
Processes Engineering & AOSE

Massimo Cossentino1, Marie-Pierre Gleizes2, Ambra Molesini3, and
Andrea Omicini3

1 ICAR CNR, Viale delle Scienze, ed. 11, 90128 Palermo, Italy
cossentino@pa.icar.cnr.it

2 SMAC team, IRIT, University of Toulouse,
118 Route de Narbonne, F-31062 Toulouse Cedex 9, France

Marie-Pierre.Gleizes@irit.fr
3 Alma Mater Studiorum – Università di Bologna

viale Risorgimento 2, 40136 Bologna, BO, Italy
via Venezia 52, 47521 Cesena, FC, Italy

ambra.molesini@unibo.it, andrea.omicini@unibo.it

Abstract. One of the most stimulating research lines in software en-
gineering today, process engineering is currently a hot topic in agent-
oriented software engineering research [1–4]. A number of methodologies
have been designed such as ADELFE, ASPECS, INGENIAS, MaSE,
PASSI, Prometheus, SODA, Tropos,. . . , each of which with their own
specificities. Sometimes, when a multi-agent application has to be de-
signed, the methodology chosen does not completely fit for the whole
development process. The current proposed approach is to take bene-
fits to all existing methodologies and to reuse during the development
process those parts that are the most relevant in order to build a new
process engineering. There, process engineering aims at building libraries
of suitable methods from/for agent oriented methodologies, thus helping
in cataloguing current processes, assessing their utility, and rebuilding
them according to developer needs. In this paper, we first provide a gen-
eral view over the area of Software Process Engineering (SPE), then focus
on the most recent developments of SPE in the AOSE field.

Key words: Agent-Oriented Software Engineering, Software Process
Engineering, Fragment

1 Software Processes

In Software Engineering (SE), developers expects to find concrete “instructions”
and methods to complete development before a deadline, delivering a quality
product, and with a cost meeting the initial budget of the project. Such instruc-
tions are typically expressed by in the form of the software development process.
Development process have often appeared in Agent Oriented Software Engineer-
ing (AOSE) methodologies as a simple enumerated list of steps. While this can
be considered effective for small developments – e.g. one person during a short
period of time –, it is hardly applicable to medium-to-big developments—e.g. a
development team with a project several years long.

Cernuzzi et al. [5] define the development process as “an ordered set of steps
that involve all the activities, constraints and resources required to produce a
specific desired output satisfying a set of input requirements” . Fuggetta [6] pro-
poses an interesting definition from the organisational point of view of software
development process (or simply software process) as “the coherent set of poli-
cies, organisational structures, technologies, procedures, and artifacts that are
needed to conceive, develop, deploy, and maintain (evolve) a software product”.
Software processes can then be (and typically are) composed by a set of stages,
each specifying which phases/activities should be carried on and which roles
(i.e.: client, analyst, software architect, programmers, etc.) and resources are to
be involved in them.

Such concepts are seldom found in existing agent oriented methodologies.
Typically, new AOSE methodologies get proposed without explicitly relating
them to any process models and, at the same time, being implicitly suitable
only for a limited set of (or a single) process models. This contrasts with the fact
that designing multi-agent systems is a complex software development, and that
developers need to be guided and helped in this task. Therefore, agent oriented
methodologies should also take into account the fact that the product is not
merely developed but also: (i) conceived, often relying on unstable or incomplete
requirements; (ii) deployed, i.e., put to work in an operational environment;
(iii) maintained and evolved, depending on novel requirements or changes in the
operational environments. Besides, different needs call for different processes. For
example, it is quite clear that developing a multi-agent system (MAS) dedicated
to solve a specific problem such as a timetabling [1] and a MAS which has to
simulate a natural phenomenon [2] is quite a different thing.

Another important aspect to be considered is that a software process is not
something static that, once adopted, should never be changed. Instead, a process
can be improved with the experience of applying in a concrete development.
Existing methodologies are adapted by designers to take into account all the
diversity of MAS. For instance, PASSI has been modified in order to also handle
multi-agent simulation [3], while Tropos and ADELFE are combined in order
to take into account self-adaptation in Tropos [4]. As a consequence, any agent-
oriented software engineer should assume the development process evolves over
time. It evolves together with the increased awareness of the involved people,
towards a maturity level4 that ensures the repeatability of a process in terms
of the quality, cost and time of the produced software. This is a fundamental
evaluation criterion for any organisation that would aim at adopting the agent-
based paradigm in its development process.

As a conclusion, the development process is an important element of any
software engineering methodology—and is essential within any agent oriented
methodology; it attends the needs of a concrete development problem and evolves
when the change brings benefits. Therefore, the study of the many aspects of
the software development process from a scientific perspective is mandatory.

4 CMMI, http://www.sei.cmu.edu/cmmi/tools/cmmiv1-3/

Along this line, in this paper we adopt Software Process Engineering (SPE)
as the conceptual and technical framework for such a study, then discuss its ap-
plication to AOSE. In short, SPE provides the tools for analysing, decomposing,
and building software development processes. Accordingly, Section 2 describes
quite briefly SPE under the classical SE perspective, along with the main con-
cepts used in process composition. Then, Section 3 presents SPE from the AOSE
point of view, and expounds the recent works done on fragments and process
engineering customization.

2 Software Processes Engineering

Like most processes concerning human activities, the software development pro-
cess is inherently complex and hard to standardise, as demonstrated by the
difficulties reported in the literature of automating the software process. De-
spite the great diffusion of development processes based on the Unified Process
(UP [7]), researchers and practitioners in the area agree that there is no sin-
gle software process that could fit the need of all [8]. UP itself is essentially a
highly-customizable development framework rather than a well-established and
fixed process.

Among the current method engineering approaches in the literature, Situa-
tional Method Engineering (SME) is undoubtedly one of the most promising:
there, the construction of ad-hoc processes is based on reusing portions of exist-
ing or newly-created processes, called fragments. So, in the reminder of this sec-
tion we first discuss the basis of SME (Subsection 2.1), then we sketch the diverse
fragment definitions (Subsection 2.2) and fragment repository (Subsection 2.3),
finally we briefly introduce some tools supporting SME (Subsection 2.4).

2.1 Situational Method Engineering

Situational Method Engineering [9, 10] is the discipline that studies the compo-
sition of new, ad-hoc software engineering processes for each specific need. This
is based on the assumption that the “situation” is the information leading to
the identification of the right design approach. This paradigm provides tools for
the construction of ad-hoc processes by means of the reuse of existing process
fragments (called method fragments), stored in a repository (Subsection 2.3). In
order to be effective, this approach requires the process and its fragments to be
suitably modelled.

Within the concept of situation authors usually include: requirements of the
process, development context, the specific class of problem to be solved. Sev-
eral approaches to SME have been presented in the last years with no specific
reference to the OO context [8, 11–14].

The most complete approach in the field is probably represented by the
OPEN Process Framework (OPF [15]). OPF is based on a large number of
method fragments stored in a repository along with a set of construction guide-
lines that are considered to be parts of existing methodologies and can be used

to construct new methodologies. The OPF meta-model is composed of five main
meta-classes [16]: Stages, Producers, Work Units, Work Products and Languages.
When instantiated, each meta-class produces a method fragment.

