
Autonomous Agents and Multi-Agent Systems manuscript No.
(will be inserted by the editor)

ASPECS: an Agent-oriented Software Process for
Engineering Complex Systems

How to design agent societies under a holonic perspective

Massimo Cossentino1,2, Nicolas Gaud1, Vincent Hilaire1, Stéphane Galland1,
Abderrafiâa Koukam1

1 Multiagent Systems Group,
System and Transport Laboratory,
University of Technology of Belfort Montbéliard,
90010 Belfort cedex, France.
e-mail: {massimo.cossentino, nicolas.gaud, vincent.hilaire,
stephane.galland, abder.koukam}@utbm.fr
http://set.utbm.fr

2 ICAR Institute,
National Research Council,
Palermo, Italy.
http://www.pa.icar.cnr.it/cossentino

Received: Sep. 24, 2007 / 1st Revision: Apr. 25, 2008 / 1st Revised version: June 15, 2008
/ 2nd Revision: Feb. 11, 2009 / 2nd Revised version: May 21, 2009

Abstract Holonic multiagent systems (HMAS) offer a promising software en-
gineering approach for developing complex open software systems. However the
process of building Multi-Agent Systems (MAS) and HMAS is mostly different
from the process of building more traditional software systems as it introduces new
design and development challenges. This paper introduces an agent-oriented soft-
ware process for engineering complex systems called ASPECS. ASPECS is based
on a holonic organisational metamodel and provides a step-by-step guide from re-
quirements to code allowing the modelling of a system at different levels of details
using a set of refinement methods. This paper details the entire ASPECS devel-
opment process and provides a set of methodological guidelines for each process
activity. A complete case study is also used to illustrate the design process and the
associated notations. ASPECS uses UML as a modelling language. Because of the
specific needs of agents and holonic organisational design, the UML semantics and
notation are used as reference points, but they have been extended by introducing
new specific profiles.

http://set.utbm.fr
http://www.pa.icar.cnr.it/cossentino


2 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

Key words Agent Oriented Software Engineering – Software Development Pro-
cess – Design Methodology – Holonic Multiagent Systems – Complex Hierarchi-
cal Systems

1 Introduction

Software systems characteristics and expectations have fundamentally changed in
the past decade. They have increased both in size and complexity and are expected
to be distributed, open and highly dynamic. Multiagent systems are emerging as
an interesting software engineering paradigm for developing complex software
systems [35, 54]. However, to deal with all aspects of complex systems MAS must
deal with multiple levels of abstractions and openness, which is not the case for
most solutions [41].

According to Simon [48], complex systems often (if not always) exhibit a hi-
erarchical configuration1. The idea is that the architecture of a complex system
can be explained and understood using hierarchical organisation structures as pre-
sented in [52]. Several metamodels and methodologies have been proposed for
MAS [3]. However, most of them consider agents as atomic entities. There is no
intuitive or natural way to deal with hierarchical organisation structures. Consid-
ering agents as composed entities thus enables the modelling of nested hierarchies
and proposes a solution to this problem.

In the reported landscape, this paper advocates the use of holonic multiagent
systems (HMAS) in which holons are agents that may be composed of agents for
developing complex software systems. It introduces an agent-oriented software
process for engineering complex systems called ASPECS. The process can be con-
sidered as an evolution of the PASSI [13] process for modelling HMAS and it also
collects experiences about holon design coming from the RIO approach [33]. The
construction of the new process has been performed according to the situational
method engineering paradigm [32] and the approach described in [14]. The com-
plete description of the method adopted for building the ASPECS process is out of
the scope of this paper. It is sufficient to say that the definition of the MAS meta-
model adopted by the new process has been the first step and from this element
all the others (activities, guidelines, workflow) have been built according to this
guideline [14]. This metamodel defines the underlying concepts. A step-by-step
guide from requirements to code allows the modelling of a system at different lev-
els of details. Going from each level to the next consists in a refinement of the
metamodel concepts.

Using whatever holonic perspective, the designer can model a system with
entities of different granularities. It is then possible to recursively model subcom-
ponents of a complex system until the requested tasks are manageable by atomic
easy-to-implement entities. In multiagent systems, the vision of holons is someway
closer to the one that MAS researchers have of Recursive or Composed agents. A
holon constitutes a way to gather local and global, individual and collective points
of view. A holon is a self-similar structure composed of holons as sub-structures.

1 Hierarchical here is meant as a “loose” hierarchy as presented by Simon.



Agent-oriented Software Process for Engineering Complex Systems 3

A hierarchical structure composed of holons is called a holarchy. A holon can
be seen, depending on the level of observation, either as an autonomous atomic
entity or as an organisation of holons (this is often called the Janus effect [37]).
Holonic Systems have been already applied to a wide range of applications. Thus
it is not surprising that a number of models and frameworks have been proposed
for these systems, for instance PROSA [6] and MetaMorph [47]. However, most of
them are strongly attached to their domains of application and use specific agent
architectures.

For a successful application and deployment of MAS, methodologies are es-
sential. Several methodologies and metamodels with a clear organisational vision
have been already proposed, like: AGR [20], RIO [33], GAIA [54], INGENIAS [44],
MESSAGE [7], and SODA [42]. Most of these methodologies recognise that the
process of building MASs is radically different from the process of building more
traditional software systems. In particular, they all recognise (to varying extents)
the idea that a MAS can be conceived in terms of an organised society of individ-
uals in which each agent plays specific roles and interacts with other agents [54].
As pointed out by Ferber [20], the organisational approach offers a number of ad-
vantages and can contribute to agent-oriented software development in the follow-
ing points: heterogeneity of languages, modularity, multiple possible architectures,
and security of applications.

The objective of the proposed work consists in trying to gather the advantages
of organisational approaches as well as those of the holonic vision in modelling
complex systems. The result is a set of organisation-oriented abstractions that have
been integrated into a complete methodological process called ASPECS.

In this paper, the ASPECS design process is illustrated by using a case study ly-
ing in the area of Holonic Industrial Systems. This case study aims at helping the
manager of one of the most important automotive manufacturing plant in eastern
France to evaluate different configurations for the production plant. Each configu-
ration consists in a different allocation of manufacturing tasks to plant buildings.
This case study will be introduced in Subsection 2.3 after the description of the AS-
PECS metamodel. In the rest of this paper, we refer to this case study by labelling
it AMP (Automotive Manufacturing Plant).

The paper is organised as follows. Section 2 provides an early glimpse of the
ASPECS process and modelling approach. It also introduces the metamodel and
the core concepts of the methodology. Each phase of the ASPECS software process
and their associated activities are then described in Sections 3–5, while they are
applied to the AMP case study. An evaluation and comparison between ASPECS
and nine agent-oriented software engineering methodologies is presented in sec-
tion 6. Finally, section 7 summarises the results of the paper and describes some
future work directions.

2 A quick overview of ASPECS

ASPECS is a step-by-step requirements to code software engineering process based
on a metamodel, which defines the main concepts for the proposed HMAS analy-
sis, design and development. It integrates design models and philosophies from



4 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

both object- and agent-oriented software engineering (OOSE and AOSE) and is
largely inspired by the PASSI [13] and RIO [33] approaches. The target scope for
the proposed approach can be found in complex systems and especially hierarchi-
cal complex systems. The main vocation of ASPECS is towards the development of
societies of holonic (as well as not-holonic) multiagent systems. The idea under-
pinning the ASPECS design process can be described in a few fundamental choices
that characterise the vision of the authors and represent some of the main scientific
contributions of this work:

1. The ASPECS design process explicitly deals with the design of open, dynamic
and complex systems. The main limit in its application scope is that we as-
sume the system can be hierarchically decomposed in sub-systems (nearly-
decomposable systems [48]).

2. The adoption of an organisational approach. Functionalities to be realised are
assigned to organisations that accomplish them also by means of the hierarchi-
cal decomposition of the organisation structure in sub-organisations (holonic
paradigm). An organisation-oriented analysis is applied by using two differ-
ent decomposition strategies: vertical and horizontal. Vertical decomposition
allows to delegate the responsibility of an organisation at level n to sub-
organisations at level n-1 (lower abstraction level, finer grained organisations).
Horizontal decomposition allows the collaboration of several entities at the
same level of abstraction in order to fulfil the required functionalities.

3. Domain related ontological knowledge is used as a tool for enhancing the
quality of design. This has been already adopted in some previous method-
ologies [34] but it is lacking in most modern approaches. We think that in
dealing with intelligent agents it is particularly important to explicitly catch an
ontological model of the problem and solution domains; this allows an easy
application of several AI techniques as well as the adoption of semantic-based
communications among agents.

4. We considered three main levels of abstractions in design, called models ac-
cording to the model-driven engineering terminology. They are inherited from
PASSI metamodel domains and they are: problem, agency and solution. Con-
cepts of the problem domain are used to model system requirements in terms
of organisations and interacting roles; concepts of the agency domain are the
result of a set of transformations from the previous domain and are used to de-
pict an agent-oriented solution; concepts of the solution domain are again the
result of some transformations and are devoted to design a platform-specific
solution at the code level.

5. The joint use of holonic and agency concepts to respectively model the two
different faces of an entity that composes the system. Holonic concepts fo-
cus on the modelling of collective and compositional aspects of the system.
While agent-related concepts focus on modelling individual aspects and per-
sonal goals of the entities composing the system.

Further details about these choices and their consequences on the resulting process
will be provided throughout the paper. In the following subsections we will briefly
introduce the ASPECS process structure, the ASPECS metamodel with the defini-



Agent-oriented Software Process for Engineering Complex Systems 5

tions of the most important elements composing it and, finally, the case study that
will be used throughout the paper.

2.1 ASPECS: the process

The conception of the ASPECS process has been based on concepts coming from
Situational Method Engineering [32] and the work done by some of the authors in
applying this paradigm to agent-oriented design methodologies [14]. The resulting
ASPECS process also benefits from experiments and theoretical studies done on
PASSI and Agile PASSI [9, 13]. Just like them, ASPECS is based on an iterative-
incremental life-cycle, as it is for other widely accepted approaches in both the
agent- [4, 38, 43, 44] and object-oriented contexts.

As regards its deliverables, ASPECS uses UML as a modelling language but
because of the specific needs of agent and holonic organisational design, the UML
semantics and notation are used as reference points, and they have been extended
especially by the introduction of new profiles. In fact UML diagrams are often used
to represent concepts that are not completely considered in UML and the notation
has been modified to better fulfil the need of modelling agents.

The ASPECS process structure is based on the Software Process Engineer-
ing Metamodel (SPEM) specification proposed by OMG [50]. This specification is
based on the idea that a software development process is a collaboration between
abstract active entities, called Roles that perform operations, called Activities, on
concrete, tangible entities, called Work Products. According to this metamodel, the
ASPECS process is based on three main granularity levels of process components:
Phases, Activities and Tasks. A Phase delivers a composite work product, com-
posed by one or more documents that can belong to different work product types;
it is composed of a number of activities that are in turn decomposable into tasks.
An Activity delivers a main work product such as a diagram or a text document,
and it is composed of a number of Tasks. A Task contributes to the production of
a work product usually by delivering a part of it, and it instantiates/relates/refines
MAS metamodel elements.

The description of the ASPECS software development process has been split
in two different levels: in the first one (discussed in this section) we describe the
process at the phase level; in the second one we report the details of each phase,
with the associated activities, in a separate section (see sections 3-5). Because
of space concerns, each activity has been only briefly described but the interested
reader may refer to the ASPECS website2 for a more complete description including
another case study.

The ASPECS life cycle consists of three phases that are briefly described below.
Phases are also depicted in Figure 1 where each activity is reported together with
the main goal(s) it pursues.

The System Requirements phase aims at identifying a hierarchy of organisa-
tions, whose global behaviour may fulfil the system requirements under the chosen

2 ASPECS: http://www.aspecs.org/

http://www.aspecs.org/


6 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

Fig. 1 Roadmap of the ASPECS process (Phases/Activities and their goals)

perspective. It starts with a Domain Requirements Description activity where re-
quirements are identified by using classical techniques such as use cases. Domain
knowledge and vocabulary associated to the problem domain are then collected
and explicitly described in the Problem Ontology Description activity. Then, re-
quirements are associated to newly defined organisations. Each organisation will
therefore be responsible for exhibiting a behaviour that fulfils the requirements it is
responsible for. This activity is called Organisation Identification and it produces
an initial hierarchy of organisations that will later be extended and updated, with
further iterations, in order to obtain the global organisation hierarchy representing
the system structure and behaviour. The behaviour of each organisation is realised
by a set of interacting roles whose goals consist in contributing to the fulfilment



Agent-oriented Software Process for Engineering Complex Systems 7

of (a part of) the requirements of the organisation within which they are defined.
In order to design modular and reusable organisation models, roles are specified
without making any assumptions on the structure of the agent that may play them.
To meet this objective, the concept of capacity has been introduced. A capacity is
an abstract description of a know-how, i.e. a competence of a role. Each role re-
quires certain skills to define its behaviour and these skills are modelled by means
of a capacity. Besides, an entity that wants to play a role has to be able to provide
a concrete realisation for all the capacities required by the role. Finally, the last
step of the system requirements phase: the capacity identification activity, aims at
determining the capacities required by each role.

The second phase is the Agent Society Design phase that aims at designing a
society of agents whose global behaviour is able to provide an effective solution to
the problem described in the previous phase and to satisfy associated requirements.
The objective is to provide a model in terms of social interactions and dependen-
cies among entities (holons and agents). Previously identified elements such as
ontology, roles and interactions, are now refined from the social point of view
(interactions, dependencies, constraints, etc). At the end of this design phase, the
hierarchical organisation structure is mapped into a holarchy (hierarchy of holons)
in charge of realising the expected behaviours. Each of the previously identified
organisations is instantiated in form of groups. Corresponding roles are then as-
sociated to holons or agents. This last activity also aims at describing the various
rules that govern the decision-making process performed inside composed holons
as well as the holons’ dynamics in the system (creation of a new holon, recruitment
of members, etc). All of these elements are finally merged to obtain the complete
set of holons involved in the solution.

