages. The path of
Koala is recorded by the Planner Agent and it is the
source of 3D data for a powerful dynamic visualization
using a browser equipped with the plug-in for standard
VRML language (see fig. 6).

5.5 The Planner Agents and the symbolic
knowledge

Planning relies on several agents acting at different level
of abstraction. The collaboration level agent uses
information produced by procedural agents to derive the
whole team strategy in achieving the goal. The result of
this step is a different high level plan for each robot.
Starting from this input, a single robot makes its routing
plan using the Topological Layer of the ontology
described in chapter IV.

Figure 5: some frames of the experimental sequence: the Koala robot avoids the obstacle and reaches the target.

An A* algorithm is used to browse the graph connecting
adjacent parts of the environment (rooms, corridors,
etc.) through their openings. Low level navigation inside
a single room and obstacle avoidance are performed
using an approach based on potential fields [19].

6. Conclusion

A novel methodology for the design of multi-agent robot
architectures including also vision agents is presented
that extends the classical behaviour-based approach. It
shall be showed that it can be profitably used both in
the case of a single robot design, and in a multi-robot
scenario.In order to strengthen the cooperation
capabilities of a multi-robot system our methodology
comprehends an extensive specification of ontology.
Starting from a referring framework where qualitative
and quantitative descriptions are related through their
causal relationships, we deduct the proper ontology
description model for the environment where the robots
operate. We considered vision the main source for the
environmental knowledge and therefore we produced a
flexible, modular and distributable vision architecture,
where each agent can take advantage of services
provided by agents present in other computational
nodes, producing a network of cooperating entities that
reduces the need for duplication of most common
services. The methodology presented has been
implemented using a FIPA compliant platform, and the
experimental results have been very encouraging. We
are currently extending the methodology towards
automatic code generation for a great part of the agents'
implementation.

7. References

[1] FIPA Abstract Architecture Spec. (Refinements). FIPA
specification documents (08-10-01). http://www.fipa.org

[2] Arkin R., Behavior Based robotics, The MIT Press,
Cambridge, Massachusetts, London, England, 1998.

[3] Chella A., Gaglio S., Pirrone R., Conceptual
representations of actions for autonomous robots,
Robotics and Autonomous Systems, 34, (2001), 251-263.

[4] Jennings N.R., On agent-based software engineering,
Artificial Intelligence 117 (2000), 277-296.

[5] Cossentino, M., Potts, C. A CASE tool supported
methodology for the design of multi-agent systems in
proc. of SERP’02 (Las Vegas, Nevada, Jul 2002)

[6] Chella, A., Cossentino, M., and Lo Faso, U. Designing
agent-based systems with UML in Proc. of ISRA'2000
(Monterrey, Mexico, Nov. 2000).

[7] Chella, A., Cossentino, M., Infantino, I., and Pirrone, R.
An agent based design process for cognitive architectures
in robotics in proc. of WOA’01 (Modena, Italy, pt.
2001).

[8] I. Infantino, R. Cipolla, A. Chella, "Reconstruction of
architectural scenes from uncalibrated photos and maps",
IEICE - Transaction on Information and System,
Vol.E84-D No.12 pp.1620-1625.

[9] Chella, A., Cossentino, M., Tomasino, G. An
environment description language for multi-robot
simulations in proc. of ISR 2001 (Seoul, Korea, 2001)

[10] Chella, A., Guarino, D., Infantino, I., Pirrone, R., A
Vision System for Symbolic Interpretation of Dynamic
Scenes Using ARSOM, Applied Artificial Intelligence,
Vol. 15 No. 8, Issue Sep 2001,pp.723-734.

[11] Faugeras, O.: Three-Dimensional Computer Vision. MIT
Press, Cambridge, MA, 1993.

[12] Horn B.P.K., Robot Vision, MIT Press, Cambridge,
1986.

[13] Russel S., Norvig P., Artificial Intelligence: A Modern
Approach, Prentice Hall Int. Ed., 1995.

[14] Chella, A., Cossentino, M., Pirrone, R., Ruisi, A.,
Modeling ontologies for robotic environments, Proc of
14th Int. Conf. on Software Engineering and Knowledge
Engineering (SEKE 2002), July 15-19 2002, Ischia,
Italy,.