2.2 Fragment Definition

Different approaches to process composition may be also rely on different defini-
tions (and labels) for the building blocks. We may attempt a rough categorisation
of process reusable parts defined in classical SE:

Method Fragment — A method fragment is a piece of an information systems
development process. According to Brinkkemper et al. [11, 17], there are two
kinds of method fragments: the product fragment – concerning the structure
of a process product, representing deliverables, diagrams, . . . – and the pro-
cess fragment—describing the stages, activities and tasks to be performed
to produce a product fragment.

Method Chunk — According to J. Ralyte et al. [12, 18], a method chunk is
a consistent and autonomous component of a development process. The
method chunk integrates two aspects of the method fragment, the prod-
uct and the process, so it represents a portion of process together with its
related product(s).

OPF Method Fragment — An OPF method fragment is an instance of one
of the following classes: Stages, Producers, Work Units, Work Products and
Languages. According to D. Firesmith and B. Henderson-Sellers [15, 19],
fragments of different types need to be composed in order to provide the
different features of a process.

2.3 Fragment Repository

A fragment repository (or method library) is an essential component of any SME
approach. In spite of this, only few repositories are currently available, due to
the great effort required to build such a resource as well as to the lack of a
widely-accepted standard in the field.

A repository could be used as a general purpose software engineering pro-
cesses container. It could even contain sets of reusable elements (content and
process) that do not belong to a specific software engineering processes, but
could be used as building bricks (fragments/chunks). The largest available repos-
itory is part of OPF [15]5. The support for a method library is also present in a
widespread software tool, the Eclipse Process Framework 6 (EPF) plugin, which
supports the OMG Software Process Engineering Metamodel (SPEM) v. 2.0 [20],
and provides all the capabilities needed to define method plugins into library as
well as to tailor new software engineering processes from those plugins (method
configuration). A project such as OpenUP7 provides an open-source, common
5 http://www.opfro.org/
6 http://epf.eclipse.org/
7 http://epf.eclipse.org/wikis/openup

and extensible base for iterative incremental software engineering processes by
using the modularity and re-usability skills of SPEM 2.0 through the EPF plugin.

2.4 Tools

When developing a software system, several tools are required to support the
different stages of the process. Areas of application for design tools spread from
requirements elicitation to design, testing, validation, version control, configura-
tion management and reverse engineering. In this section, not all tools available
during the engineering process are described. We rather would like to focus on
the different kinds of tools linked to apply or adapt a method. Tools can be
classified in three different categories: CASE, CAME, and CAPE tools.

The CASE acronym stands for Computer Aided Software Engineering, and
it addresses the large category of tools that could be used in any software engi-
neering process employment. CASE tools support the modelling activities and
constrain the designer just in the choice of the system modelling language (for
instance UML), and, when code generation is possible, on the coding languages.
The main limit of these tools is that they are not aware of the adopted method
– in terms of work to be done – and are instead only concerned with the repre-
sentation of some (often uncoordinated) views of the system.

Today, in the field of aided software development, meta-CASE tools achieved
large significance, being able to provide an either automated or semi-automated
process for the creation of CASE tools, based on a meta-model used to describe
the language, the concepts and the relationships of a specific design method-
ology. In the field of Method Engineering a meta-CASE tool – called CAME
(Computer Aided Method Engineering) – is used to describe and to represent
a set of methods. CAME tools are conceived to support methods rather then
design. They do not adopt any specific software development process model –
they are not even aware of its existence because they are only concerned with the
drawing of the different aspects of the model separately –, therefore the designer
could freely work on the different views, even violating the prescribed process
without any warning from the tool.

Several existing CAME tools (Mentor [21], Decamerone [22], MetaEdit+ [23],
INGENME8 and MethodBase [24]) are also based on Meta-CASE technology al-
lowing the construction or the automatic generation of CASE tools specific for
given methods. In particular, MetaEdit+ seems the most complete CAME tool,
even if it presents several limitations. MetaEdit+ makes it possible to imple-
ment a domain specific modelling language, and to use it in ad-hoc created
CASE tool. MetaEdit+ is at the same time a CAME and a CASE tool, and
is the only tool that allows the instantiation of a CASE tool starting from the
definition of a given modeling language. However, MetaEdit+ does not provide
any support for managing the development processes, and the generated CASE
tools always adopt the same UML editor for the software product design. As a
result, the generated methods are static, and there is no way to reuse portions

8 http://ingenme.sourceforge.net/

of existing tools supporting the method fragments used. A possible alternative
to MetaEdit+ is INGENME, a tool for producing self-contained visual editors
for languages defined using an XML file. INGENME can be used to test visual
languages and also to produce customised editors.

One of the intrinsic limits of CAME tools – the lack of process awareness
– is overcome by CAPE (Computer Aided Process Engineering) tools that are
instead aware of the adopted process model – or, that could be used to design
it –, and coordinate the different stages of the process in order to respect its
prescriptions.

3 AOSE Software Processes Engineering

Putting the focus of process engineering on the development of multi-agent sys-
tems moves the attention of the designer to the study of specific topics such
as:

– the definition of the agent concept (that is often specific to each single ap-
proach),

– the definition of the MAS meta-model (composed of the already cited agent
as well as many other entities like role, communication, group, and so on),

– the agent’s reasoning technique (goal-oriented, expert system-based, rule
based, . . .),

– the implementation of autonomy, self-organisation and similar system fea-
tures.

Such topics affect the conception of the AOSE design process. Just to provide an
example, it is nowadays very uncommon to find the adoption of formal languages
in the development of object-oriented system. Conversely, this is quite frequent
in conception of MAS where such languages provide a good support for the
design of some reasoning techniques. This obviously influences the developing
process since there is the need of several different new activities such as model
checking and verification.

Besides, the absence of a standardised and widely accepted MAS meta-model
has deeply influenced the introduction of SME techniques in the AOSE field. As
a consequence, several authors centered their approach on the influence that
the definition of a specific MAS type can have on the process that have to be
followed in order to analyse and design such a MAS type. More details about
such a variant of the classical SME approach are provided in the next subsection.

3.1 AOSE Situational Method Engineering

As far as the approaches specifically related to the agent-oriented context are
concerned, an initial reference framework has been provided by the work of the
FIPA Methodology Technical Committee (TC)9 devoted to the study of frag-
ments’ definition and composition [25]. A standard specification is expected by
9 http://www.fipa.org/activities/methodology.html

the successor of that committee, the IEEE FIPA Design Process Documentation
and Fragmentation (DPDF) working group10. This group’s approach is based
on the adoption of SPEM 2.0 with the inclusion of minor extensions motivated
by the specific needs of a multi-agent system design process [26].

SME in AOSE shares the same objective with SME researchers in proposing
the most relevant process for a given situational context of development. The
objective is to provide CAPE tools enabling to build the most convenient pro-
cess and possibly to adapt it during the development. In fact, the most relevant
fragments must be retrieved and used among all the available fragments. Con-
sequently, some of the works in the AOSE community currently focus on how to
automate the software process construction such as the three following examples
reported here.

ProDe: a Process for the Design of Design Processes. PRoDe [27] is an
approach for new AOSE design process composition based on two pillars: the
process fragment [28] and the MAS meta-model. These two elements are both
defined and considered under a specific agent-oriented perspective thus creating a
peculiar approach. PRoDe is based on the classic situational method engineering
and it is organised in three main phases: Process Analysis, Process Design and
Process Deployment. They clearly resemble the software development phases
thus realising the parallelism proposed by Osterweil in his well-known paper
Software Processes are Software too [29].