The third and last phase, namely Implementation and Deployment firstly
aims at implementing the agent-oriented solution designed in the previous phase
by deploying it to the chosen implementation platform, in our case, Janus. Sec-
ondly, it aims at detailing how to deploy the application over various computational
nodes (Janus kernels in our experiments). Based on Janus, the implementation
phase details activities that allow the description of the solution architecture and
the production of associated source code and tests. It also deals with the solution
reusability by encouraging the adoption of patterns. The code reuse activity aims
at integrating the code of these patterns and adapting the source code of previous
applications inside the new one. It is worth to note that although we will refer to
a Janus-based implementation, system developed by using other platforms can be
designed as well with the described process. This phase ends with the description
of the deployment configuration; it also details how the previously developed ap-
plication will be concretely deployed; this includes studying distribution aspects,
holons physical location(s) and their relationships with external devices and re-
sources. This activity also describes how to perform the integration of parts of
the application that have been designed and developed by using other modelling
approaches (i.e. object-oriented ones) with parts designed with ASPECS.



8 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

2.2 ASPECS: the metamodel and key concepts

ASPECS has been built by adopting the Model Driven Architecture (MDA) [40]
and thus we defined three levels of models each referring to a different metamodel.
We also label the three metamodels “domains” thus maintaining the link with the
PASSI metamodel that was one of our inspiration sources. The three domains we
define are:

The Problem Domain. It provides the organisational description of the problem
independently of a specific solution. The concepts introduced in this domain
are mainly used during the analysis phase and at the beginning of the design
phase (see Figure 2).

The Agency Domain. It introduces agent-related concepts and provides a de-
scription of the holonic, multiagent solution resulting from a refinement of
the Problem Domain elements (see Figure 3).

The Solution Domain is related to the implementation of the solution on a spe-
cific platform. This domain is thus dependent on a particular implementation
and deployment platform (see Figure 5). In our case, this part of the process
is based on the Janus platform that we specifically designed to ease the imple-
mentation of holonic and organisational models. A complete description of the
Janus platform would take too much space to be dealt by this paper and there-
fore we prefer to present only the most significant Janus issues, the interested
reader can find more details in [24] and on the Janus website3.

The following sub-sections detail the three domain metamodels and fundamen-
tal concepts within them. A complete description of all the elements reported in
the metamodels is present on the ASPECS website and will not be reported here.

2.2.1 Problem Domain
The Problem Domain metamodel (see Figure 2) includes elements that are used to
catch the problem requirements and perform their initial analysis: Requirements
(both functional and non-functional) are related to the organisation that fulfils
them. An organisation is composed of Roles, which are interacting within scenar-
ios while executing their Role plans. An organisation has a context that is described
in terms of an ontology. Roles participate to the achievement of their organisation
goals by means of their Capacities. In this subsection we will discuss the three
most important elements of this domain: organisation, role, capacity. Definitions
of the others can be found in Table 1 and on the ASPECS website.

An organisation is defined by a collection of roles that take part in systematic
institutionalised patterns of interactions with other roles in a common context.
This context consists in a shared knowledge, social rules/norms, social feelings,
and it is defined according to an ontology. The aim of an organisation is to fulfil
some requirements. An organisation can be seen as a tool to decompose a system
and it is structured as an aggregate of several disjoint partitions. Each organisation
aggregates several roles and it may itself be decomposed into sub-organisations.

3 Janus: http://www.janus-project.org/

http://www.janus-project.org/


Agent-oriented Software Process for Engineering Complex Systems 9

Fig. 2 The UML diagram of the ASPECS metamodel Problem Domain

In our approach, a Role defines an expected behaviour as a set of role tasks or-
dered by a plan, and a set of rights and obligations in the organisation context. The
goal of each Role is to contribute to the fulfilment of (a part of) the requirements
of the organisation within which it is defined.

In order to cope with the need of modelling system boundaries and system
interactions with the external environment, we introduced two different types of
roles: Common Role and Boundary Role. A Common Role is located inside the
designed system and interacts with either Common or Boundary Roles. A Bound-
ary Role is located at the boundary between the system and its environment and it
is responsible for interactions happening at this border (i.e. GUI, Database wrap-
pers, etc).

Roles use their capacities for participating to organisational goals fulfilment; a
Capacity is a specification of a transformation of a part of the designed system or
its environment. This transformation guarantees resulting properties if the system
satisfies a set of constraints before the transformation. It may be considered as a
specification of the pre- and post-conditions of a goal achievement. This concept is
a high level abstraction that proved to be very useful for modelling a portion of the
system capabilities without making any assumption about their implementations
as it should be at the initial analysis stage.

A Capacity describes what a behaviour is able to do or what a behaviour may
require to be defined. As a consequence, there are two main ways of using this
concept: (i) it can specify the result of some role interactions, and consequently
the results that an organisation as a whole may achieve with its behaviour. In this
sense, it is possible to say that an organisation may exhibit a capacity. (ii) capac-
ities may also be used to decompose complex role behaviours by abstracting and
externalising a part of their tasks into capacities (for instance by delegating these
tasks to other roles). In this case the capacity may be considered as a behavioural
building block that increases modularity and reusability.

In order to complete the description of the possibilities offered by the appli-
cation of our definitions of Organisation, Roles and Capacity, let us consider the
need of modelling a complex system behaviour. We assume it is possible to de-



10 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

compose it from a functional point of view, and in this way we obtain a set of
more finer grained (less complex) behaviours. Depending on the considered level
of abstraction, an organisation can be seen either as a unitary behaviour or as a set
of interacting behaviours. The concept of organisation is inherently a recursive one
[19]. The same duality is also present in the concept of holon as it will be shown
later in this article. Both are often illustrated by the same analogy: the composition
of the human body. The human body, from a certain point of view, can be seen as a
single entity with an identity, its own behaviour and personal emotions. Besides, it
may also be regarded as a cluster/aggregate of organs, which are themselves made
up of cells, and so on. At each level of this composition hierarchy, specific be-
haviours emerge. The body has an identity and a behaviour that is unique for each
individual. Each organ has a specific mission: filtration for kidneys, extraction of
oxygen for lungs or blood circulation for the heart. An organisation is either an
aggregation of interacting behaviours, and a single behaviour composing an organ-
isation at an upper level of abstraction; the resulting whole constitutes a hierarchy
of behaviours that has specific goals to be met at each level. This recursive defini-
tion of organisation will form the basis of the analysis activities performed within
ASPECS. In most systems, it is somewhat arbitrary as to where we leave off the
partitioning and what subsystems we take as elementary (cf. [48, chap. 8]). This
remains a pure design choice.

2.2.2 Agency Domain
The Agency Domain metamodel includes the elements that are used to define an
agent-oriented solution for the problem analysed in the previous stage. By adopting
an organisational approach, the solution will be mainly composed of the necessary
social structures designed in a multi-perspective way. In this subsection we will
discuss the most important elements of this domain. Definitions of the others can
be found in Table 2 and further details on the ASPECS website.

Fig. 3 The UML diagram of the ASPECS metamodel Agency Domain



Agent-oriented Software Process for Engineering Complex Systems 11

Concept Definition

Ontology
An explicit specification of a conceptualisation of a knowledge domain [28].
An ontology is composed of abstract ontology elements having three possible
concrete types: Concept, Predicate or Action.

Concept A category, an abstraction that shortens and summarises a variety/multiplicity
of objects by generalising common identifiable properties.

Predicate Assertions on concepts properties.

Action A change realised by an entity that modifies one or more properties of one or
more concepts.

Organisation

An organisation is defined by a collection of roles that take part in systematic
institutionalised patterns of interactions with other roles in a common context.
This context consists in shared knowledge and social rules/norms, social feel-
ings, and is defined according to an ontology. The aim of an organisation is to
fulfil some requirements.

Role

An expected behaviour (a set of role tasks ordered by a plan) and a set of
rights and obligations in the organisation context. The goal of each Role is to
contribute to the fulfilment of (a part of) the requirements of the organisation
within which it is defined. A role can be instantiated either as a Common
Role or Boundary Role. A Common Role is a role located inside the designed
system and interacting with either Common or Boundary Roles. A Boundary
Role is a role located at the boundary between the system and its outside and
it is responsible for interactions happening at this border (i.e. GUI, Database,
etc).

Interaction

A dynamic, not a priori known sequence of events (a specification of some oc-
currence that may potentially trigger effects on the system) exchanged among
roles, or between roles and entities outside the agent system to be designed.
Roles may react to the events according to theirs behaviours.

Capacity

A specification of a transformation of a part of the designed system or its
environment. This transformation guarantees resulting properties if the system
before the transformation satisfies a set of constraints. It may be considered
as a specification of the pre- and post-conditions of a goal achievement.

Role Task
An activity that defines a part of a role behaviour. A Role Task may be atomic
or composed by a coordinated sequence of subordinate Role Tasks. The defi-
nition of these Role Tasks can be based on capacities, required by roles.

Role plan
The behaviour of a Role is specified within a Role plan. It is the description
of how to combine and order Role Tasks and interactions to fulfil a (part of a)
requirement.

Scenario Describes a sequence of role interactions, which fulfills a (part of) require-
ment.

Table 1 Definition of the problem domain concepts

Probably holon is the central element of the ASPECS design process. The term
Holon was coined from the greek ’holos’ meaning ’whole’, and the suffix ’on’
meaning ’part’ or entity (for instance as a proton or neutron is a part of an atom);
hence a holon is a whole to those parts beneath it in the hierarchy but at the same
time a part to those wholes above it [37].



12 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

Each holon is an autonomous entity that has collective goals (shared by all
members) and may be composed by other holons, called members or sub-holons.
A composed holon is called super-holon. A super-holon is not only characterised
by its members but also by their interaction patterns. This implies that two super-
holons may be created from the same set of sub-holons if their members are inter-
acting in a different way.

A super-holon contains at least one single holonic group to define how mem-
bers get organised and how they govern the super-holon, and a set of production
groups (at least one) to describe how members interact and how they coordinate
their actions to fulfil the super-holon objectives. An example of a super-holon typ-
ical structure is reported in Figure 4.

Each super-holon member plays at least one role in the holonic group and
various roles in production groups (at least one role in one production group). The
holonic group describes the government of a holon and its structure in terms of
authority/ power repartition. This group represents a moderated group (see [26]) in
terms of roles (called holonic roles) and their interactions. In a moderated group,
a subset of the members will represent all the sub-holons in the outside world.
This management structure was adopted due to the wide range of configurations it
allows. Three holonic roles have been defined to describe the status of a member
inside a super-holon and one role to describe the status of non-members:

Representative or holon interface: it is the externally visible part of a super-holon;
it is an interface between the outside world (same level or upper level) and
the other holon members. It may represent other members in taking decisions
or accomplishing tasks (i.e. recruiting members, translating information, etc).
More than one member can play the Representative role at the same time.

Head or decision maker: it represents a privileged status conferring a certain level
of authority in taking decisions inside the holon.

Peer or default member: Normally in charge of doing tasks assigned by Heads,
a Peer can also have an administrative duty, and it may be employed in the
decision-making process. It depends on the configuration chosen for modelling
the super-holon.

Stand-Alone or non-member: This role represents a particular status inside a
holonic system. In contrast to the previous holonic roles, it represents the way
a member sees a non-member holon. Stand-Alone holons may interact with
the Representatives to request their admission as new members of an existing
super-holon.

The three first holonic roles describe the status of a member within a super-holon
and participate in defining the holonic organisation. Each of these roles can be
played by one or more members, knowing that any super-holon must have at least
one Representative and one Head. The roles Head and Peer are exclusive between
them, while Representative may be played simultaneously with one of the two
others. Each of these member holonic roles is parameterised using a specific sta-
tus that specifies if the corresponding holon member is shared between various
super-holons. The Part status represents members belonging to only one super-



Agent-oriented Software Process for Engineering Complex Systems 13

holon while the Multi-Part status represents sub-holons belonging to more than
one super-holon.

Fig. 4 Horizontal and vertical holon views

At the finest grained level of abstraction (that also means the first level of
composition), holons are composed by groups and their associated roles are played
by agents. From a motivational point of view agents and holons are different: an
agent has Individual Goals, thus it is self-interested in reaching some goals. If the
accomplishment of these goals prescribes or encourages the association to a holon,
then the agent will try to join it and play one of the roles defined within it. On the
other hand, a holon is motivated by Collective Goals that corresponds to a set of
goals commonly shared among its members. A holon acts in the interest of the
community of members that it embodies at an upper abstraction level.

The Agency Domain metamodel includes several other elements that because
of space concerns we do not discuss here. Their definitions are reported in Table 2.
In the next section we describe the elements of the Solution domain that are used
to effectively code the solution designed with the elements described up to now.

2.2.3 Solution Domain The solution domain metamodel contains elements used
for the implementation of the designed solution in the chosen platform. These ele-
ments are general enough to be applied to several existing platforms with minor or
no changes but nonetheless the most suitable choice is Janus that directly inspired
this portion of the metamodel.

JANUS (see [24]) was designed to facilitate the transition between the design
and implementation phases of holonic systems. It is implemented in Java and it
supports the direct implementation of the five key concepts used in the design
phase: organisation, group, role, holon and capacity.