[15] Fox, D., Burgard, W., Thrun, S., Probabilistic methods
for mobile robot mapping, in Proc. Of the IJCAI-99
Workshop on Adaptive Spatial Representations of
Dynamic Environments, 1999.

[16] A. Saffiotti, N.B. Zumel, and E.H. Ruspini. Multi-Robot
Team Coordination using Desirabilities. Proc. of the 6th
Intl. Conf. on Intelligent Autonomous Systems (IAS), pp.
107-114. Venice, Italy, 2000.

[17] A. Saffiotti and E.H. Ruspini. Global Team Coordination
by Local Computation. Proc. of the European Control
Conference (ECC). Porto, Portugal, 2001

[18] Balch, T. and Arkin, R.C. Behavior-based formation
control for multi-robot teams. IEEE Transactions on
Robotics and Automation 14(6):926–939, 1998.

[19] Latombe, J.C., Robot Motion Planning, Kluwer
Academic Publisher, Boston, 1996.

[20] Coradeschi, S., Saffiotti, A. Anchoring Symbols to
Sensor Data: preliminary report. Proc. of the 17th AAAI
Conf, 129-135. Austin, Texas, July 2000.

Figure 6: some frames of the reconstructed scene using a standard VRML model.

(a)
(b)

…

…

HW agents

Symbolic agents

Services agents
TRACKING

3D
RECONSTR.

…

…

3D
RECONSTRUCTION

AGENT

IMAGE1
IMAGE2

IMAGE3

POINTS

…

…

HW agents

Symbolic agents

Services agents
TRACKING

3D
RECONSTR.

…

…

3D
RECONSTRUCTION

AGENT
…

…

HW agents

Symbolic agents

Services agents
TRACKING

3D
RECONSTR.

…

…

3D
RECONSTRUCTION

AGENT

3D
RECONSTRUCTION

AGENT

IMAGE1
IMAGE2

IMAGE3

POINTS

IMAGE1
IMAGE2

IMAGE3

POINTS

(c)

HW agents

Procedures agentsServices agents

PLANNING AGENT Symbolic agents

PLANNING …
CLASSIFICA-

TION

… ……

MAP

HW agents

Procedures agentsServices agents

PLANNING AGENT Symbolic agents

PLANNING …
CLASSIFICA-

TION

… ……

MAP

(d)

Figure 7: the proposed architecture exploited: (a) The source of visual data is the level of Hardware Agents: the
Devices Manager Agent is the interface between video sources and Procedural Agents; (b) The level of Services
Agents is a extensible collection of simple low-processing agents useful to perform various calculations; (c) The 3D
Reconstruction Agent owns images acquired by visual sensors on which it requested to perform filtering, edge
extraction, camera calibration and so on using Process Agents; (d) The Planner Agent is part of the symbolic agent
level and it plays the fundamental role of activation and coordination of the several agents involved.

Procedural agents

Symbolic agents

Services agents

CAM1
HW agents

CAM2

CAM3

DEVICES MANAGER AGENT

Single camera
agents

Procedural agents

Symbolic agents

Services agents

CAM1
HW agents

CAM2

CAM3

DEVICES MANAGER AGENT

Single camera
agents

HW agents

Procedural agents

Symbolic agents

Services agents

DENOISE FILTER
COLOUR

SEGMENTATION
MOTION

DETECTION

CONTOUR
DETECTOR

ILLUMINATION
RECOVERY

LINE
DETECTOR

BLOB
DETECTOR

ACTIVE
CONTOUR

CAMERA
CALIBRATION

CORNER
DETECTOR

…

…

… … …

HW agents

Procedural agents

Symbolic agents

Services agents

DENOISE FILTER
COLOUR

SEGMENTATION
MOTION

DETECTION

CONTOUR
DETECTOR

ILLUMINATION
RECOVERY

LINE
DETECTOR

BLOB
DETECTOR

ACTIVE
CONTOUR

CAMERA
CALIBRATION

CORNER
DETECTOR

…

…

… … …