During Process Analysis, the process to be developed is analysed and its
requirements are elicited. Process Requirements Analysis delivers a portion of
the MAS meta-model, whose structure will decisively affect the following steps
of process development.

During Process Design the method engineer selects, from a previously con-
structed repository, a set of fragments that he/she assembles in the new process.

Finally in the Process Deployment phase, the new process is used to solve a
specific problem. From this employment some feedbacks are received and this is
used to further enhance the process towards its maturity. It is also possible to
repeat the whole construction process in an incremental/iterative way.

The most relevant contribution coming from ProDe to the state of the art
consists in some guidelines driving the method designer through the most diffi-
cult steps of the work. This is a very relevant aspect of the approach since skills
required to a method engineering are very high and such a professional profile
is not frequently found in the field. The most relevant guideline is realised by
an algorithm used to prioritise the retrieval of fragments from the repository.
The problem solved by the algorithm is: given a MAS meta-model and the set
of fragments able to instantiate the elements of the meta-model, which is the
first fragment that should be selected? And the following? This problem is rele-
vant because the selection of one fragment (the first) introduces new constraints
in the design: its inputs are to be satisfied and its outputs should be all used
otherwise the fragment needs an adaptation (an adjunctive cost).
10 http://www.fipa.org/subgroups/DPDF-WG.html

Currently the process has been already adopted in several case studies [30,
31] and it is at the basis of the approach proposed in the next subsection.

MEnSA Project. In the MEnSA project11 the authors decided to directly link
the new process requirements to the fragments they were going to select. The
composition of the new methodology was inspired by the PRoDe approach [27],
which proposes to use the MAS meta-model as a central element for selecting
and assembling fragments. It is worth to note that while in the PRoDe approach
requirements are used to compose an initial draft of the MAS meta-model, which
is then used to retrieve fragments from the repository, in the novel MEnSA
approach process requirements are used to select fragments, and their outcomes
are used to define the MAS meta-model.

The approach adopted is organised in a few steps. The first step of the work
consists in collecting process requirements, currently some methodologies have
been decomposed in fragments: PASSI, Gaia, Tropos and SODA. Then, frag-
ments are retrieved from the repository according to the requirements they con-
tribute to fulfill.

The fragments selection activity makes available the set of fragments used to
produce a first draft of the MAS meta-model. Thus, each fragment contributes
to define a portion of the meta-model.

Once the meta-model has been polished, the initial set of fragments finds its
position in a proper life-cycle, therefore a proper process model has to be chosen.
Classically-available life-cycles (waterfall, iterative/incremental, spiral, etc.) are
here considered, and the best fitting is used to host the selected fragments.

Now fragments can be positioned in the life-cycle placeholders, and a first
version of the new process is almost ready. The last activity is fragments adap-
tation, which aims at solving incompatibility issues arising from the assembly
of fragments coming from different processes. Such fragments should then be
adapted to properly support the new MAS meta-model and to comply with all
input/output constraints.

At this stage, an initial version of the process is finally available. This could
be either complete or incomplete according to the number and refinement of
the initial process requirements, as well as to other factors—fragment repository
dimension, assembly issues, process phases coverage,

In the MEnSA’s process composition, when the process needs to be com-
pleted, the authors follow up with an iteration of the proposed composition ap-
proach, given its smaller granularity and its MAS-meta-model-based approach
that perfectly fits the needs of the new process final refinement.

Self-Organisation-based SPE design. The aim of this approach is to provide
a system able to combine existing fragments to build a software process adequate

11 Methodologies for the Engineering of complex Software systems: Agent-based ap-
proach. For more details, see the project website at: http://www.mensa-project.
org/

to the expertise level of designers and to the applications features as well. The
designer may interact with the system in order to modify the software process
proposed by the system. The SPE is co-constructed by the system and the
designer.

The system continuously self-adapts to these new perturbations and proposes
a new software process taking into account the designer’s wishes. Each fragment
is agentified following the Adaptive Multi-Agent Systems (AMAS) theory [32].
The adaptive MAS automatically designs an adaptive software engineering pro-
cess [33]. The resulting MAS is composed of (i) the fragments, which are the sole
agents of the MAS (called fragment-agents), and (ii) the resources of the MAS,
which are the MMMEs (MAS Meta-Model Elements), the MMME repository
and the fragments repository.

The first MAS prototype is developed using a repository containing the
already-defined fragments of three processes from three methodologies: ADELFE
[34], INGENIAS12, and PASSI [35].

In this system, fragments are autonomous agents able to find other relevant
fragments to interact (workproduct exchanges). The fragment-agents cooperate
with each other in order to find their right location in the software process. The
agentification of fragments is realised in a general way to enable the adding or
removal of a fragment in the set of all fragments. In the first version of the system,
agentification must ensure a mutual understanding between what is required by
a fragment and what is produced by it—i.e., the agent-fragments understand
each other.

The behavior of a fragment is represented by a finite state automaton with
three states: Inactive, Unsatisfied and Satisfied. The fragment-agent switches
states according to its perception of the environment and behaves according to
its current state. Following the AMAS theory, the design of agents focuses in
particular on the Non Cooperative Situations (NCS) [32]. Encountering a NCS
is one of the possible reasons for a fragment-agent to change its state. For a
fragment-agent, three NCS are identified. The first is when none of the MMMEs
that a fragment-agent can produce are needed by the other fragments (the agent
is useless). The second is when a fragment-agent needs some MMMEs that no
other fragment-agent can produce (the agent cannot satisfy its preconditions).
The third is when two fragment-agents of the same process produce the same
MMMEs (agents are in conflict, and must determine which one of them is use-
less). To react to such NCS, a fragment-agent can execute three main actions.
First, it can use existing MMMEs to produce new ones and register them to the
repository. Or, it can stimulate other fragments able to produce their needed
MMMEs by sending a stimulation value. This value depends on the amount of
stimulation it received. So, the stimulation value of a fragment-agent can be
assimilated to a measure of its criticality, since the more it is important to the
system, the more a fragment-agent will be stimulated. Finally, it can observe
other agents and determine its membership to a process.

12 http://grasia.fdi.ucm.es/main/node/241

3.2 Fragment Definition

As far as the agent-oriented approaches are concerned, some contributions for
the adoption of the OPF framework [36] to agent design have been proposed
such as in PASSI [37] and Tropos [38]. A different solution was proposed by the
FIPA Methodology TC for the adoption of a kind of method chunk, called pro-
cess fragment, which is a portion of a development process defining deliverables
(workproducts), guidelines, preconditions, sets of system meta-model elements
and key-words characterising it in the scope of the method in which it was de-
fined. The main difference with respect to the OPF lays in the focus of the
MMMEs managed by the process fragment. The definition and use of a MAS
meta-model enables the adoption of Model-driven Engineering practices, and
overcomes typical problems due to the confusing definition of agent-oriented
concepts in most AOSE methodologies. Besides, considering fragments through
such a rough definition eases the adoption of SPEM 2.0 concepts as well as a
high level of compliance to that standard. However, [25] presents an enhanced
version of the fragment meta-model originated by the FIPA Methodology TC;
one of the proposals is that fragments should be considered from different points
of view whether the designer is interested in their reuse, storing, implementation,
or in the definition of the process they represent. So, it seems obvious that the
choice of a process fragment depends on the point of view and the requirements
it has to fullfil.