Organisation is implemented as a first-class entity (a singleton class in the
object-oriented meaning of the word), which includes a set of role classes. An or-



14 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

Concept Definition

Communica-
tion

An interaction between two or more roles where the content (language, ontol-
ogy, and encoding) and the sequence of communication acts (protocol) are ex-
plicitly detailed. A communication is composed of messages expressing com-
municative acts [22, 23]. In a communication, participants are Agent Roles
and the knowledge exchanged between them is explicitly represented by a set
of ontology elements. A Protocol defines a sequence of expected message
communicative acts and represents a common pattern of communication, a
high-level strategy that governs the exchange of information between Agent
Roles.

Group An instance in the Agency Domain of an Organisation defined in the Problem
Domain. It is used to model an aggregation of Agent Roles played by holons.

Agent Role

An instance of the Problem Domain Role. It is a behaviour (expressed by a
set of Agent Tasks) and it owns a set of rights and obligations in a specific
group context. Agent Roles interact with each other by using communications
within the context of the group they belong to. Several Agent Roles are usually
aggregated in the Autonomous Entity that plays them. An Agent Role may be
responsible for providing one of more services to the remaining part of the
society.

Holonic
Group

A group that is devoted to contain holonic roles and takes care of the holon
internal decision-making process (composed-holon’s government). Holonic
roles are used to represent in an organisational way the notion of moderated
group (see [26]). They describe the level of authority of a member inside the
holon members community and the degree of commitment of a member to its
super-holon.

Agent Task

An Agent Task is a refinement of a Problem Domain Role Task. It is a portion
of a role behaviour and it may be composed by other Agent Tasks or atomic
Agent Actions. It may contribute to provide (a portion of) an Agent Role’s
service.

Agent Ac-
tion

The atomic composing unit of a behaviour. An action takes a set of inputs and
converts them into a set of outputs, though either or both sets may be empty.
An example of the most basic Agent Action consists in invoking a capacity or
a service requiring the same inputs.

Autonomous
Entity

An abstract rational entity that adopts a decision in order to obtain the satis-
faction of one or more of its own goals. An autonomous entity may play a set
of Agent Roles within various groups. These roles interact with each other in
the specific context provided by the entity itself. The entity context is given
by the knowledge, the capacities owned by the entity itself. Roles share this
context by the simple fact of being part of the same entity.

Agent An autonomous entity that has specific individual goals and the intrinsic abil-
ity to realise some capacities.

Goal A description of an objective to pursue and represents an abstraction of a
projected state of affairs to obtain.

Individual
Goal

A goal pursued by an individual agent that may be related to its personal de-
sires or intentions. This agent will deliberate to determine a plan or a strategy
to achieve its individual goals.

Collective
Goal

A goal pursued by a community of individuals, which has the commitment of
(a part of) the community members. Usually members commit to collective
goals because achieving these goals contributes to the achievement of mem-
bers’ individual goals.

Service

It provides the result of the execution of a capacity thus accomplishing a set
of functionalities on behalf of its owner: a role, a group, an agent or a holon.
These functionalities can be effectively considered as the concrete implemen-
tation of various capacities. A role can thus publish some of its capacities and
other members of the group can profit of them by means of a service exchange.
Similarly a group, able to provide a collective capacity can share it with other
groups by providing a service. A capacity is an internal aspect of an organi-
sation or an agent, while the service is designed to be shared between various
organisation or entities. To publish a capacity and thus allow other entities to
benefit from it, a service is created.

Resource The abstraction of an environmental entity. It may be manipulated by roles
through specific capacities.

Table 2 Definition of the agency domain concepts



Agent-oriented Software Process for Engineering Complex Systems 15

Fig. 5 The UML diagram of the ASPECS metamodel Solution Domain

ganisation can be instantiated in the form of groups. Each group contains a set of
instances of different role classes associated with the organisation it belongs to.
The number of authorised instances for each role is specified in the organisation
description. One of the most interesting features of JANUS consists in the imple-
mentation of roles as first class entities. A role is seen as a full-fledged class, and
each role is implemented independently of the entities that play it. Such an imple-
mentation facilitates the reuse of organisations in other solutions, but it also allows
a wide dynamics for roles.

Janus defines two main types of holon: HeavyHolon (threaded) and
LightHolon (non-threaded). A HeavyHolon has its own execution resources (one
thread per holon), and it can therefore operate independently. The LightHolon is
associated with synchronous execution mechanisms and it proved useful in some
multiagent-based simulations. This approach resembles the synchronous engine
of Madkit4. Holons can simultaneously play multiple roles in several groups; they
can dynamically access to new roles and leave the ones that are no longer in use.
When a holon starts playing a role, it obtains an instance of the class of this role
that it stores in its role container; when it leaves a role, the corresponding instance
is removed. To access or leave a role, a holon must meet the access and libera-
tion conditions of the role and those of the corresponding group. This mechanism
provides many advantages in terms of security, since holons have access to the be-
haviour of a role and thus get the corresponding executable code only if they fulfil
these conditions. Agents are represented by atomic holons (non-composed ones).

The notion of capacity enables the representation of holons’ competencies.
Each holon has, since its creation, a set of basic skills, including the ability to play
roles (and therefore communicate), to obtain information on existing organisations
and groups within the platform, create other holons, and obtain new capacities.
The capacity concept is an interface between the holon and the roles it plays. The
role requires some capacities to define its behaviour, which can then be invoked

4 see http://www.madkit.net/site/madkit/doc/devguide/synchronous.html

http://www.madkit.net/site/madkit/doc/devguide/synchronous.html


16 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

in one of the tasks that make up the behaviour of the role. The set of capacities
required by a role are specified in the role access conditions. A capacity can be
implemented in various ways, and each of these implementations is modelled by
the notion of Capacity Implementation. This concept is the operational represen-
tation of the service concept defined in the Agency domain. Agents own the finest
grained capacity implementations; these can be composed within the holons where
these agents play roles in order to obtain more complex behaviours.

Because of space concerns, the complete definition of this metamodel elements
are omitted but it can be found on the ASPECS website. The following section intro-
duces a case study used to illustrate the various steps of the ASPECS development
process and their associated notations.

2.3 Case study: Simulation of an Industrial Plant

A case study will be used throughout this paper for exemplifying the activities
and artefacts composing the proposed design process. The case study deals with
the analysis and modelling of one the most important industrial plant of eastern
France. The plant belongs to a major automotive manufacturer, it is greater than
250 hectares, and, as most industrial plants, it is in perpetual evolution. The plant
produces over 1700 cars per day and it requires constant improvements and ex-
pansions in order to handle the worldwide increasing demand of vehicles. As the
production grows up new buildings need to be built and production units relocated.
This plant, even including an internal railway, can be seen as a small town with a
high traffic density. The plant counts on over 19000 employees working in dif-
ferent shifts to ensure the plant produces 24 hours a day. Last year an average of
over 1600 trucks entered the plant every day carrying supplies. From a geographic
point of view, three cities and a highway enclose the plant. Such a configuration
makes difficult to increase the plant’s size for accommodating new buildings, thus
forcing to redesign the infrastructure when new needs arise.

Production chains are located inside buildings that exchange their products
by using trucks. These trucks have predefined tours inside the plant. Buildings
exchanging materials on a regular basis constitute a so-called Building Cluster.
Identifying these clusters is very useful when planning trucks’ routes and even
more important when planning an infrastructure modification. Infrastructure mod-
ifications include (re)positioning the different workshops required by the material-
processing plan inside existing buildings. Each workshop usually receives materi-
als from outside the plant (raw materials) and/or another workshop. Materials pro-
duced by workshops go to other workshops or outside the plant (complete cars).

Any change in the location of a workshop could generate perturbations on the
traffic flow and on the smooth functioning of the plant as a whole. Conversely, the
proper positioning of workshops in existing buildings is an important optimisation
activity that can result in an improved production for the overall plant.

Due to the great number of constraints and interrelated dependencies between
traffic and production, a simulation tool could be of great help when evaluating
different design choices. Even the smallest modification in a plant of this size



Agent-oriented Software Process for Engineering Complex Systems 17

Fig. 6 Screenshots of the simulation

often requires a significant budget to be invested. A reliable simulator could offer
the possibility of detecting side effects before the project approval.

Our simulation tool aims at providing a set of tools to support the decision
maker in preparing infra-structural modifications (such as the construction of new
buildings or parking lots, the relocation of workshops, etc) or when changing func-
tional elements, like trucks’ schedules and routes.

However, simulation of microscopic models may be inefficient when there are
a great number of entities in the model. Moreover, multiple views of an unstruc-
tured model may be difficult to integrate. In order to deal with both these two
problems we adopted the proposed holonic approach.

The simulator we developed offers a microscopic agent-based simulation of
the industrial plant. It provides a set of indicators concerning congestion, jams,
exchange of products between buildings. A connection with a Virtual Reality (VR)
platform was realised to offer the possibility of visualising the simulation in real-
time by using 3D technologies (see Figure 6).

This case study exhibits several properties that make it an ideal experiment for
the evaluation of the ASPECS design process:

Openness: Trucks and cars enter and exit freely in the scenario. The number of
involved trucks is not a priori known.

Complexity: Workshops are a priori positioned and their positions are fixed for
each scenario. During the execution of each scenario, workshops are dynam-
ically clustered in the Building Clusters, according to the volume of materi-
als exchanged among them. Intuitively, the optimal solution consists in posi-
tioning tightly related workshops in the same building or in buildings that are
nearby. The complexity of the problem arises from the fact that all workshops
are some way related and therefore a modification in one single cluster may
impact all the others.

Dynamics: The route of each truck is not a priori determined. The expected tran-
sit schedule has to be dynamically adapted to face delays, contingencies in
production and traffic jams.

Workshop clusters are dynamically identified and may evolve according to the
scenario events flow. This means that workshops may also enter and exit clusters
at runtime.



18 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

In the following section we start detailing the ASPECS design process with the
help of this case study. The description begins with a section reporting the activ-
ities of the System Requirements phase and then it continues with two sections
describing the other two phases: Agent Society, and Implementation and Deploy-
ment.

3 System Requirements Analysis Phase

System requirements analysis phase aims at providing a full description of the
problem based on the concepts defined in the Problem Domain of the metamodel.
A complete description of this phase process can be found in the ASPECS website5

and it is omitted here because of space concerns.

3.1 Domain Requirements Description (DRD)

Both the PASSI, and ASPECS, software processes are driven by requirements. Thus
the starting activity deals with the analysis of system functional and non-functional
requirements. Functional requirements describe the functions the software has to
exhibit [1] or the behaviour of the system in terms of interactions perceived by the
user. Non-functional requirements are sometimes known as constraints or quality
requirements [1]. The global objective of the Domain Requirements Description
(DRD) activity is gathering needs and expectations of application stake-holders
and providing a complete description of the behaviour of the application to be
developed. In the proposed approach, these requirements should be described by
using the specific language of the application domain and a user perspective. This
is usually done by adopting use case diagrams for the description of functional
requirements; besides, conventional text annotations are applied to use cases doc-
umentation for describing non-functional requirements. In ASPECS, we advocate
the use of a combination between use-case driven and goal-oriented requirements
analysis where the description of functional requirements is completed by the one
of associated goals and goal failures [11, 12]. The resulting document is labelled
as the current activity: Domain Requirements Description (or briefly DRD) docu-
ment.

Figure 7 details the use cases associated to a portion of the AMP case study.
The single actor represents the manager of the manufacturing plant that will use
this system as a decision support tool. The manager actor has two main require-
ments for the system: the first consists in identifying groups of buildings with
important materials exchange (Identify clusters use case). The second requirement
concentrates on the evaluation of vehicle traffic inside the plant (Simulate traffic
use case). The goal is to identify and look at traffic related components, like roads,
vehicles, traffic lights. This also requires modelling the topological structure of
the plant. Traffic simulation also concerns the identification of parameters that
will provide meaningful information to estimate congestion and possible jams.

5 http://www.aspecs.org



Agent-oriented Software Process for Engineering Complex Systems 19

Fig. 7 Domain Requirements Description of the AMP decision support tool

3.2 Problem Ontology Description (POD)

The global objective of the Problem Ontology Description is to provide an
overview of the problem domain. Stake-holders naturally express requirements
in their own terms and with implicit knowledge of their own works [49]. There-
fore the aim of this activity is deepening the understanding of the problem by
complementing the usual requirements description in terms of use cases with a
description of the concepts that compose the problem domain. It describes con-
cepts used in the specific language of the application domain and users. Results
of this work can sometime imply modifications in uses cases. The design of the
domain ontology occurs very earlier in our process and this has a direct conse-
quence in the organisation and capacity identification activities. Problem ontology
is modelled by using a class diagram where concepts, predicates and actions are
identified by specific stereotypes. The POD consists in the conceptualisation of the
requirements described in the previous activity and in any document that describes
the system-to-be like, for instance, textual requirements. There exists several ap-
proaches for engineering ontologies such as linguistic studies, mining techniques
or brainstorming. For a survey on ontology engineering see [? ].

Problem Ontology of the AMP decision support tool is depicted in Figure 8,
classes in grey are related to the solution ontology and will be discussed later in
section 4.1. This ontology includes a Plant concept, which represents the entire
plant. This is composed of zones that can be decomposed in smaller zones thus
describing an area, which may be refined to the granularity of a building or a road
segment. Each zone is linked to adjacent zones by connections. A connection can
be refined in either a gate (if one of the two zones is a building or the road segment
is located at the border of the plant) or a crossroad. Vehicles move on road lanes
that compose the road segments and there is a specific type of vehicle, namely
Truck that can carry materials between buildings; other vehicles such as cars and
buses do not carry materials and they only contribute to traffic congestion.