Process fragments do not match a single SPEM 2.0 concept, instead they
should rather be considered as matching several ones depending on the gran-
ularity or concern. A process fragment is a portion of a process, but process
element definitions in SPEM 2.0 are divided into two categories: definition and
use. Thus, such a separation should be taken into account while mapping frag-
ments to SPEM 2.0 concepts. Furthermore, also fragments granularity should to
be considered, as it implies a different mapping.

It is worth to note that although the use of SPEM is widespread in the SE
community, a new standard has been recently published by ISO [39, 40], which
models both the design and enactment of a process by using a multilayered
architecture. The peculiarity of that work lays in the adoption of powertypes,
an innovative mechanism allowing a class to assume value for its attributes
not necessarily when instantiated in the next abstraction level but, if required,
at the second level [41]. A similar standardization effort, in the AOSE field,
is currently ongoing within the IEEE FIPA DPDF working group. The first
step has been the identification of the most suitable process meta-model and
notation: (i) for the representation of the existing design processes from which
the fragments have to be extracted, and (ii) for the representation of fragments
themselves. An important contribution on the subject might come from the
SPEM 2.0 specification.

The second step has been consisted in the definition of a proper template for
the description of agent-oriented design processes. Such a template, obviously,
refers to the selected process meta-model and suggest the adoption of good
practices in documenting existing processes as well as defining new ones. The

availability of such a specification would have several benefits, the first is that
adopting the same documentation template would enable an easier comprehen-
sion (and comparison) of existing and new processes. This goes in the direction
initially drawn by UML creators (Booch, Jacobson, and Rumbaugh) when they
first removed all the specific notation issues cluttering their own approaches
and then easily found commonalities that inspired their new (and successfull)
modelling language [42]. The specification for process documentation has been
already proposed for adoption as an IEEE FIPA standard.

After that, the group is going to define the process fragment structure and
according to that a procedure for extracting fragments from processes docu-
mented according to the adopted template. The final result will consist in a
set of fragments that are compliant to the fragment specification and are doc-
umented according to the same style. This would enable their composition and
the production of a consistent documentation of the new process.

3.3 Fragment Repository and Tools

Some extensions of the OPEN framework [15] aiming at including the support
for agent-oriented methodologies have been recently presented in [36–38, 43–45].
Another (explicitly agent-oriented) repository13 has been developed according to
the specifications proposed by the FIPA Methodology TC [46], used as a starting
point by the IEEE FIPA DPDF working group.

The proposed repository structure is an XML-based repository storing a col-
lection of XML documents, each one representing a method fragment, validated
by a Document Type Definition (DTD) or an XML Schema [25]. The validation
process ensures that the method fragment was extracted and defined according
to the prescribed meta-model (Subsection 3.2). The repository is oriented to-
wards a MAS meta-model-based classification of fragments; each one of them is
in fact labelled with the MAS meta-model components that are defined or refined
during its activities. Each activity has some inputs and produces some outputs
in terms of defined/refined components of the MAS meta-model [25]. At the mo-
ment, the repository contains the fragments coming from PASSI, ADELFE and
Tropos. Also, AOSE could benefit from projects such as OpenUP by defining
specific AO method plugins and reusing predefined ones.

As far as tools are concerned, some of the CAME tools introduced in Subsec-
tion 2.4 – such as INGENME – are general enough to be effectively reused in the
AOSE context. In addition, an example of CAPE tool specifically developed in
the agent field is represented by Metameth [47], which allows the composition of
a set of fragments stored in a specific repository. Metameth seems the only tool
considering interactions with existing external tools for the creation of a CASE
tool based on the characterisation of the interaction between Metameth and the
external tools. At the moment, these kinds of interactions are rather limited be-
cause of the complexity of the composition of the existing tools’ portions—which

13 http://www.pa.icar.cnr.it/passi/FragmentRepository/fragmentsIndex.html

are typically based on different development principles and specific APIs, to be
taken into account in order to compose at the best the different tools.

3.4 AOSE Meta-model

In their most general acceptation, meta-models have been addressed from dif-
ferent points of view. Just to cite some of them we can list what follows:

Bernon et al. — The process of designing a system (object or agent-oriented)
consists of instantiating the system meta-model that the designers have in
their mind in order to fulfill the specific problem requirements. In the agent
world this means that the meta-model is the critical element because of the
variety of methodology meta-models [48].

Gonzalez-Perez et al. — A meta-model is a model of a methodology or, in-
deed, of a family of related methodologies [49].

Brian Henderson-Sellers — A meta-model describes the rules and constraints
of meta-types and meta-relationships. Concrete meta-types are instantiated
for use in regular modeling work. A meta-model is at a higher level of ab-
straction than a model. It is often called a model of a model. It provides the
rules/ grammar for the modelling language itself. The modelling language
consists of instances of concepts in the meta-model [50].

Although it is possible to describe a methodology without an explicit meta-
model, formalising the underpinning ideas of the methodology in question is
valuable when checking its consistency or when planning extensions or modifica-
tions. The importance of meta-model becomes clear when it is necessary to study
the completeness and the expressiveness of a methodology, and when comparing
different methodologies. Consequently, there is the need to study the different
AOSE methodologies, to compare their abstractions, rules, relationships, and the
process they follow, all of that would lead to a more comprehensive view of this
variety of methodologies. Different works have been devoted to the study [51–57],
and the unification of MAS meta-models [48, 50, 58, 59], that it has been one of
the more important topic in the work done by the agent community within the
Agentlink Agent-Oriented Software Engineering Technical Forum Group (AOSE
TFG) meetings14.

The importance of meta-modelling is not only for having a precise view of
agent-oriented methodologies as a way to check their completeness and expres-
sivity, or to compare them, but it is also useful to clarify the distance between
agent-oriented methodologies and infrastructures [51]. Expressing agent-oriented
methodologies and infrastructures through formal meta-models is an initial step
to reduce the conceptual and technical gap amongst these two research areas15.

The situation up-to-date is that the lack of a unique MAS meta-model leads
each methodology to deal with its own concepts and system structure, even if
currently there are two kind of standardisation efforts. The first effort is the
14 See http://www.pa.icar.cnr.it/cossentino/al3tf3/ for more details
15 http://www.mensa-project.org/

recent standard “Software Engineering Metamodel for Development Methodolo-
gies” ISO/IEC 24744 16 [60]. This standard is not specific for the agent-oriented
field, rather it is very general. It is based on two powerful but someway complex
concepts: powertype , where “powertype of another type, called the partitioned
type, is a type the instance of which are subtypes of the partitioned type”, and
clabject, i.e. a class/object hybrid concept. In addition, this standard is so gen-
eral that it can represent both the process and the concepts of a methodology
and this could easily lead to reduce the understandability of the standard.

The second effort is represented by the OMG’s Agent Platform Special In-
terest Group17 (Agent PSIG) that tries to identify and recommend new OMG
specifications in the area of agent technology, with particular attention to:

– recommend agent-related extensions to existing and emerging OMG specifi-
cations;

– promote standard agent modeling languages and techniques that increase
rigor and consistency of specifications;

– leverage and interoperate with other OMG specifications in the agent area.

The work of the Agent PSIG is still in its infancy and at the time of writing
there are no specific results nor public documents.