20 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

Fig. 8 Problem and Solution (in grey) Ontologies of the AMP decision support tool

3.3 Organisation Identification (OID)

The goal of the Organisation Identification activity is to bind each requirement to
a global behaviour, embodied by an organisation. Each requirement is then asso-
ciated to a unique organisation (see Figure 2) in charge of fulfilling it. As already
said, an organisation is defined by a set of roles, their interactions and a common
context. The associated context is defined according to a part of the Problem On-
tology, described in the previous activity.

Starting from use cases defined in the DRD activity, different approaches could
be used to cluster them and identify organisations. We advocate the use of a combi-
nation between a structural (or ontological) approach mainly based on the analysis
of the problem structure described in the POD and a functional approach based on
requirement clustering.

Structural analysis focuses on the identification of the system structure. It is
mainly based on the association between use cases and related ontological con-
cept. In structural organisation identification, use cases that deal with the same on-
tological concepts are often put together in the same organisation. This approach
assumes the same knowledge is probably shared or managed by the different mem-



Agent-oriented Software Process for Engineering Complex Systems 21

bers of the organisation. The structure of the ontology itself can often constitute a
good guideline to identify organisations, their composition relationships, and later
their roles.

Behavioural analysis aims at identifying a global behaviour for the organisa-
tion intended to fulfil the requirements described in the corresponding use case
diagram. The set of organisation roles and their interactions have to generate
this higher-level behaviour. For this task, the use of Organisational Design Pat-
terns [45] may be useful to the designer. In behavioural organisation identification,
use cases dealing with related pieces of the system behaviour are grouped (for in-
stance an use case and another related to it by an include relationship). This means
that members of the same organisation share similar goals.

These two strategies are also used in methodologies such as GAIA [54]. On
the one hand, the analyst can mimic the real world (through its conceptualisation
in the ontology) if its structure is a mandatory or relevant aspect of the system-
to-be. On the other hand if the existing organisations are not efficient nor relevant
for the system-to-be the use of a behavioural point of view is probably to be pre-
ferred. In the two cases, the subsequent activities determine if the choices made
are consistent. Indeed, the identification of roles and interactions (cf. section 3.4)
and their refinement through scenarios descriptions (cf. section 3.5) and role plans
(cf. section 3.6) validate the assignments (fulfil relationships) of organisations to
use cases.

Fig. 9 Fragment of the Organisation Identification of the AMP decision-helping tool

The use case diagram presented in Figure 9 presents a part of the organisation
identification diagram. For instance, use cases Simulate Traffic, Simulate Vehicle



22 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

and Move Vehicle are clustered in the Traffic simulation organisation according to
a functional identification of the resulting Traffic Simulation organisation.

3.4 Interactions and Role Identification (IRI)

The Interactions and Role Identification (IRI) activity aims at decomposing a
global behaviour embodied by an organisation into smaller interacting behaviours.
Each of these finer grained behaviours will be exhibited by a Role. Interacting roles
must be defined in the same organisation that provides the interaction context. The
goal of each Role is to contribute to the fulfilment of (a part of) the requirements
of the organisation it belongs to.

This activity also aims at completing the system perimeter definition started in
the domain requirements description activity. This is done by adopting two differ-
ent types of Roles: Common Role (often called just Role) or Boundary Role. This
latter has been conceived to work at the borders of the designed system. Bound-
ary Roles can be, for instance, used to control external sensors/effectors or to in-
teract with other systems. The result is a class diagram where classes represent
roles (stereotypes are used to differentiate common and boundary roles), pack-
ages represent organisations and relationships describe interactions among roles
or contributions (to the achievement of a goal) from one organisation to another.
Performing this activity is usually an iterative process coordinated with the fol-
lowing Scenarios Description. In this latter, elements that have here been depicted
from a structural point of view are exploited in their dynamical behaviour.

Some methodological guidelines may be provided to explicit this iterative pro-
cess: the first step consists in looking into scenarios that can be deducted from use
case diagrams to identify interactions. Let us suppose, for instance, that organisa-
tion O1 is assigned to fulfil requirements represented by use cases A and B. Use
case B has an “include” relationship with use case C assigned to organisation O2.
This encourages the designer to explore the possibility of a scenario where a role
of O2 interacts with another role of O1 in order to provide to O1 the result of a
capacity that belongs to O2. Another guideline for roles identification consists in
looking at the structure of the ontology in order to find elements that suggest some
hierarchical structure that could evoke a holonic configuration with interacting
roles (usually such a configuration is also useful for organisations identification as
it has been said before). The process stops when all organisations have been de-
composed into interacting roles and when all corresponding interactions have been
described in at least one scenario. Organisations fulfilling requirements with mu-
tual dependencies in the use case diagram should be linked during the IRI activity,
usually by a “contributes to” dependency.

We will now focus on the Traffic simulation organisation of the AMP case
study that is located at this finest level of granularity in the hierarchical decompo-
sition of the plant. This organisation can be decomposed in three roles (see Figure
10): Road User, Crossroad and RoadSegment, which are a Common Role. How-
ever Crossroad and RoadSegment are located at the boundary between the plant
and the outside region and they can be regarded as Boundary Roles. A Road User



Agent-oriented Software Process for Engineering Complex Systems 23

Fig. 10 Fragment of the Interactions and Role Identification for the AMP decision-helping
tool

can drive along a RoadSegment and cross a Crossroad if environmental conditions
allow it (for instance no other Road User is crossing a Crossroad at the same time).

The Zone simulation organisation corresponds to the other levels of granu-
larities in the hierarchical decomposition of the plant. This organisation can be
recursively used to decompose behaviours until we reach the lowest one that is
modelled by the Traffic simulation organisation. The Zone simulation organisation
is composed of two roles: Connection and Zone. As stated in the ontology, a Zone
can be decomposed in smaller Zones (and finally decomposed in Road Segments
and Crossroad at the lowest level). The simulation of a Zone can then be the result
of the simulation of smaller Zones. This contribution relationship is also depicted
in Figure 10 by using a UML constraint named “contributes to”.

3.5 Scenario Description (SD)

The goal of this activity is to describe the sequence of interactions occurring
among roles involved in each scenario. Scenario description is done just after OID
and IRI activities, and at this stage it is possible to assign an organisation and a
set of interacting behaviours (enacted by involved roles) to each requirement. The
challenge now consists in the description of how these different roles are interact-
ing to realise the scenario. In this sense, the required scenarios can be seen as a
conventional design activity dealing with capturing the behaviour of the system
in the most relevant occurrences of use cases (scenarios are also often referred to
as instances of use cases). Designed scenarios should describe real examples of
program execution and they should also include a description of the normal event
flow [49]. Scenarios are drawn in form of UML sequence diagrams and participat-



24 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

ing roles are depicted as object-roles. The role name is specified together with the
organisation it belongs to.

Fig. 11 A scenario description for the AMP Traffic Simulation Organisation

In order to perform this activity, a suggested guideline consists in starting from
the system behaviour as it has been described in the Organisation Identification
activity (see subsection 3.3). There, the system behaviour had been specified in
terms of use cases, it had been partitioned by using packages, and finally assigned
to responsible organisations. Besides, it is worth to note that Scenario Description
activity is tightly related to the preceding one (Interactions and Role Identification)
where the roles populating scenarios are depicted from a statical point of view
together with their relationships.

For the already proposed Traffic simulation organisation the scenario described
in Figure 11 corresponds to a Road User trying to cross a Crossroad. First it re-
quests permission to the Crossroad. The Crossroad first checks if the required
crossing is compliant with local traffic rules (prescribed directions, obligatory
turns, etc) and then requests traffic information to the next Road Segment (the
destination one). If entering the new Road Segment is possible then the Crossroad
grants the permission to the Road User, which crosses it.

3.6 Role Plan (RP)

The goal of each Role is to contribute to fulfil (a part of) the requirements of the
organisation within which it is defined. The behaviour of a Role is specified within
a Role Plan. The goal of this activity is to conceive, for each role, a plan that
could fulfil the part of the organisation requirements that have been delegated to
the role under study. In this context a plan describes how a goal can be achieved; it
is the description of how to combine interactions, external events, and Role Tasks
in order to fulfil a (part of a) requirement. A Role Task is the specification of a
parameterised behaviour in form of a coordinated sequence of subordinate units (a
Role Task can be composed of other Role Tasks).

The first task in this activity consists in detailing responsibilities assigned to
the currently designed role. For each role, a set of Role Tasks has to be identified



Agent-oriented Software Process for Engineering Complex Systems 25

for accomplishing the assigned requirements. Roles interactions that have been
already defined in previous activities may prove useful in the definition of the plan
and at the same time they are constraints to be satisfied by the plan (the role has to
engage in the already identified interactions in order to exhibit a behaviour that is
coherent with the scenarios it is involved in). The final step consists in determining
transitions between the various activities and the set of associated conditions. In a
second iteration each task will be examined to be eventually decomposed and in
order to determine if it requires something external to the role. If this is the case
then a new capacity will be created in the next activity and the role will refer to it.

The resulting work product is an UML activity diagram reporting one swim-
lane for each role. Activities of each role are positioned in its swimlane and in-
teractions with other roles are depicted in form of signal events or object flows
corresponding to exchanged messages.

Figure 12 reports an example of a Role Plan diagram. It depicts the plan of the
Traffic simulation organisation starting with an external signal, which indicates the
beginning of the simulation. After that, the Road User establishes a route and the
corresponding motion variables according to the chosen route; it follows on un-
til a Crossroad is reached. When the Road User reaches a Crossroad, it asks the
Crossroad for a crossing permission. The Crossroad grants the permission if the
Crossroad is available and if the Road Segment destination is not jammed. The
Crossroad sends a suggestion to the Road User, which takes the final decision.
When the Road User exits the plant it is destroyed, if it does not and if the Cross-
road is free then the Road User crosses it and informs the new road of its entrance.
When the Crossroad is busy, the Road User waits. The plan of the Road Segment
consists in waiting for information requests (for instance about traffic) and incom-
ing Road Users.

3.7 Capacity Identification (CI)

The main objective of the Capacity Identification activity (CI) is the definition of
generic role behaviour by identifying which know-how a role requires from the
individual that will play it. As already said, a capacity is a description of what
an organisation (and therefore one of its composing roles) is able to do without
any kind of specification on how to do it. It means that the results described by
a capacity may be reached by adopting different strategies. The realisation of the
capacity is a concern of the Agency Domain and it will be discussed later.

Indeed there are various ways of carrying out a capacity and they depend on
data, which are strictly related to the entity personality (beliefs, acquaintances,
etc). This is often a design choice. The final result of this activity (see Figure 13)
is performing a revision of the already designed IRI diagram by adding capacities
(represented by classes) and relating them to the roles that require them.

In Figure 13, roles of the Traffic Simulation and Zone Simulation organisations
are linked to three capacities. An entity playing the Road User role must own the
Choose Route capacity. This capacity allows the computation of a route between
two points according to environmental constraints. Entities playing the Connection



26 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

Fig. 12 Roles Plan of the AMP Traffic Simulation Organisation

and Zone roles must have a zooming capacity (for enabling the decomposition in
smaller zones).

At the end of the Capacity Identification activity, a set of capacity have been
identified. If the complexity of these capacities is manageable by atomic easy-to-
implement entities, the iterative analysis process stops. Otherwise, the complex
capacities are considered as new requirements, and a new iteration starts. The Sys-
tem Requirements Analysis phase needs to be reiterated to consider these new
requirements and thus identify organisations in charge of realising them, and so
on. More details on this aspect may be found in [? ].



Agent-oriented Software Process for Engineering Complex Systems 27

Fig. 13 Capacity Identification of the AMP Traffic and Zone Simulation Organisations

4 Agent Society Design Phase

This phase aims at designing a society of agents, whose global behaviour is able
to provide an effective solution to the problem described in the previous phase and
to satisfy associated requirements.

At this point, the problem has been modelled in terms of organisations, roles,
capacities and interactions. The result of this design phase is a model of the agent
society involved in the solution in terms of social interactions and dependencies
among entities (Holons and/or Agents).

After the first activity (Solution Ontology Description), the design flow is split
in two alternate paths: one concerning the social and organisational aspects of the
system and the other dealing with the design of agents considered as individuals
with their own individual goals. The resulting agents will be positioned at the low-
est level of the hierarchical social structure while holons will cluster roles played
by them thus building the holarchy.

In other words, agents are designed as individuals owning the capacity imple-
mentations necessary to play roles composing social structures (holons). In turn,
once obtained (by agents) the realisation of the capacities necessary to exhibit their
behaviours, holons can be considered at a higher level of abstraction as capacity
implementation owners by themselves, and therefore they can play roles in higher
level holons thus enabling the composition of the holarchy.

In the following sub-sections each activity will be detailed as it has been done
for the System Requirements Analysis phase activities.

4.1 Solution Ontology Description (SOD)

The objective of this activity consists in refining the problem ontology described
during POD activity by adding new concepts related to the agent-based solution



28 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

and by refining the existing ones. Concepts, predicates and actions of this ontology
are now also intended to be used for describing information exchanged in commu-
nications among roles. This implies the definition of all the predicates that are used
to exchange knowledge in communications as well as the actions that can be done
by Holons/Agents and affect the status of the world they live in (as represented in
ontology by concepts). The introduction of actions in ontology is not new and is
also compliant with a FIPA6 specification (RDF [21]).

The presence of actions in the ontology allows to model the complete knowl-
edge space of autonomous entities, in terms of the concepts they can understand,
the predicates they can assert about the status of those concepts, and the actions
they can perform/conceive in order to affect the status of concepts.

This activity follows an iterative and incremental design approach. The need
for new concepts, predicates and actions can arise at any moment in the design
activities and can justify iterations to improve ontology with the new elements.