3.5 Agent-Oriented Design Processes

In this section, we will provide a quick survey on some processes from literature.
In order to provide a schematic view we will compare them according to a list of
features. The list of compared AOSE processes includes: ADELFE [61], ASPECS
[30], GAIA [62], INGENIAS [63], MaSE [64], PASSI [65], Prometheus [66], SODA
[67, 68].

A lot of approaches have been published about processes comparison (for
instance see: [69–74]) and we decided to adopt a plain one based on a the con-
sideration of a minimal set of process features. For each feature, we examine if
the process exhibits it or not; the list of features is described below:

Coverage of the Entire Lifecycle — The methodology designer should be
interested in developing a detailed and complete methodology from exist-
ing analysis till software deployment and maintenance. It is now widely ac-
cepted that the core workflows of a methodology are requirements collection,
analysis, design, development (also called implementation), deployment and
testing. Some methodologies cover the entire process of software engineering
while some others are more focussed on a part of that.

Problem Type — The challenge of agent or multi-agent design processes is to
help the designers in building complex systems such as multi-agent systems
usually are. Two categories of works could be found: those which are general
high-level methodologies, and those which a focus on a specific application
context.

16 See http://www.iso.org/iso/catalogue_detail.htm?csnumber=38854
17 http://agent.omg.org/

Underlying Agent Architecture — Different design processes often refer to
different agent architecture. Some processes look at BDI agents, some others
refer to the IEEE FIPA specifications and finally there are processes that
are not necessarily related to a specific architecture.

Origin — Some agent-oriented design processes are based on concepts and the-
ories developed in the object-oriented field. Sometimes they even explicitly
refer to an existing OO process (such as the Unified Process, UP)

Notation — Several design processes propose a proprietary notation to be
adopted in the work products they specify. In some cases notation is an ap-
plication or an extension of well known modelling languages (mainly UML),
in other situations notation is a specific one, in one case there even is the
proposal of a shared adoption of the same notation (as it happens in [75]).

Lifecycle — While modern object-oriented processes like UP are nowadays flat-
tered to the adoption of the incremental/iterative lifecycle, agent-oriented
approaches are still variegate and exhibit different solutions. Actually old
paradigms like waterfall are still adopted as well as the last iterative/incremental
and even agile ones (not adopted by any of the here discussed processes but
by some others).

Support for Model Transformations — The acceptance of a model-driven
engineering paradigm [76] is growing in popularity in the agent-oriented
landscape. According to that, (portions of) design models are obtained by
transformation of preceding ones thus reducing design effort and at the same
time increasing design quality. Several agent-oriented design process have
been conceived to support that at a different extent.

Design Support Tools — The availability of a specific support tool allows for
an easier enactment of the design process and usually increases the resulting
design quality thanks to a set of check on notation and semantic aspects of
the models.

Results of the comparison conducted on the basis of these criteria are reported in
Table 1. Other design processes are reported in literature although they have not
been compared with the previous ones. Among the others we may list: Agent-
PriME [77], ASEME [78], AOR [79], Gormas [80], MESSAGE [81], O-MaSE [57],
Tropos [82].

3.6 Roadmap

Multi-agent systems are more and more used in different kinds of applications
for problem solving, simulations, and so on. Designing such systems requires to
have several different points of view about the system to be done. For instance,
ant-based simulation requires to take into account different environments: the
simulation environment composed in the simulation participants, the client who
provides the data and has to analyse and observe the running system and the
MAS environment which is composed of resources accessible by agents. It seems
unrealistic to develop a completely new method, each time the existing one are
not well adapted. In general, an existing one may be adapted, such as: PASSI
which is slightly modified to take into account simulation requirements[3].

C
ri

te
ri

o
n

A
D

E
L

F
E

A
S
P

E
C

S
G

A
IA

IN
G

E
N

IA
S

M
A

S
E

P
A

S
S
I

P
R

O
M

E
T

H
E

U
S

S
O

D
A

E
n
ti

re
L

if
e-

cy
cl

e
Y

es
Y

es
N

o
Y

es
N

o
Y

es
N

o
N

o

P
ro

b
le

m
T

y
p

e
O

p
en

sy
st

em
s,

D
y
n
a
m

ic
en

v
i-

ro
n
m

en
t

H
ie

ra
rc

h
ic

a
l

d
ec

o
m

p
o
sa

b
le

p
ro

b
le

m
s

O
p

en
sy

st
em

s
N

o
t

sp
ec

ifi
ed

R
o
b

o
ti

c
S
y
s-

te
m

s
In

fo
rm

a
ti

o
n

S
y
s-

te
m

s,
R

o
b

o
ti

c
S
y
st

em
s

G
en

er
a
l

P
u
rp

o
se

O
p

en
sy

st
em

s

A
g
en

t
A

rc
h
it

ec
tu

re
C

o
o
p

er
a
ti

v
e

A
g
en

ts
H

o
lo

n
ic

a
g
en

ts
N

o
t

sp
ec

ifi
ed

B
D

I
N

o
t

sp
ec

ifi
ed

F
IP

A
B

D
I

N
o
t

sp
ec

ifi
ed

O
ri

g
in

U
P

P
A

S
S
I,

R
IO

N
o
t

sp
ec

ifi
ed

U
P

U
P

U
P

N
o
t

sp
ec

ifi
ed

N
o
t

sp
ec

ifi
ed

N
o
ta

ti
o
n

U
M

L
E

x
te

n
si

o
n

U
M

L
a
d
a
p
ta

-
ti

o
n

N
o
n

sp
ec

ifi
c

S
p

ec
ifi

c
n
o
ta

-
ti

o
n

U
M

L
a
d
a
p
ta

ti
o
n

(a
)

U
M

L
a
d
a
p
ta

ti
o
n

(a
)

U
M

L
a
d
a
p
ta

ti
o
n

(a
)

T
a
b
u
la

r

L
if

e-
cy

cl
e

M
o
d
el

It
er

a
ti

v
e

It
er

a
ti

v
e

/
In

-
cr

em
en

ta
l

W
a
te

rf
a
ll

It
er

a
ti

v
e

It
er

a
ti

v
e

It
er

a
ti

v
e

/
In

cr
e-

m
en

ta
l

It
er

a
ti

v
e

It
er

a
ti

v
e

M
D

E
S
u
p
p

o
rt

Y
es

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

T
o
o
ls

Y
es

N
o

N
o

Y
es

Y
es

Y
es

Y
es

N
o

T
a
b
le

1
.

A
co

m
p
a
ri

so
n

o
f

so
m

e
a
g
en

t-
o
ri

en
te

d
d
es

ig
n

p
ro

ce
ss

es
.

(a
)

U
n
ifi

ed
N

o
ta

ti
o
n

p
ro

p
o
se

d
in

[7
5
]

Fragments represent a paradigm which enables to diminish the duration of
method definition in reusing existing ones. Although a couple of repositories
already exist, much work is still to be done in the field. Little experience exist
on widespread design processes composition and there is an obvious relationship
between the quality of fragment repository and the assembled process. Moreover,
the opposite is true as well. The more processes will be composed by using
fragment reuse, the more experience will be available on the field thus enabling an
improvement of fragment definitions and repository structures. The main future
research axis has to focus on a language for fragments description, on the means
to ensure the interoperability between fragments, and then on tools to facilitate
the fragments composition in order to produce the relevant software processes.
The first challenge is to ensure the interoperability of fragments developed by
different designers and for different purpose. The fragments must work with each
others and the problem here is quite closed to component architecture.

The second challenge is to propose CAPE tools to help designers to build
the most relevant software processes regarding the application and the designers
team expertise. Several steps can be followed: from the hand-made static built
process to the self-design process; and from process determined at the beginning
of the software development to a dynamic process adapted to the development
status.

All of the above cited challenges share a similar background need: the defi-
nition of the MAS meta-model. This topic has been long discussed in the AOSE
community (just think about the debates held during the Agentlink AOSE TFG
events18) and nonetheless it is still an unsolved issue.

Other open research issues will briefly discussed below:

– The definition of application specific processes: even considering the amount
of existing processes as a good starting point for several custom products,
there still is the need for specific approaches related to specific domains.
Real-time and embedded systems are clear examples of that. Agents had
limited applications in these fields but have great potentiality because of the
intrinsic problem decomposition they have in their own paradigm.

– The integration of agents with services and the related (web service) tech-
nology. Web services are nowadays very diffused and represent a good and
affordable solution for the development of highly distributed systems. Where
can agents contribute in a development scenario dominated by services?
Probably the answer lays in the essence of agency: agents are autonomous,
proactive, social. These properties are not necessarily shared by services and
they provide an invaluable support in the creation of a new abstraction and
design layer.

– Agent reasoning techniques. They are not a new issue but they are always
an important topic. Too many times agents are realised as simple state-
charts. Introducing advanced reasoning capabilities in agents is a complex
task but this is at the same time one of the crucial factors for distinguishing
agent-oriented systems from traditional ones.

18 http://www.pa.icar.cnr.it/cossentino/al3tf3/

– Common pitfalls in design processes: testing, deployment and formalised
design techniques (patterns). Such issues have not received, in the agent-
oriented field, the same attention they received in classic software engi-
neering despite they are worth to. Testing techniques are often taken from
object-oriented systems and adapted with minor changes. What about test-
ing the successful implementation of a certain degree of autonomy or self-
organisation? No definitive answer still exist. Deployment is totally neglected
by most of agent-oriented approaches but this should be one of the strength
points of MAS (because of their easy distribution). In the era of cloud-
computing, the agent community has a great opportunity. Agents may take
profit of the elaboration infrastructure proposed by this paradigm and con-
versely may offer to cloud-computing new ideas for load balancing and dis-
tribution. Finally very few agent designers accept the use of design patterns
as a daily practice. Several papers have been written on the matter and some
pattern repositories exist in literature but the diffusion of them in process
employment (but also conception) is still limited.

– Agent modelling languages. This is another long lasting issue. It is strictly
related to the research about MAS meta-model but the perspective may be
different. Defining a MAS meta-model means defining what are the elements
that will be instantiated in the design of a new MAS. Defining a MAS model-
ing language means defining how the instances will be represented at design
time. The link between the two is tight but there is not (necessarily) a one
to one link.

4 Conclusion

SPE can bring a number of benefits to AOSE. One is the capability of critically
analysing our own development process by decomposing them into fragments.
Another one is enabling the construction of new or altered development process
as our knowledge of the needs of concrete domain problems and the performance
of applied development processes grow.

While the research on SPE is lively in the general software engineering area,
the complexity of the processes to be modelled and built make the agent-oriented
framework possibly the most suitable place for new approaches and solutions. In
the AOSE field, current research in SPE aims at providing more flexible software
processes taking into account the work already done by AOSE methodology
designers, by re-using the most relevant parts (fragments) of any methodology.

At mid-term, research on SPE will likely be concerned with the development
of tools supporting SPE, whereas the long-term perspective looks towards a
self-designed software processes. Along these lines several difficulties must be
overcome, among which the interoperability of fragments and the situational
context representation and use seem to be the main ones.

References

1. Picard, G., Bernon, C., Gleizes, M.P.: Etto: Emergent timetabling organization.
[83]

2. George, J.P., Peyruqueou, S., Regis, C., Glize, P.: Experiencing self-adaptive mas
for real-time decision support systems. In: Int. Conf. on Practical Applications of
Agents and Multiagent Systems (PAAMS’09), Springer (2009)

3. Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., Russo, W.: Passim: A
simulation-based process for the development of multi-agent systems. International
Journal on Agent Oriented Software Engineering (IJAOSE) (2008)

4. Morandini, M., Migeon, F., Penserini, L., Maurel, C., Perini, A., Gleizes, M.P.:
A goal-oriented approach for modelling self-organising MAS. In: 10th Annual
International Workshop Engineering Societies in the Agents’ World (ESAW 2009).
(2009)

5. Cernuzzi, L., Cossentino, M., Zambonelli, F.: Process models for agent-based de-
velopment. Journal of Engineering Applications of Artificial Intelligence 18(2)
(2005) 205–222

6. Fuggetta, A.: Software process: a roadmap. In: ICSE ’00: Proceedings of the
Conference on The Future of Software Engineering, New York, NY, USA, ACM
Press (2000) 25–34

7. Jacobson, I., Booch, G., Rumbaugh, J.: The unified software development process.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA (1999)

8. Cockburn, A.: Selecting a project’s methodology. IEEE Software 17(4) (2000)
64–71

9. Kumar, K., Welke, R.: Methodology engineering: a proposal for situation-specific
methodology construction. Challenges and Strategies for Research in Systems
Development (1992) 257–269

10. ter Hofstede, H.A.M., Verhoef, T.F.: On the feasibility of situational method
engineering. Information Systems 22(6/7) (1997) 401–422

11. Brinkkemper, S.: Method engineering: engineering the information systems devel-
opment methods and tools. Information and Software Technology 37(11) (1996)

12. Ralyté, J., Rolland, C.: An assembly process model for method engineering. In Dit-
trich, K.R., Geppert, A., Norrie, M.C., eds.: CAiSE. Volume 2068 of Lecture Notes
in Computer Science., Springer (2001) 267–283 Advanced Information Systems
Engineering, 13th International Conference, CAiSE 2001, Interlaken, Switzerland,
June 4-8, 2001, Proceedings.

13. Henderson-Sellers, B.: Process Metamodelling and Process Construction: Examples
Using the OPEN Process Framework (OPF). Annals of Software Engineering 14(1)
(2002) 341–362

14. Hamsen, A.: Situational Method Engineering. Moret Ernst & Young (1997)
15. Firesmith, D., Henderson-Sellers, B.: The OPEN Process Framework: An Intro-

duction. Addison-Wesley (2002)
16. Gonzalez-Perez, C., McBride, T., Henderson-Sellers, B.: A metamodel for assess-

able software development methodologies. Software Quality Journal 13(2) (2005)
195–214

17. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modelling based assembly tech-
niques for situational method engineering. Information Systems, Vol. 24 24 (1999)

18. Ralyté, J.: Towards situational methods for information systems development:
engineering reusable method chunks. Procs. 13th Int. Conf. on Information Systems
Development. Advances in Theory, Practice and Education (2004) 271–282

19. Henderson-Sellers, B., Serour, M., McBride, T., Gonzalez-Perez, C., Dagher, L.:
Process construction and customization. Journal of Universal Computer Science
10(3) (2004)

20. OMG: Software process engineering metamodel. Version 2.0. Object Management
Group (2007)

21. Si-Said, S., Roland, C., Grosz, G.: Mentor: A computer aided requirements engi-
neering environment. In Springer, ed.: Proceedings of the 8th Inter. Conference on
Advances information System Engineering. Volume 1080 of LNCS. (1996) 22–43