As regards the proposed case study, in order to fully support the physical model
of vehicles moving in the plant, the ontology (see figure 8) as been enriched with
concepts concerning features of a Vehicle such as Height, Width, Speed or Load-
Capacity for a Truck. Each Zone is now defined by a set of coordinates.

At the end of the Solution Ontology Description activity, the ASPECS develop-
ment process is split up into two development sub-branches, the first and foremost
is dedicated to the organisational design of the system, the second is dedicated to
the identification and design of agents composing the system. In other words, the
main branch deals with the design of the organisational structure of the system and
collective goals that have to be satisfied by organisations, while the second branch
deals with agent’s personal goals and motivations, and it aims at defining the agent
architecture. The two branches are then merged to describe the complete holarchy
structure of the system and the individual agent decision plan. In the following
subsections, the activities related to agents design and then the organisational ones
will be described. This corresponds to building the holarchy in a bottom-up way.
This is not a prescription of the proposed approach but only a presentation choice.
The designer is free of choosing his/her preferred branch and even (most likely)
interleaving the activities of the two paths. The Agents Identification activity is the
first activity of the agent design and it will be discussed in the next section.

4.2 Agent Identification (AI)

This Agent Identification (AI) activity consists in identifying agents that will com-
pose the lowest level of the system hierarchy and their responsibilities. These re-
sponsibilities are modelled using the notion of individual goals and will be the ba-
sis to determine agent architectures in the next activity. The Interactions and Role
Identification, Solution Ontology and Domain Requirements Description Docu-
ments are the main inputs of this activity. Agent’s goals identification is mainly
based on gathering organisation responsibilities located at the lowest level of the
system organisational hierarchy. These responsibilities are expressed in term of

6 Foundation for Intelligent Physical Agents: http://fipa.org

http://fipa.org


Agent-oriented Software Process for Engineering Complex Systems 29

requirements described by using a combination between a use-case driven and a
goal-oriented approach [11, 12]. Agents are conceived to play these lowest-level
roles; their personal goals should thus at least correspond to the union of the goals
of these roles. To play these roles, agents have also to provide an implementation
for the capacities required by these roles. This aspect will be studied in the next ac-
tivity. Besides, Agent Identification activity is also guided by the identification of
ontology concepts that represent system individuals (concepts linked to ontology
actions, for instance Truck in our case study). These latter are effectively consid-
ered as useful guidelines to identify agent responsibilities since an individual acts
according to personal motivations and goals.

We propose to use TROPOS goal and actor diagram to describe the results
of this activity. However, system and agent overview diagrams as proposed in
PROMETHEUS [43] may also be used as an alternative solution.

Fig. 14 Agent Identification for the AMP Case study

Figure 14 describes the Vehicle and Truck agents of the AMP Case study and
their respective responsibilities using a TROPOS Goal diagram.

4.3 Agent Architecture Description (AAD)

The Agent Architecture Description (AAD) activity aims at providing precise in-
dications on the architecture that should be adopted by agents. Indeed, the agent
architecture is at least defined by the set of roles that the agent should play and
the minimal set of services that implement the capacities required by these roles.
The association between Agents and Agent Roles allows the identification of the
set of capacities that are required by Agent Role in order to be played by Agents.
In this activity, a UML class diagram is used to describe agents and their capacities
realisations in terms of attributes and methods.

Fig. 15 Description of the Truck Agent architecture



30 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

The Truck agent architecture sketched in figure 15 consists mainly in an imple-
mentation of a Path Finder Algorithm, which realises the Choose Route capacity.

4.4 Communication Ontological Description (COD)

This activity aims at describing communications among roles. A communication is
an i nteraction between two or more roles where the content (language, ontology,
and encoding) and the sequence of communication acts (protocol) are explicitly
detailed. A communication mainly consists of speech acts and protocols as also
specified by FIPA. The model of communication adopted is based on the assump-
tion that two roles wishing to interact, share a common ontology. This common
knowledge is represented in the communication by a set of Ontology elements. A
communication is an interaction composed of several messages ordered by a Pro-
tocol. Each message underpins a specific communicative act (see [46] and FIPA
speech acts [22, 23]) and its content refers to one or more ontology elements. The
message is encoded in a content language.

At this stage we could regard the previously studied interactions as messages
and each set of interactions between two roles has to be clustered in one or more
communications. This activity also describes data (it would be better to say knowl-
edge) structures required in each role to store exchanged information by adding
the necessary ontological structure to roles. These structures are of course based
on the elements of the solution ontology.

Figure 16 describes some communications of the AMP Traffic Simulation Or-
ganisation. For example, each Road User role-player may initiate an Entering
communication ruled by the FIPA-inform protocol, using the Solution Ontology
previously described and encoded in RDF.

Fig. 16 Communication Ontological Description of the AMP Traffic Simulation Organisa-
tion



Agent-oriented Software Process for Engineering Complex Systems 31

4.5 Role Behaviour Description (RBD)

This activity aims at defining the complete life-cycle of a role; Roles identified dur-
ing the IRI activity are here specialised in Agent Roles, which interact with each
other by means of communications. The behaviour of Agent Roles is described by
a set of Agent Tasks that are the refinement of the Problem Domain Role Tasks and
contribute to provide (a portion of) an Agent Role’s service. At this level of ab-
straction, this kind of task is no more considered atomic but it can be decomposed
in finer grained Agent Actions.

An Agent Action is now the atomic unit of a behaviour specification. An ac-
tion takes a set of inputs and converts them into a set of outputs, though either or
both sets may be empty. An example of the most basic Agent Action consists in
invoking a capacity or requesting a service (as explained in following subsections).

The Role Behaviour Description is a refinement of the results produced by the
Role Plan activity performed in the System Requirement phase. The behaviour of
each role is now described using a statechart or an activity diagram but the use of
statecharts is preferred because of their expressiveness, their executability and their
capabilities to generate code. If a role requires capacities or provides services, this
activity has to describe tasks and actions in which they are really used or provided.
The designer describes the dynamical behaviour of the role starting from the Role
Plan drawn in the previous phase and the capacities used by the role.

Figure 17 describes the behaviour of the Road User Role. By default it is idle
just the time for computing a route (the transition without event). Once the route
is computed it starts travelling on a road lane. This state remains active until a
crossroad is reached. When such an event occurs the role sends a requestCross-
ingPermission message and enters the waiting state. When the crossingPermission
reply is received the role either continue in the running on a road lane state if it is
still in the plant or exits the plant. If no answer is provided before a timeout, the
Road User computes a new route.

Fig. 17 Role Behaviour Description of the Road User role in the Traffic Zone Organisation



32 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

4.6 Protocol Description (PD)

The aim of this activity is to define purpose-specific interaction protocols whose
need may arise when the description of communications done during the COD
(Communication Ontology Description) and SD (Scenario Description) activities
does not match any of the existing FIPA protocols.

The designer starts from the scenarios and the ontological description of com-
munications in order to find if an existing protocol can be used. If not, then he/she
can proceed to the definition of a new protocol that is compliant with the interac-
tions described in scenarios and communication semantics.

It is advisable to refer to the FIPA Interaction protocols library7 in order to see
if a satisfying protocol already exists and if not, probably an existing one can be
the basis for changes that can successfully solve the specific problem.

For our case study there is no need of designing new protocols as we reused
existing ones.

4.7 Organisation Dependencies Description (ODD)

The goal of the Organisation Dependencies Description activity is to define re-
lationships between: (i) capacities required by roles and organisations, and (ii)
services that realise them. It also dedicated to the identification of resources.

Although capacities and services play a central role in this activity, the process
to be performed does not start from them. Organisation Dependencies Description
activity starts from the identification and description of resources that are manipu-
lated by roles.

Resources in ASPECS are regarded as abstractions of environmental entities ac-
cessed by boundary roles. In order to access resources, roles need specific capaci-
ties that are now purposefully introduced and then realised by services if necessary.
In this way dependencies of organisations on the real world are made explicit.

Finally, this activity should also outcome with the description of interfaces
used by the system to manipulate resources. This matching between service and
capacity allows the construction of a repository that may be used to inform agents
on how to dynamically obtain a given capacity. Moreover it also proves that the
hierarchical system decomposition is correct since the matching should validate
the contribution that organisations acting at a given level give to upper-level or-
ganisations.

The resulting work product, as exemplified in Figure 18, is a UML class dia-
gram, reporting roles (clustered in organisations), communications, services, ca-
pacities and resources. It can be seen as a refinement of the COD (Communication
Ontological Description) diagram including services and resources. Figure 18 de-
scribes dependencies of the Traffic Simulation organisation. One new resource has
been identified (it represents a 3D virtual engine), and the RenderVehicle capacity
has been created to manage it. It is interesting to note that this capacity does not
need a service realisation because the corresponding functionality is internal to

7 FIPA Interaction Protocols specifications: http://www.fipa.org/repository/ips.php3

http://www.fipa.org/repository/ips.php3


Agent-oriented Software Process for Engineering Complex Systems 33

the Road User role that does not need to publish it as a service. It is the same for
the Choose Route capacity. The Connection Zoom and Zone Zoom capacities have
service realisation since the zooming is done by mean of sub-holons contribution.

Fig. 18 Organisation Dependencies Description of the AMP Traffic and Zone Simulation
Organisations

4.8 Role Constraints Identification (RCI)

This activity aims at identifying constraints between roles. This for instance in-
cludes roles that have to be played simultaneously, priorities in their executions,
mutual exclusions, dependencies, and so on. Concurrency constraints are also im-
portant because they will guide the definition of role scheduling policies. Detailed
constraints between roles must prevent their inopportune concurrent execution and
force the correct execution sequence. Roles shall be played simultaneously if and
only if they allow an exchange of information between two different organisations.
A mean to realise this exchange can be the agent internal context when both roles
belong to the same agent. This constitutes an alternative to the use of services and
a simplification of information transfer.

Constraints between roles are identified thanks to roles dependencies and as-
sociated knowledge described in the previous activity. Role behaviour description
also defines which information is eventually required by other organisations and
it thus allows the identification of roles couples that have to be played simultane-
ously.



34 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

In the presented case study, if an agent plays the role Carrier, it must play at
the same time the role Road User. This type of constraints is modelled by using a
stereotyped UML dependency from the Carrier and Road User classes. The direc-
tion of the dependency means that the Carrier role required that its player already
plays the Road User role.

4.9 Agent Plan Description (APD)

This activity aims at terminating the design of agent internal architectures. Ac-
cording to the results of the Agent Architecture Description and Role Constraints
Identification activities, it is now possible to determine the personal plan of each
agent according to its individual motivations and pursued goals. In this activity,
each agent of the system is associated to the set of roles it has to play according to
the set of capacities it owns. An agent has to provide an implementation for each
capacity required by the played roles. The plan represents the strategy used by the
agent to choose the roles it plays. In this activity, a state-chart diagram is used to
describe the plan of an agent; an activity diagram may also be used.

Fig. 19 Description of the Truck Agent Plan

The Truck agent plays two roles, namely Road User and Carrier. By default
it plays the Road User role and if it reaches a Gate it decides to play the Carrier
role. When the load/unload operations are finished it returns playing the Road User
role.

4.10 Holarchy Design (HD)

At this step in the development process, the set of organisations composing the
system, their roles and the associated communications have been identified and
specified. The architectures of the various agents have also been specified. The
Holarchy Design activity is the last activity of the Agent Society design phase and
aims at providing a global synthesis where previous activities work products are
combined and summarised in a single work-product describing the overall struc-
ture of the system and the rules that will govern its dynamics.

In order to properly define the discussed aspects of each holon, the Holarchy
Design activity is decomposed in four main tasks that are detailed in what follows.



Agent-oriented Software Process for Engineering Complex Systems 35

Holonification task. This task aims at mapping the previously identified hierar-
chy of organisations to a holarchy. This mapping is based on the association of
holons composing the holarchy with the set of roles defined in the organisation
hierarchy they have to play. To build holarchies, organisations that composed the
system are instantiated in form of groups. A set of previously identified agents
composes the lowest level of the holarchies. A set of holons is then created at each
upper level, each holon may play one or more roles in one or several groups in the
level of interest. Composition relationships among super- and sub-holons are then
specified according to the contributions required by the organisations (as described
in the OID and ODD work products).

In this activity, two points of view on the system are used to conceive the final
system holarchy. Each of these viewpoints corresponds to a dimension of the holon
concept (see Figure 4):

Horizontal: This step consists in instantiating organisations of the same level in
terms of groups. Then, holons will be created for clustering these groups and
they will be associated to the roles they should play according to the results of
the ODD and RCI activities.

Vertical: This step aims at specifying the composition relationship between
holons. It specifies how a group of holons of level n will contribute to the
behaviour of a role played by a holon of level n + 1. Groups of level n are
instances of organisations that provide services able to implement capacities
required by roles located at level n + 1.

Holon Government Model Definition task. The second task focuses on newly
composed holons and it aims at identifying a government type for each of them.
The objective consists in describing the various rules used to take decisions inside
each super-holon. Defining the holon government type essentially means defin-
ing the holon decision-making process. For instance when an external holon is
requesting its admission as a member, the decision to accept or refuse it should be
taken according to a specific decision-making process that has to be defined (for
instance, a voting mechanism may be used).

Two aspects of the decision-making process should be analysed: (i) who is in
charge of taking the decisions and how this happens (head, vote, etc); (ii) who is
to be contacted by the external holon that wants to enter the super-holon or that is
requesting a service and how the requesting process could be started.

The decision process for the admission of a new member is an example of de-
cision process that fits most of the cases and for this reason we will mainly refer
to that without loosing in generality. The decision can be done according to sev-
eral different internal policies representing different levels of involvement of the
holon member community: federation is positioned at one side of the spectrum,
dictatorship on the opposite one. In the federation configuration, all members are
equal when a decision has to be taken. Opposite to that, in dictatorship, heads are
omnipotent; a decision taken by one of them does not have to be validated by
any other member. In this government form, members loose most of their auton-
omy having to request the head permission for providing a service or requesting a
collective action. Another possibility consists in establishing a voting mechanism.



36 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

Specific and interesting configurations can arise from the number of voters and the
percentage of heads and peers involved in the decision-making process, because
of their relevance it is worth to analyse them in details:

Monarchy: the command is centralised and a Head is in charge. Monarchy, here,
doesn’t refer to the process of Head’s nomination/election. The nomination
process is a different issue from the decision-making process. Monarchy here
describes the situation where only one head controls the entire decision-
making process.

Oligarchy: A little group of heads share the command without referring to the
other (peer) members.

Polyarchy 8: A little group of heads share the command but they have to refer to
the Peers for some decisions.

Apanarchy 9: The command is completely shared between all members of the
super-holon. Everyone takes part to the decision-making process.

Holarchy Definition task. The previously described elements are merged in order
to obtain the complete set of holons (composed or not) involved in the solution. In
this way, the complete holarchy of the system is described. Results of this task are
summarised in an organisational cheese-board (see Figure 20) that is an extension
of the cheese-board diagrams introduced in [20]. This diagram is then associated
to a set of documents describing the government of each holon and the rules gov-
erning their dynamics as above discussed.

Holon self-Organisation Mechanisms Definition task. The description obtained
with the previous tasks is just the initial structure of the system, the last objective
is now to specify holons’ self-organisation mechanisms (creation, new member
integration, scheduling policies for roles) in order to support a dynamic evolution
of the system holarchy.

Because of space concerns, only the most common and important rules gov-
erning holon dynamics are discussed here, mainly those dealing with members’
recruitment and holon creation.

Once a super-holon has been created, new members may request to join it or
the super-holon itself may recruit new members to achieve its own goals. The new
member admission process is called Merging. In order to support the integration
of new members, a “standard” interface should be provided to external holons for
submitting their admission request. A specific organisation with two roles, Stan-
dAlone played by the candidate, and Representative played by at least one of the
representatives of holons members, has been designed to manage this recruitment
process.

As regards the holon creation mechanism, it is important to study the motiva-
tions for the birth of a new holon; these can in fact either depend: (i) on the need

8 We borrow the term coined by Robert A. Dahl [16] to describe a specific type of demo-
cratic government.

9 The name is a composition of the Greek Apan meaning all or every and archein, ”to
rule”



Agent-oriented Software Process for Engineering Complex Systems 37

to satisfy in a collective way a requirement that cannot be accomplished by a sin-
gle entity alone, or (ii) on the need to improve the internal structure of an existing
holon that is becoming too big and whose tasks are too complex to be managed.
It is therefore possible to distinguish two different mechanisms:

A top-down mechanism (sub-division): a super-holon, whose tasks are too com-
plex, decides to create a set of internal organisations that are able to execute
these tasks thus distributing the computational cost and breaking down the
organisation complexity. This case could be reduced to a specific one of the
initial creation process, because newly created holons are configured to satisfy
integration constraints with the super-holon.

A bottom-up mechanism (fusion - merging process): a set of holons decides to
merge and to create a super-holon for satisfying a common goal. In this case,
all rules that will govern the life of the new super-holon have to be defined.

A fragment of the final structure of the holonic solution for the AMP case study
is presented in Figure 20 using a holonic cheese-board diagram. This diagram is
associated to a map describing two levels of the associated topological decompo-
sition of two plant zones that are modelled in the application by holons 1 and 2. At
the second level of the holarchy, three super-holons (1, 2 and 3) are playing roles
in two groups g0 and g1. The denomination g0: Zone Simulation indicates that
group g0 is an instance of the Zone Simulation organisation. Holons 1 and 2 rep-
resent two plant zones that are linked using a connection embodied by the holon
3 who maintains statistic information about material flows between the two adja-
cent zones. Each of these super-holons contains at least one instance of the Traffic
Simulation organisation (g3, g5 and g6) in charge of the simulation of trucks and
vehicles traffic inside the zone and it also contains a holonic group defining the
governmental structure. Each Zone holon disposes of a simple type of government
inspired by the oligarchy model where command is centralised in the hands of a
group of heads. The rule is that the holon playing the Road Segment role is auto-
matically promoted Head and all heads elect one Representative among them. The
agent 7 is shared by two super-holons (1, 2) and thus considered as a Multi-Part
Peer. This holon constitutes the way to transfer vehicles between the two zones
represented by holons 1 and 2.

5 Implementation and Deployment Phase

This section gives an overview of the Implementation and Deployment phase. As
already said, further details can be found in [24]. This phase aims at implement-
ing and deploying the agent-oriented solution designed in the previous phase by
adapting it to the chosen implementation platform.

A platform called Janus10 was built in our lab for this purpose. It is specifically
designed to deal with holonic and organisational aspects. The goal of Janus is to
provide a full set of facilities for launching, displaying, developing and monitoring
holons, roles and organisations.

10 http://www.janus-project.org

http://www.janus-project.org


38 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

Fig. 20 A fragment of the Holarchy Design of the AMP decision-helping tools

The two main contributions of Janus are: (i) its native management of holons,
and (ii) its implementation of the notion of Role as a concrete implementation-level
entity. In contrast with other platforms such as MadKit [30], JADE, and FIPA-OS,
the concept of Role is considered as a first class entity in Janus. It thus enables a
direct implementation of organisational models without making any assumptions
on the architecture of the holons that will play the role(s) of an organisation.

Based on Janus, the implementation and deployment phase activities allow the
description of the solution architecture and the production of associated source
code and test. This phase also aims at detailing how to deploy an application over
various Janus kernels. Janus adopts a peer-to-peer technology to allow kernel fed-
eration and agent migration. Of course, the process described in this phase can
also be used with any other platform able to provide a translation of the concepts
presented in the ASPECS metamodel of the Solution domain.

5.1 Holon Architecture Definition

This activity aims at defining the architecture of each holon involved in the im-
plementation of the previously designed solution. Each organisation together with
its set of roles and associated tasks has to be described. Each holon is associated
with the set of roles it should play, the set of capacities and services it owns. Two
different approaches may be used to design a holon. A static approach consists
in designing a specific architecture for each holon during the Holarchy Design
activity. This approach is the simplest and easiest to maintain, but it may gener-
ate a relevant number of different architectures in complex applications. Another
approach consists in designing a dynamic architecture where holons will dynami-
cally acquire roles and the corresponding set of required capacities. In this activity
the designer also defines composed holons government rules.



Agent-oriented Software Process for Engineering Complex Systems 39

Figure 21 depicts a part of the Holons architecture defined for the implementa-
tion of our AMP example. Environmental parts were implemented as LightHolons
(non-threaded). The Car and Truck agents are implemented as HeavyHolons
(threaded). The Traffic Simulation and Workshop Clustering organisations are par-
tially described in Figure 21. Only the role Car User is described in terms of its
RoleTasks. Classes in grey correspond to classes of the solution domain of the AS-
PECS metamodel (see Figure 5) that are refined to introduce problem dependent
artefacts.

Fig. 21 A fragment of the Holon Architecture designed for the AMP case study

5.2 Code Reuse

A set of organisational patterns may have been used during the two previous
phases especially for the OID (Organisation Identification) and IRI (Interactions
and Roles Identification) activities and for the Holon Government identification
task. This activity aims at integrating the code of these patterns inside the cur-
rently designed application. It also intends to provide a framework for reusing
code of previous applications that can be reused in the current one. Integrating
pattern source code may require some adaptation work; for instance, it is often
necessary to adapt the interface with the remaining part of the application.

5.3 Code Production of Organisations and Roles

This activity aims at producing the code for organisations and roles. They are the
most elementary building blocks of the Janus platform; actually each role and or-
ganisation becomes a class in the code and they are grouped together in specific



40 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

packages (one for each organisation). Starting from the structural and dynamical
representation of roles and organisations the programmer can code their imple-
mentation using the Janus primitives. It is part of our future works to provide tools
for the automatic generation of these portions of code from design diagrams.

5.4 Testing activities

The approach used for tests in ASPECS consists in successively testing each context
from the role (the smaller one) to the entire system. Since we use conventional
software engineering approaches, these activities will not be extensively discussed
here but only a brief description will be provided.

The first activity (organisations and roles unit test) aims at testing behaviours
that will be used to compose the system; this means individual behaviours repre-
sented by roles and global behaviours corresponding to organisations. Holon Unit
test is the second level of test; it aims at validating the global holon’s behaviour. A
particular attention is paid to holon dynamics especially to testing rules that gov-
ern holon creation, management (task attribution) and the process of members’
integration. Each holon is individually tested. The third testing activity, integration
test, aims at verifying if the system effectively fulfils the requirements identified
in the Domain Requirement Description activity (a great relevance is now given to
verification of non-functional requirements that can hardly be tested in the previ-
ous test activities).

The ASPECS process also enables the use of formal methods, such as model
checking and theorem proving [25], but these aspects are not discussed here due
to space concern.

5.5 Code Production of Holons

This activity focuses on code production for holons. In the Janus platform, each
holon is represented by a class. Janus offers two main kinds of holon: a threaded
and a non-threaded one. The programmer has to choose the most appropriate one
for the specific problem.

Starting from the results of the Holarchy Design activity, the programmer
chooses the most suitable version of Holon and can code the holon implemen-
tation by using the associated Janus primitives. When a non-threaded implemen-
tation is chosen, holon scheduling aspects have to be coded too. The three methods
that govern the life-cycle of each holon have also to be defined (activate(), live(),
end()); they are associated to the three main states of the holon’s life: activation, ex-
ecution, and termination. As inspired by the Madkit synchronous engine11, Janus
provides a full set of tools to manage non-threaded holons execution.

11 refer to http://www.madkit.net/site/madkit/doc/devguide/synchronous.html

http://www.madkit.net/site/madkit/doc/devguide/synchronous.html


Agent-oriented Software Process for Engineering Complex Systems 41

5.6 Deployment Configuration

This activity aims at detailing how the previously developed application will be
concretely deployed. This includes studying distribution aspects, holons phys-
ical location(s), their relationships with external devices (sensors, actuators
used/accessed by agents) and resources. This activity also details how to perform
the integration of parts of the application that have been designed and developed
with traditional approaches (i.e. object-oriented ones) with parts designed by using
an agent-oriented approach.

The first task of this activity consists in establishing a partition between the
various holons used to develop the application. This partition is mainly performed
according to localisation of resources and the organisation in which they are used.
Then at least one Janus kernel is deployed on each available elaborating unit. At
this stage, the set of corresponding holons and their associated organisations are
deployed on the various kernels according to the previously defined partition. If a
dynamic discovery process is used to integrate new Janus kernels at runtime then,
the way to deploy organisations and their associated roles, on newly discovered
kernels, has to be described too.

Figure 22 illustrates the deployment diagram for the AMP study case. Three
physical nodes are considered; each of them is running a Janus kernel and is con-
nected to the other nodes via a network connection. The first kernel hosts the 3D
engine and the holons playing the Zone role that correspond to the plant. All the
other holons are a-priori instantiated on one of the two remaining kernels. Of
course the location of the holon on the Janus kernel federation could evolve at
runtime.

Fig. 22 A fragment of the Deployment Diagram of the AMP case study



42 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

6 Comparisons with existing Agent-Oriented Methodologies

This section presents an evaluation and comparison of nine agent-oriented soft-
ware engineering methodologies. The objective is to emphasise the major similar-
ities and differences between ASPECS and some of the most known existing AOSE
methodologies. This study is mainly based on a feature analysis approach and it
is inspired by the work of Tran and Low [51]. The structure of our study is based
on 13 criteria, grouped into three categories. Some of these criteria come from the
work of Tran and Low [51], while some others have been purposefully introduced
to emphasise the evaluation of complex systems related features. These criteria are
described in table 3.

Criteria Description

Pr
oc

es
s-

re
la

te
d Development life-

cycle What development lifecycle best describes the methodology (e.g., waterfall or iterative)?

Coverage of the life-
cycle

What phases of the lifecycle are covered by the methodology (e.g., analysis, design, and im-
plementation)? Development perspective: What development perspective is supported (i.e.,
top-down, bottom-up or hybrid)?

Application domain Is the methodology applicable to any application domain (i.e., domain independent) or to a
specific domain (i.e., domain dependent)?

M
od

el
-r

el
at

ed

OCMAS or AC-
MAS

Which modelling perspective is the methodology adopting ? Organisation centered (OC-
MAS) or Agent-centered (ACMAS)? Is it holonic ?

System structure Does the methodology provide means to catch different levels of abstraction to in system
conceptualisation ?

System-
Environment
interface

Does the methodology provide means to model system delimitation and associated interac-
tions with the outside ?

Knowledge Model Does the methodology provide holistic model of the structure of the domain knowledge and
the interaction and dependencies of knowledge components in the system ?

Formal support Does the methodology have formal foundations ?

Su
pp

or
tiv

e-
fe

at
ur

e Standard Integration Does the methodology respect the main standards that governs AOSE ? Process description:
SPEM, UP; Modelling language: UML; Platform: FIPA, MAF;

Software support Is the methodology supported by tools and libraries? IDE, platform ?
Ontology Does the methodology provide support for the use and specification of ontology in a MAS.

Open systems Does the methodology provide support for open systems (i.e., dynamic addition/removal of
agents, organisations)?

Dynamic structure Does the methodology provide support for dynamic structure (i.e., self-organisation, dy-
namic reconfiguration of the system)?