22. Harmsen, A., Ernst, M., Twente, U.: Situational Method Engineering. Moret Ernst
& Young Management Consultants (1997)

23. Brinkkemper, S., Saeki, M., Harmsen, F.: A method engineering language for
the description of systems development methods. In: CAiSE ’01: Proceedings of
the 13th International Conference on Advanced Information Systems Engineering,
London, UK, Springer (2001) 473–476

24. Saeki, M., Iguchi, K., Wen-yin, K., Shinohara, M.: A meta-model for represent-
ing software specification & design methods. In: Proceedings of the IFIP WG8.1
Working Conference on Information System Development Process, Amsterdam,
The Netherlands, The Netherlands, North-Holland Publishing Co. (1993) 149–166

25. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent
design methodologies: from standardisation to research. International Journal of
Agent-Oriented Software Engineering (IJAOSE) 1(1) (2007) 91–121

26. Seidita, V., Cossentino, M., Gaglio, S.: Using and extending the spem specifications
to represent agent oriented methodologies. In: Agent-Oriented Software Engineer-
ing 2008. Lecture Notes in Computer Science. Volume 5386-0086. Springer-Verlag
GmbH (2009)

27. Seidita, V., Cossentino, M., Galland, S., Gaud, N., Hilaire, V., Koukam, A., Gaglio,
S.: The metamodel: a starting point for design processes construction. Interna-
tional Journal of Software Engineering and Knowledge Engineering (IJSEKE) ((in
printing))

28. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent
design methodologies: from standardisation to research. International Journal of
Agent Oriented Software Engineering 1(1) (2007) 91–121

29. Osterweil, L.: Software processes are software too. In: Proceedings of the 9th
international conference on Software Engineering. (1987) 2–13

30. Cossentino, M., Gaud, N., Hilaire, V., Galland, S., Koukam, A.: Aspecs: an agent-
oriented software process for engineering complex systems. International Journal of
Autonomous Agents and Multi-Agent Systems (IJAAMAS) 20(2) (2010) 260–304

31. Cossentino, M., Gaglio, S., Seidita, V.: Adapting passi to support a goal oriented
approach: a situational method engineering experiment. In: Proc. of the Fifth
European workshop on Multi-Agent Systems (EUMAS’07). (2007)

32. Gleizes, M.P., Camps, V., George, J.P., Capera, D.: Engineering systems which
generate emergent functionalities. In Weyns, D., Brueckner, S., Demazeau, Y.E.,
eds.: Engineering Environment-Mediated Multiagent Systems - Satellite Confer-
ence held at The European Conference on Complex Systems (EEMMAS 2007).
Volume 5049 of Lecture Notes in Artificial Intelligence., Springer-Verlag (2008)

33. Jorquera, T., Bonjean, N., Gleizes, M.P., Maurel, C., Migeon, F.: Combining
methodologies fragments using self-organizing mas. Technical report, IRIT (2010)

34. Jorquera, T., Maurel, C., Migeon, F., Gleizes, M.P., Bonjean, N., Bernon, C.:
Adelfe fragmentation. Technical report, IRIT (2009)

35. Cossentino, M., Sabatucci, L., Seidita, V.: Method fragments from the passi
process. Technical Report RT-ICAR-21-03, Istituto di Calcolo e Reti ad Alte
Prestazioni - Consiglio Nazionale delle Ricerche (2006)

36. Debenham, J., Henderson-Sellers, B.: Designing agent-based process systems -
extending the open process framework. In: Intelligent Agent Software Engineering.
Idea Group Publishing (2003) 160–190

37. Henderson-Sellers, B., Debenham, J., Tran, N., Cossentino, M., Low, G.: Identifica-
tion of reusable method fragments from the passi agent-oriented methodology. In:
Lecture Notes in Computer Science. Volume 3529. Springer-Verlag GmbH (2006)
95–110

38. Henderson-Sellers, B., Giorgini, P., Bresciani, P.: Evaluating the potential for
integrating the open and tropos metamodels. In: Procs. SERP Conference. (2003)

39. ISO/IEC: Software Engineering — Metamodel for Development Methodologies.
Fdis 24744 edn. (2006)

40. Gonzalez-Perez, C., Henderson-Sellers, B.: Metamodelling for Software Engineer-
ing. Wiley (2008)

41. Gonzalez-Perez, C., Henderson-Sellers, B.: On the ease of extending a powertype-
based methodology metamodel. In: Procs. 2nd Workshop on Metamodelling
WoMM2006. (2006)

42. Rumbaugh, J.E.: Notation notes: Principles for choosing notation. JOOP 9(2)
(1996) 11–14

43. Tran, Q.N., Henderson-Sellers, B., Debenham, J.: Incorporating the elements of the
MASE methodology into agent OPEN. In: Procs. ICEIS 2004 - Sixth International
Conference on Enterprise Information Systems. (2004)

44. Henderson-Sellers, B., Debenham, J., Tran, N.: Adding agent-oriented concepts
derived from gaia to agent open. In: Procs. of 16th International Conference on
Advanced Information Systems Engineering, CAiSE 2004. (2004)

45. Henderson-Sellers, B., Tran, Q.N., Debenham, J., N.: Incorporating elements from
the prometheus agent-oriented methodology in the open process framework. In:
Agent-Oriented Systems II. Volume 3508. Springer-Verlag (2005)

46. Seidita, V., Cossentino, M., Gaglio, S.: A repository of fragments for agent systems
design. Proc. Of the Workshop on Objects and Agents (WOA06) (2006)

47. Cossentino, M., Sabatucci, L., Seidita, V.: A collaborative tool for designing and
enacting design processes. In Shin, S.Y., Ossowski, S., Menezes, R., Viroli, M., eds.:
24th Annual ACM Symposium on Applied Computing (SAC 2009). Volume 2.,
Honolulu, Hawai’i, USA, ACM (2009) 715–721

48. Bernon, C., Cossentino, M., Gleizes, M.P., Turci, P., Zambonelli, F.: A study of
some multi-agent meta-models. In Odell, J., Giorgini, P., Müller, J.P., eds.: Agent
Oriented Software Engineering V. Volume 3382 of Lecture Notes in Computer
Science., Springer (2004) 62–77

49. Gonzalez-Perez, C., McBride, T., Henderson-Sellers, B.: A metamodel for assess-
able software development methodologies. Software Quality Journal 13(2) (2005)
195–214

50. Henderson-Sellers, B., Gonzalez-Perez, C.: A comparison of four process metamod-
els and the creation of a new generic standard. Information & Software Technology
47(1) (2005) 49–65

51. Molesini, A., Denti, E., Omicini, A.: From ao methodologies to mas infrastructures:
The soda case study. In Artikis, A., O’Hare, G., Stathis, K., Vouros, G., eds.: En-
gineering Societies in the Agents World VIII. Volume 4995 of Lecture Notes in

Computer Science. Springer (2008) 300–317 8th International Workshop “Engi-
neering Societies in the Agents World” (ESAW’07) - Athens, Greece, Oct 22-24,
2007 - Revised and Invited Papers.