Table 3 Comparisons criteria of the evaluation, inspired from [51]

Results of this comparative analysis are summarised in table 4. Target systems
of the ASPECS design process are mainly complex open systems; the evaluation is
thus done under this perspective. Selected criteria correspond to some of the major
points to fulfil in order to model such a type of systems with a specific emphasis
on the organisational and holonic perspectives. This evaluation mainly focuses on
organisation-centred AOSE design processes. A specific attention is paid to the
Anemona design process that is currently the only other methodology explicitly
dealing with holonic multi-agent systems.

The remainder of this section describes the main results of the comparative
analysis by clustering them on the basis of criteria that distinguish ASPECS from
the other existing approaches.



Agent-oriented Software Process for Engineering Complex Systems 43

Development life-cycle Just like ASPECS, four of the studied processes adopt
a formally described development lifecycle (e.g. PASSI, INGENIAS, ANEMONA,
ADELFE) and four of them provide an informal description (e.g. GAIA,
ROADMAP,TROPOS, PROMETHEUS). However, most of these methodologies adopt
an approach inspired by object-oriented engineering [8] and thus follow a highly
iterative development process. TROPOS is the exception because it is founded on
the i* modelling framework that focuses on requirements engineering and it is
centred on the intentional characteristics of the agent [10].

Concerning the coverage of the life-cycle, GAIA, ROADMAP and TROPOS
mainly cover analysis and design phases, while ASPECS covers the entire develop-
ment process like INGENIAS, ADELFE [4], PROMETHEUS and PASSI.

Application Domain Most of the existing methodologies are domain-
independent with the exception of ADELFE and ANEMONA. ADELFE focuses on
the development of adaptive multi-agent systems. This type of systems is com-
posed of agents that have a strong relationship with their environment and cooper-
ate with other agents to achieve a specified function.

ANEMONA was the first process to be proposed for designing holonic systems.
However, it is domain-dependent and specialised in the field of holonic manufac-
turing systems. This process is based on the various holon architectures proposed
in PROSA [6]. ASPECS is domain-independent and is conceived to be as indepen-
dent as possible from specific holon architectures (although last activities of the
Implementation phase exhibit a necessary link with the adopted implementation
platform: Janus).

PROSA (the implementation architecture used by ANEMONA) provides four
reference holon architectures to be used for the design of holonic manufacturing
systems: product, resource, order and staff holon. Besides, PROSA aims at struc-
turing the design of specific system architecture by defining a unified terminology,
a generic system structure, the kinds of system components, their responsibilities,
design details and models to be drawn. Holon architectures defined in PROSA may
be used within the ASPECS design process when they fit designer choices/needs.

Organisational-Centred vs. Agent-Centred MAS In analysis and design of MAS,
AOSE methodologies evolved from an initial vision where the system was mainly
centred on the agent and its individual aspects (Agent-Centred MultiAgent Sys-
tem), to a vision where the system is now considered as an organisation in which
agents form groups and hierarchies, and follow rules and specific behaviours [2]
(Organisation-Centred MultiAgent System). The evolution of GAIA (from the first
release [53] to the new one [54]) and TROPOS (from [5, 27] to [38]) design pro-
cesses are probably the most striking examples.

Within organisation-centred approaches, two major trends can be distinguished
according to the vision adopted on the concept of organisation [2, 15]: (i) The first
is based on the concepts of Role, Group and their relationship, and does not explic-
itly address the concept of social norm. This approach is adopted by metamodels
such as AALAADIN [20] or MOISE [31], and processes like INGENIAS, ANEMONA
or TROPOS. (ii) The second focuses more on the concept of norm and explicitly



44 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

defines control policies and rules to be established and followed. It is associated
with methodologies such as GAIA, SODA [42], OMNI [17], and more generally with
the notion of electronic institutions [18].

ASPECS adopts the first perspective and in the set of existing approaches,
AALAADIN is probably the one that shares most common points with ASPECS
about these organisational concepts. MESSAGE or INGENIAS consider the distinc-
tion between Role and Agent as analogous to that between Interface and Object
Class. Kristensen and Osterbye [39], studying the notion of role for objects, called
such a vision of role as the Filter Metaphor and discussed the problems related to
such an approach: “This is mistaken because the filter metaphor implies that the
persons12 has all the properties from the outset, and we choose to see only some
of them. This neglects the important meaning behind roles that the properties are
extrinsic, - the person only has them because of the role”. In ASPECS, the role is
emphasised as a fundamental entity spreading from requirements to implementa-
tion. It is an expected behaviour (a set of tasks ordered by a plan) and a set of rights
and obligations in the organisation context (refer to section 2.2 for more details).
In the implementation phase, the role exists as a complete entity disposing of its
own characteristics and behaviour.

Abstraction levels Complex systems are often a nested network of complex
adaptive systems. Indeed, at the very heart of the definition of a complex sys-
tem we find the notion of emergent behaviour and the possibility of looking at it
at different levels of abstraction/observation. In a complex system what we see at
one level of abstraction as a whole, might be decomposed in a set of entities at a
lower level. Where to set the limit, what to consider as an indivisible component
has always been, at least in MAS design, a question of point of view. A design pro-
cess aimed at modelling such complex systems has to provide a mean for catching
the various levels of abstraction. Only few design approaches enable the integra-
tion of different abstraction levels in a single model. ROADMAP provides a revised
version of the GAIA role model to include various levels of abstraction during the
analysis phase and allows an iterative decomposition of the system.

When considering agents as atomic, MAS designers are forced to capture only
one of a multitude of possible levels of abstraction. Conversely, we take into con-
sideration multiple levels of abstraction by introducing the concept of holon as a
building block, and the description of the holarchy as a structure for composing
multi-level holonic organisations.

High-level Features According to our knowledge, ASPECS is the only process
that supports both open and dynamic systems and merges an agent-oriented ap-
proach with a knowledge-engineering approach based on the prominent role of
ontology.

In its first release, GAIA was mainly designed to handle small-scale and closed
systems. This choice made it inappropriate for engineering complex open systems
[36], GAIA has then been extended by introducing the support for open large sys-

12 Person here is meant as the entity playing the role



Agent-oriented Software Process for Engineering Complex Systems 45

tems. However, GAIA still does not consider a holistic model of Domain Knowl-
edge (structure, dependencies between knowledge elements). This forbids shar-
ing system knowledge, reusing, extending and maintaining it in a modular fash-
ion [36]. ROADMAP extends GAIA by introducing a knowledge model for the de-
scription of the system domain knowledge. Knowledge components are then as-
signed to roles. In this sense, we use a similar approach in ASPECS. However, in
ASPECS the ontology is considered as a reference point and a source of guide-
lines for many process activities. Moreover in ASPECS the general description of
the problem knowledge is clearly separated from the knowledge that is specific
to the solution. In a certain sense, we may consider that in ASPECS we adopt a
model driven approach even for system knowledge, this point of view encourages
knowledge reusability, maintainability and sharing.

To conclude, the most important features of the ASPECS design process are:

1. its intrinsic ability to catch the various levels of abstraction of a complex sys-
tem; this occurs during the analysis phase by using an organisational hierarchy
and in the design phase by using a holarchy.

2. its aspiration to span the entire software development process from require-
ments to deployment, and to completely define the process and its various
components (since a detailed process description is too huge to be reported
in a scientific paper, all the details are reported in the ASPECS website).

3. its ambition to ease the reuse and the extension of domain and application
knowledge and models by the use of ontologies; its consideration of the organ-
isation concept as a reusable module independent from the agent architecture
(i.e. an organisational design pattern).

4. its integration of multiple viewpoints in the analysis and design of a system
by using an organisational perspective throughout the life-cycle and its com-
bination of holonic and classical agent-oriented approaches with knowledge-
engineering-based approaches.

5. its explicit modelling of the system-environment relationship by using bound-
ary roles, capacities and resources to provide a holistic description of the sys-
tem environment. This aspect eases to handle environment changes and thus
facilitates the deployment in dynamic and heterogeneous environments.

7 Conclusions and future works

This paper presents the ASPECS software development process also with the help
of a concrete case study from requirement analysis activities to deployment of
the system on a specific platform developed in our lab. ASPECS covers the entire
software engineering process and it is designed for the development of complex
software systems, especially those exhibiting a hierarchical structure.

The respect and integration of the most diffused AOSE domain standard spec-
ifications is one of the basis of our approach. The description of the development
process is thus based on SPEM (reported on the website), graphical notations are
based on UML, and FIPA standards are also largely adopted. ASPECS notation ex-
tends UML especially to take into account organisational and holonic concepts.



46 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

C
riteria

PA
SSI

IN
G

E
N

IA
S

A
N

E
M

O
N

A
G

A
IA

R
O

A
D

M
A

P
T

R
O

PO
S

PR
O

M
E

T
H

E
U

S
A

D
E

L
FE

A
SPE

C
S

Process-related

D
evelopm

ent
lifecycle

Iterative
across

and
w

ithin
all

phases

U
nified

soft-
w

are
develop-

m
ent

process
(U

P)

U
nified

soft-
w

are
develop-

m
ent

process
(U

P)

Iterative
w

ithin
each

phase
but

sequential
be-

tw
een

phases

Iterative
w

ithin
each

phase
but

sequential
be-

tw
een

phases

Iterative
and

incre-
m

ental

Iterative
across

allphases

R
ational

U
nified

Process
(U

P)

Iterative
across

and
w

ithin
all

phases

C
overage

of
lifecycle

A
nalysis,

D
esign,Im

ple-
m

entation
and

D
eploym

ent

A
nalysis,

D
esign,Im

ple-
m

entation
and

D
eploym

ent

A
nalysis,

D
esign,Im

ple-
m

entation

A
nalysis

and
D

esign
A

nalysis
and

D
esign

A
nalysis

and
D

esign

A
nalysis

and
D

esign,Im
ple-

m
entation

A
nalysis,

D
esign,

Im
plem

en-
tation

A
nalysis,

D
esign,Im

ple-
m

entation
and

D
eploym

ent

A
pplication

D
om

ain
Independent

Independent

D
ependent

-
H

olonic
m

anufacturing
system

s

Independent
Independent

Independent
Independent

D
ependent

-
adaptive

system
s

Independent

Model-related

O
C

M
A

S
vs.

A
C

M
A

S

A
C

M
A

S
but

R
ole-oriented

analysis

O
C

M
A

S
(structure

and
im

plicitly
norm

s)

O
C

M
A

S
(structure

and
im

plicitly
social

norm
s),

holonic

O
C

M
A

S
(so-

cial
norm

s
and

structure)

O
C

M
A

S
(structure)

O
C

M
A

S
(structure)

A
C

M
A

S
A

C
M

A
S

O
C

M
A

S
(structure

and
im

plicitly
social

norm
s),

holonic

N
um

ber
of

ab-
straction

levels
1

1
n

(agent
com

-
position)

1
n

(role
hierar-

chy)
1

1
2

(local
and

global)

n
(organisa-

tional
hierar-

chy
and

agent
com

position)

System
-

E
nvironm

ent
Interface

Y
es,

R
esource

m
odelling

Y
es,

environ-
m

entm
odel

Y
es,

environ-
m

entm
odel

Im
plicit,

(sen-
sors

and
effec-

tors)

Y
es,

E
nviron-

m
entM

odel
N

o
Y

es,
Percepts

and
A

ctions
descriptor

Y
es,

de-
tailed
architecture
docum

ent

Y
es,

IR
I

(boundary
roles)

and
O

D
D

m
odels

K
now

ledge
M

odel
Y

es
Y

es
Y

es
N

o
Y

es
N

o
N

o
N

o
Y

es

Form
al

foun-
dations

N
o

N
o

N
o

N
o

N
o

Y
es,

i*
and

form
al

tro-
pos

N
o

N
o

Partially,O
Z

S

Supportive-Feature

Standards
Inte-

gration
SPE

M
,

U
M

L
,

FIPA

U
P,

SPE
M

,
M

D
D

,
M

O
F,

U
M

L
,FIPA

U
P,

SPE
M

,
FIPA

,U
M

L
SPE

M
a

-
-

-
U

P,
SPE

M
,

U
M

L
,FIPA

SPE
M

,
U

M
L

,
FIPA

Tools
:ID

E
M

etam
eth

and
PT

K
ID

K
-

-
R

ebel
T-Tool

PD
T

O
penTool

Planned

Tools
:

Plat-
form

s
and

li-
braries

G
uidelines,

tool
for

JA
D

E
and

FIPA
-O

S

Tools
for

JA
D

E
,

B
D

I
A

gents

G
uidelines

for
JA

D
E

,PR
O

SA
G

uidelines
for

JA
D

E
G

uidelines
for

JA
D

E
-

JA
C

K
-

JA
N

U
S

O
ntology

Y
es

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

O
pen

System
s

N
o

N
o

N
o

Y
es

Y
es

N
o

N
o

Y
es

Y
es

D
ynam

ic
Structure

N
o

N
o

N
o

N
o

N
o

N
o

N
o

N
o

Y
es

Table
4

C
om

parisons
betw

een
A

S
P

E
C

S
and

nine
w

ell-know
n

A
O

SE
design

processes

a
notdone

by
prim

ary
authors



Agent-oriented Software Process for Engineering Complex Systems 47

ASPECS allows the modelling of a system with an arbitrary number of abstrac-
tion levels through a hierarchical behavioural decomposition based on roles and
organisations. The system is recursively decomposed down to a level where be-
haviours are simple enough to be manageable by atomic easy-to-implement enti-
ties. Contributions between two adjacent levels of abstraction are modelled thanks
to the relation between the concepts of capacity and service.

Thanks to the introduction of the notion of capacity, organisations and their as-
sociated roles may be defined without making any assumptions on entities’ archi-
tecture. This enables the definition of generic organisation models that facilitates
design reusability and extensions.