52. Molesini, A., Denti, E., Omicini, A.: MAS meta-models on test: UML vs. OPM in
the SODA case study. [83] 163–172

53. Grupo de Investigación en Agentes Software: Ingenieŕıa y Aplicaciones: Home
page. http://grasia.fdi.ucm.es/ingenias/metamodel/ (2009)

54. Beydoun, G., Low, G.C., Henderson-Sellers, B., Mouratidis, H., Gómez-Sanz, J.J.,
Pavón, J., Gonzalez-Perez, C.: Faml: A generic metamodel for mas development.
IEEE Trans. Software Eng. 35(6) (2009) 841–863

55. Dam, K.H., Winikoff, M., Padgham, L.: An agent-oriented approach to change
propagation in software evolution. In: Australian Software Engineering Conference,
Los Alamitos, CA, USA, IEEE Computer Society (2006) 309–318

56. Giorgini, P., Mylopoulos, J., Perini, A., Susi, A.: The tropos metamodel and its
use. Informatica 29 (2005) 401–408

57. Garćıa-Ojeda, J.C., DeLoach, S.A., Robby, Oyenan, W.H., Valenzuela, J.: O-mase:
A customizable approach to developing multiagent development processes. In Luck,
M., Padgham, L., eds.: AOSE. Volume 4951 of Lecture Notes in Computer Science.,
Springer (2007) 1–15

58. Cossentino, M., Gaglio, S., Sabatucci, L., Seidita, V.: The passi and agile passi
mas meta-models compared with a unifying proposal. [83] 183–192

59. Beydoun, G., Gonzalez-Perez, C., Low, G., Henderson-Sellers, B.: Synthesis of a
generic mas metamodel. In: SELMAS ’05: Proceedings of the fourth international
workshop on Software engineering for large-scale multi-agent systems, New York,
NY, USA, ACM (2005) 1–5

60. Henderson-Sellers, B., Gonzalez-Perez, C.: Standardizing methodology metamod-
elling and notation: An iso exemplar. In Kaschek, R., Kop, C., Steinberger, C.,
Fliedl, G., eds.: UNISCON. Volume 5 of Lecture Notes in Business Information
Processing., Springer (2008) 1–12

61. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Engineering adaptive multi-
agent systems: the adelfe methodology. In: Agent Oriented Methodologies. Idea
Group Publishing (2005) 172–202

62. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 12(3) (2003) 317–370

63. Pavòn, J., Gòmez-Sanz, J.J., Fuentes, R.: The INGENIAS methodology and tools.
[84] chapter IX 236–276

64. DeLoach, S.A., Kumar, M.: Multi-agent systems engineering: An overview and
case study. [84] chapter XI 317–340

65. Cossentino, M.: From requirements to code with the PASSI methodology. [84]
chapter IV 79–106

66. Padgham, L., Winikof, M.: Prometheus: A methodology for developing intelligent
agents. In Giunchiglia, F., Odell, J., Weiss, G., eds.: Agent-Oriented Software
Engineering III. Volume 2585 of LNCS. Springer (2003) 174–185 3rd International
Workshop (AOSE 2002), Bologna, Italy, 15 July 2002. Revised Papers and Invited
Contributions.

67. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of
agent-based systems. In Ciancarini, P., Wooldridge, M.J., eds.: Agent-Oriented
Software Engineering. Volume 1957 of LNCS. Springer-Verlag (2001) 185–193 1st
International Workshop (AOSE 2000), Limerick, Ireland, 10 June 2000. Revised
Papers.

68. Molesini, A., Omicini, A., Denti, E., Ricci, A.: SODA: A roadmap to artefacts.
In Dikenelli, O., Gleizes, M.P., Ricci, A., eds.: Engineering Societies in the Agents
World VI. Volume 3963 of LNAI. Springer (2006) 49–62 6th International Work-
shop (ESAW 2005), Kuşadası, Aydın, Turkey, 26–28 October 2005. Revised, Se-
lected & Invited Papers.

69. Cernuzzi, L., Rossi, G., Plata, L.: On the evaluation of agent oriented modeling
methods. In: Workshop on Agent Oriented Methodology. (2002) 21–30

70. Bernon, C., Gleizes, M.P., Picard, G., Glize, P.: The ADELFE Methodology For
an Intranet System Design. In Giorgini, P., Lespérance, Y., Wagner, G., Yu, E.,
eds.: Fourth International Bi-Conference Workshop on Agent-Oriented Information
Systems (AOIS-2002). Volume 57., Toronto, Canada, CAiSE’02, CEUR Workshop
Proceedings (2002)

71. Sturm, A., Shehory, O.: A framework for evaluating agent-oriented methodolo-
gies. In: Proc. of the Int. Bi-Conference Workshop on Agent-Oriented Information
Systems, AOIS 2003, volume 3030 of LNCS, Springer (2003) 94–109

72. Dam, K.H.: Comparing agent-oriented methodologies. In: Proc. of the Int. Bi-
Conference Workshop on Agent-Oriented Information Systems, AOIS 2003, volume
3030 of LNCS. (2003) 78–93

73. Luck, M., Ashri, R., DÍnverno, M.: Agent-Based Software Development. Artech
House (2004)

74. Tran, Q.N., C., L.G.: Comparison of ten agent-oriented methodologies. In: Agent
Oriented Methodologies. Idea Group Publishing (2005) 341–367

75. Padgham, L., Winikoff, M., DeLoach, S., Cossentino., M.: A unified graphical no-
tation for aose. In: In Proc. of the Ninth International Workshop on Agen-Oriented
Software Engineering (AOSE-2008) at the 7th International Joint Conference on
Autonomaous Agents and Multi-Agent Systems (AAMAS 2008). (2008)

76. Schmidt, D.C.: Model-driven engineering. Computer 39(2) (2006) 25–31
77. Miles, S., Groth, P.T., Munroe, S., Luck, M., Moreau, L.: Agentprime: Adapting

mas designs to build confidence. In: Proc. of Agent-Oriented Software Engineering
(AOSE) workshop. (2007)

78. Spanoudakis, N., Moraitis, P.: Development with ASEME. In: 11th International
Workshop on 11th International Workshop on Agent Oriented Software Engineer-
ing (AOSE). (2010)

79. Wagner, G.: Agent-oriented analysis and design of organizational information sys-
tem. In: Proc. of the 4th IEEE Int. Baltic Workshop on Databases and Information
Systems. (2000)

80. Argente, E., Botti, V., Vincente, J.: GORMAS: An organizational-oriented
methodological guideline for open MAS. In: Proc. of Agent-Oriented Software
Engineering (AOSE) workshop. (2009)

81. Garijo, F.J., Gòmez-Sanz, J.J., Massonet, P.: The MESSAGE methodoly for agent-
oriented analysis and design. [84] chapter VIII 203–235

82. Castro, J., Kolp, M., Mylopoulos, J.: A Requirements-driven Development Method-
ology. In Dittrich, K., Geppert, A., Norrie, M., eds.: Proceedings of the 13th Inter-
national Conference on Advanced Information Systems Engineering (CAiSE’01).
Volume 2068 of LNCS., Springer (2001) 108–123

83. Pechoucek, M., Petta, P., Varga, L.Z., eds.: Multi-Agent Systems and Applications
IV. 4th International Central and Eastern European Conference on Multi-Agent
Systems, CEEMAS 2005, Budapest, Hungary, September 15-17, 2005, Proceedings.
Volume 3690 of LNCS. Springer (2005)

84. Henderson-Sellers, B., Giorgini, P.: Agent Oriented Methodologies. Idea Group
Publishing, Hershey, PA, USA (2005)