Concerning the environment that is an essential part of MAS, ASPECS makes
explicit (by means of boundary roles) the representation of interactions between
the system and the necessary environmental entities without making any assump-
tions on the concrete environment structure. The use of specific capacities as an
interface between the environment and the system eases the deployment of appli-
cations on dynamic and heterogeneous environments.

Domain knowledge is explicitly encoded in the Problem and Solution ontolo-
gies. ASPECS thus presents a holistic model of the structure of the domain knowl-
edge as well as the interactions and dependencies of knowledge components in the
system. This approach allows an easy sharing, reusability, extension and maintain-
ability of system knowledge in a modular manner.

The chosen case study confirms that the holonic organisational approach is
able to deal with complex software development and proves the scalability and
modularity of the proposed approach.

ASPECS is part of a larger effort aiming at providing a complete methodol-
ogy with the associated set of notations and tools to support design activities from
requirement analysis to code generation and deployment. Two major tools are cur-
rently under development in our lab. The first is the Janus platform that is used to
implement our holonic applications. The second is Janeiro, a CASE tool that deals
with the analysis and design aspects.

Further works will particularly focus on the integration of formal notations
and methods especially OZS. OZS (Object-Z and Statechart [29]) has been al-
ready used for role behaviour description where roles are formally described by
using an Object-Z class. In these cases, the behaviour of the role is described us-
ing a statechart where associated methods refer to formal defined ones. Procedures
to automatically generate templates of role code from OZS behavioural specifica-
tions are also under development (they will implement an automatic translation of
statecharts to Java code).

Acknowledgements Authors would like to thank Sebastiàn Rodriguez for having substan-
tially contributed to this work by proposing a framework for the conception of Holonic
multiagent systems that is at the basis of the ASPECS metamodel.

References

1. Software Engineering Body of Knowledge. IEEE Computer Society, 2004.



48 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

2. E. Argente, V. Julian, and V. Botti. Multi-Agent System Development Based
on Organizations. In CoOrg’06, volume 150 of Electronic Notes in Theoreti-
cal Computer Science, pages 55–71. Elsevier, May 2006.

3. C. Bernon, M. Cossentino, and J. Pavón. An overview of current trends in
european aose research. Informatica, 29(4):379–390, July 2005.

4. C. Bernon, M.-P. Gleizes, S. Peyruqueou, and G. Picard. ADELFE, a method-
ology for adaptive multi-agent systems engineering. In ESAW, volume 2577
of LNAI, pages 156–169, Madrid, Spain, September 2002. Springer-Verlag.

5. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TRO-
POS: An Agent-Oriented Software Development Methodology. Journal of
Autonomous Agents and Multi-Agent Systems, 8(3):203–236, May 2004.

6. H. V. Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, and P. Peeters. Refer-
ence architecture for holonic manufacturing systems: PROSA. Computers in
Industry, 37:255–274, 1998.

7. G. Caire, W. Coulier, F. J. Garijo, J. Gomez, J. Pavón, F. Leal, P. Chainho,
P. E. Kearney, J. Stark, R. Evans, and P. Massonet. Agent oriented analysis
using message/uml. In M. Wooldridge, G. Weiß, and P. Ciancarini, editors,
AOSE 2001, volume 2222 of LNCS, pages 119–135. Springer Verlag, 2002.

8. L. Cernuzzi, M. Cossentino, and F. Zambonelli. Process models for agent-
based development. Journal of Engineering Applications of Artificial Intelli-
gence (EAAI), 18(2), March 2005.

9. A. Chella, M. Cossentino, L. Sabatucci, and V. Seidita. Agile PASSI: An
Agile Process for Designing Agents. International Journal of Computer Sys-
tems Science & Engineering. Special issue on Software Engineering for Multi-
Agent Systems, 21(2), March 2006.

10. L. Chung, B. A. Nixon, and E. S. K. Yu. Dealing with change: An approach
using non-functional requirements. Requirements Engineering, 1(4):238–260,
1997.

11. A. Cockburn. Structuring use cases with goals. Journal of Object-Oriented
Programming, pages 56–62, Nov/Dec 1997.

12. A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.
13. M. Cossentino. From Requirements to Code with the PASSI Methodology. In

B. Henderson-Sellers and P. Giorgini, editors, Agent-Oriented Methodologies,
chapter IV, pages 79–106. Idea Group Publishing, Hershey, PA, USA, 2005.

14. M. Cossentino, S. Gaglio, A. Garro, and V. Seidita. Method fragments for
agent design methodologies: from standardization to research. International
Journal on Agent Oriented Software Engineering, 1(1):91–121, April 2007.

15. L. d. R. Coutinho, J. S. a. Sichman, and O. Boissier. Modeling organization
in MAS: a comparison of models. In SEAS, Uberlândia, October 2005.

16. R. A. Dahl. Polyarchy: Participation and Opposition. Yale University Press,
New Haven, 1971.

17. M. Dignum, J. Vazquez-Salceda, and F. Dignum. OMNI: Introducing So-
cial Structure, Norms and Ontologies into Agent Organizations. In PRO-
MAS@AAMAS, volume 3346 of LNAI, pages 181–198. Springer, July 2005.

18. M. Esteva, J. A. Rodrı́guez-Aguilar, C. Sierra, P. Garcia, and J. L. Arcos. On
the formal specifications of electronic institutions. In Agent Mediated Elec-



Agent-oriented Software Process for Engineering Complex Systems 49

tronic Commerce, The European AgentLink Perspective, pages 126–147, Lon-
don, UK, 2001. Springer-Verlag.

19. J. Ferber. Multi-Agent Systems. An Introduction to Distributed Artificial Intel-
ligence. Addison Wesley, London, 1999.

20. J. Ferber, O. Gutknecht, and F. Michel. From Agents to Organizations: an Or-
ganizational View of Multi-Agent Systems. In AOSE-IV@AAMAS03, volume
2935 of LNCS, pages 214–230. Springer Verlag, mar 2004.

21. Foundation For Intelligent Physical Agents. FIPA RDF Content Language
Specification, 2001. Experimental, XC00011B.

22. Foundation For Intelligent Physical Agents. FIPA ACL Message Structure
Specification, 2002. Standard, SC00061G.

23. Foundation For Intelligent Physical Agents. FIPA Communicative Act Library
Specification, 2002. Standard, SC00037J.

24. N. Gaud, S. Galland, V. Hilaire, and A. Koukam. An Organisational Platform
for Holonic and Multiagent Systems. In PROMAS-6@AAMAS’08, Estoril,
Portugal, May 12-16th 2008.

25. N. Gaud, V. Hilaire, S. Galland, A. Koukam, and M. Cossentino. A verifi-
cation by abstraction framework for organizational multi-agent systems. In
AT2AI-6@AAMAS’08, Estoril, Portugal, May 2008.

26. C. Gerber, J. Siekmann, and G. Vierke. Holonic multi-agent systems. Techni-
cal Report DFKI-RR-99-03, DFKI - GmbH, 1999.

27. F. Giunchiglia, J. Mylopoulos, and A. Perini. The Tropos Software Devel-
opment Methodology: Processes, Models and Diagrams. Technical Report
0111-20, ITC - IRST, 2002. Submitted AAMAS Conference 2002. A Knowl-
edge Level Software Engineering 15.

28. T. Gruber. Toward principles for the design of ontologies used for knowledge
sharing. International Journal Human-Computer Studies, 43(Issues 5-6):907–
928, November 1995.

29. P. Gruer, V. Hilaire, A. Koukam, and P. Rovarini. Heterogeneous formal spec-
ification based on object-z and statecharts: semantics and verification. Journal
of Systems and Software, 70(1-2):95–105, 2004.

30. O. Gutknecht and J. Ferber. Madkit: a generic multi-agent platform. au-
tonomous agents. In AGENTS 2000, pages 78–79, Barcelona, 2000. ACM
Press.

31. M. Hannoun, O. Boissier, J. S. Sichman, and C. Sayettat. MOISE: An Or-
ganizational Model for Multi-agent Systems. In M. Monard and J. Sichman,
editors, Advances in Artificial Intelligence, IBERAMIA-SBIA, pages 156–165,
Brazil, 2000.

32. B. Henderson-Sellers. Method engineering for OO systems development.
Commun. ACM, 46(10):73–78, 2003.

33. V. Hilaire, A. Koukam, P. Gruer, and J.-P. Müller. Formal specification and
prototyping of multi-agent systems. In A. Omicini, R. Tolksdorf, and F. Zam-
bonelli, editors, ESAW, number 1972 in LNAI. Springer Verlag, 2000.

34. C. Iglesias, M. Garijo, J. Gonzalez, and J. Velasco. Analysis and design of
multi-agent systems using MAS-CommonKADS, volume 1365 of LNAI, chap-
ter Intelligent agents IV: Agent theories, architectures, and languages, pages



50 M. Cossentino, N. Gaud, V. Hilaire, S. Galland, A. Koukam

313–326. Springer-Verlag, 1998.
35. N. Jennings. An agent-based approach for building complex software systems.

Commun. ACM, 44(4):35–41, April 2001.
36. T. Juan, A. Pearce, and L. Sterling. ROADMAP: Extending the GAIA

methodology for complex open systems, 2002.
37. A. Koestler. The Ghost in the Machine. Hutchinson, 1967.
38. M. Kolp, P. Giorgini, and J. Mylopoulos. Multi-agent architectures as organi-

zational structures. Autonomous Agents and Multi-Agent Systems, 13(1):3–25,
2006.

39. B. Kristensen and K. Osterbye. Roles: Conceptual abstraction theory and
practical language issues. Theory and Practice of Object Systems, 2(3):143–
160, 1996.

40. Object Management Group. MDA Guide, v1.0.1, OMG/2003-06-01, June
2003.

41. J. Odell, M. Nodine, and R. Levy. A metamodel for agents, roles, and groups.
In J. Odell, P. Giorgini, and J. Müller, editors, AOSE, LNCS. Springer, 2005.

42. A. Omicini. SODA: Societies and Infrastructures in the Analysis and Design
of Agent-Based Systems. In Springer-Verlag, editor, AOSE, volume 1957 of
LNCS, pages 185–193, 2000.

43. L. Padgham and M. Winikoff. Prometheus: A methodology for developing
intelligent agents. In AOSE, July 2002.

44. J. Pavón, J. Gómez-Sanz, and R. Fuentes. The INGENIAS methodology and
tools. In Agent-Oriented Methodologies, pages 236–276. Idea Group Publish-
ing, NY, USA, June 2005.

45. S. Sauvage. Agent oriented design patterns: A case study. In AAMAS ’04,
pages 1496–1497, Washington, DC, USA, 2004. IEEE Computer Society.

46. J. Searle. Speech Acts. Cambridge University Press, Cambridge, UK, 1969.
47. W. Shen, F. Maturana, and D. H. Norrie. MetaMorph II: an agent-based ar-

chitecture for distributed intelligent design and manufacturing. Journal of
Intelligent Manufacturing, 11(3):237–251, June 2000.

48. H. A. Simon. The Science of Artificial. MIT Press, Cambridge, Massachusetts,
3rd edition, 1996.

49. I. Sommerville. Software Engineering. International Computer Science Se-
ries. Addison Wesley, Pearson Education, seventh edition edition, 2004.

50. SPEM. Software Process Engineering Metamodel Specification, v2.0, Fi-
nal Adopted Specification, ptc/07-03-03. Object Management Group, March
2007.

51. Q.-N. N. Tran and G. C. Low. Agent-Oriented Methodologies, chapter XII:
Comparison of Ten Agent-Oriented Methodologies, pages 341–367. Idea
Group, 2005.

52. K. Wilber. Sex, Ecology, Spirituality. Shambhala, 1995.
53. M. Wooldridge, N. R. Jennings, and D. Kinny. The GAIA methodology for

agent-oriented analysis and design. Autonomous Agents and Multi-Agent Sys-
tems, 3(3):285–312, 2000.

54. F. Zambonelli, N. Jennings, and M. Wooldridge. Developing multiagent sys-
tems: the GAIA methodology. ACM Trans. on Software Engineering and



Agent-oriented Software Process for Engineering Complex Systems 51

Methodology, 12(3), 2003.


	1 Introduction
	2 A quick overview of aspecs
	2.1 aspecs: the process
	2.2 aspecs: the metamodel and key concepts
	2.2.1 Problem Domain
	2.2.2 Agency Domain
	2.2.3 Solution Domain

	2.3 Case study: Simulation of an Industrial Plant

	3 System Requirements Analysis Phase
	3.1 Domain Requirements Description (DRD)
	3.2 Problem Ontology Description (POD)
	3.3 Organisation Identification (OID)
	3.4 Interactions and Role Identification (IRI)
	3.5 Scenario Description (SD)
	3.6 Role Plan (RP)
	3.7 Capacity Identification (CI)

	4 Agent Society Design Phase
	4.1 Solution Ontology Description (SOD)
	4.2 Agent Identification (AI)
	4.3 Agent Architecture Description (AAD)
	4.4 Communication Ontological Description (COD)
	4.5 Role Behaviour Description (RBD)
	4.6 Protocol Description (PD)
	4.7 Organisation Dependencies Description (ODD)
	4.8 Role Constraints Identification (RCI)
	4.9 Agent Plan Description (APD)
	4.10 Holarchy Design (HD)

	5 Implementation and Deployment Phase
	5.1 Holon Architecture Definition
	5.2 Code Reuse
	5.3 Code Production of Organisations and Roles
	5.4 Testing activities
	5.5 Code Production of Holons
	5.6 Deployment Configuration

	6 Comparisons with existing Agent-Oriented Methodologies
	7 Conclusions and future works

