
Applying UML Use Case Diagrams to Agents
Representation

Antonio Chella

Dip. di Automatica ed Informatica
University of Palermo

Viale delle Scienze, Palermo, Italy
chella@unipa.it

Massimo Cossentino
Dip. di Ingegneria Elettrica

University of Palermo
Viale delle Scienze, Palermo, Italy

maxco@unipa.it

Umberto Lo Faso
Dip. di Automatica ed Informatica

University of Palermo
Viale delle Scienze, Palermo, Italy

lofaso@unipa.it

Abstract

This paper is the first step of an exploration

of the possibilities offered by the application of
UML to agent-based software. Starting from UML
definitions of use cases and actors we discuss
their correspondence to agents and external
entities of the environment. An example is also
presented that starts form a classical well–known
case of study.

1. Introduction
Software agents are always increasing in

importance and consequently in their complexity.
This growth, as it seems to us, hasn’t been

supported by a consequent increase of the design
and developing techniques that, conversely, well
support the design of conventional object-oriented
software.

In the past several authors proved to create
a robotics (or agent) dedicated design method or
language [1], [2], [3], [4], [8], [9].

In this paper, we begin to face the problem
of combining both agents and software
engineering approaches and, in this context, we
believe that UML can be usefully applied in order
to design an agent-based software. Moreover we
think that this choice is also a suitable one
because UML is going to become, by now, a well-
established industrial standard.

The first step in our exploration of this
approach is the evaluation of the possibility of
applying the use case diagrams to higher level
descriptions of agents and of their interactions.

We also apply our idea to a very simple
example that shows the strength and clearness of
our approach.

In the next future, we are going to
experiment this method in the programming of a
real RWI B21 robot equipped with sonar sensors,
stereo vision system and laser scanner.

This work will give us also a chance to
pursue a certain degree of portability of the
software design from the B21 robot to other ones
which need similar behaviours.

The following pages are a brief introduction
to our idea. To be specific: in the second chapter
we give a short description of the Unified
Modeling Language (UML); in the third chapter,
starting from definitions of Use Case and Agent,
we identify their similarities and the way of using
use cases, to describe agents in the use-case
driven analysis; in the fourth chapter an example
is provided.

2. The Unified Modeling Language
UML is a language that can be used to

analyse, specify, construct and document a
software artefact. Its origins come from several
object-oriented modelling approaches (and
languages) of some years ago (Booch’s OOADA,
Jacobson’s OOSE, Rumbaugh OMT and others):
UML is object-oriented itself. In the late 1997
UML 1.1 was approved and adopted by OMG
(Object Management Group). At this date UML
became the first standard modelling language and
the most supported by industry. The greatest
names in software production have given their
contribution to the definition of this standard and
are now interested in his growth. The academic
world is involved in the exploration of the various
problems connected with the introduction of UML
in the software design and development process.
UML is not thought to support a well specified

design process, it can be used to support new
approaches as well as older ones. This is a great
field of interest and research that is still opened.

In this context we have studied the
application of UML to agent-based software,
looking both at the well-known traditional
approaches (trying to reconcile these ones with
the new design language) and at the prospect of
developing new specific methods.

2.1. UML diagrams
During the analysis phase, with special

regard to the problem of describing a system to be
developed, its context, the interaction of the
external entities, UML offers two diagrams: the
Use Case Diagram and the traditional, well
known, Class Diagram. The first diagram is
centred upon use cases (illustrating the functional
aspects of the system) and actors (entities external
to the system and interacting with it). The class
diagram contains both classes (entities of the
system) and their relationships. Classes could
contain attributes and methods (addressing the
behaviour of the system).

Looking at the software system, the UML
elements can be grouped in a few conceptual
areas: static structure, dynamic behaviour,
implementation constructs, model organisation,
extensibility mechanisms.

To describe the static structure of our
application we can use the class diagram.

The system’s dynamic behaviour can be
described using collaboration or sequence
diagram. These are different points of view of the
same scenario. Scenarios are paths around use
cases illustrating one of the possible behaviour of
the software. In collaboration diagrams attention
is focused upon what message a certain entity of
the system exchanges with the other ones.
Sequence diagrams again show messages but
arranged in time order.

Finite state diagrams and activity diagrams
can also be used to describe a certain procedure or
the life of a class.

To support the implementation aspects of
design, UML offers component and deployment
diagrams. In the component diagrams classes are
associated with components (executables,
libraries, ...) that will be created with their
relations. In deployment diagrams processes and
nodes (execution units or other devices) are
shown with their connections.

Packages can be used to organise the
structure of large systems: they allow simplifying
the management of systems which involve a great

number of elements by organising them in an
hierarchical structure.

Several extensibility mechanisms are part
of UML: stereotypes (model elements similar to
standard ones but with additional constraints),
tagged values (that can be attached to any model
element to contain additional information) and
constraints (that can be used to create semantic
relationship among model elements that specifies
Boolean conditions and propositions). Constraints
are described in words and are attached to a model
element: a specific language, named OCL (object
constraint language), has been associated to UML
in order to support constraints.

3. Use cases and agents
In this chapter we want to show that it is

possible to use a use case diagram to describe an
agent system from the social level point of view.

Use case diagrams “show actors and use
cases together with their relationships”[11].

We would like to demonstrate that they
could represent agents (use cases), environment
(actors) and interactions (relationships).

Before going into our argument, a
definition of what we define as an agent can be
helpful.

 “An agent is an encapsulated computer
system that is situated in some environment and
that is capable of flexible, autonomous action in
that environment in order to meet its design
objectives”[10].

We want to put this agent in
correspondence with a use case.

According to UML standards, the use case
definition is:

“A use case is a coherent unit of
functionality provided by a system, a subsystem
or a class as manifested by sequences of messages
exchanged among the system and one or more
outside interactors (called actors) together with
actions performed by the system.”

We can find many contact points between
these definitions.

If the use case is ‘a coherent unit of
functionality’ it can describe the ‘flexible,
autonomous action’ of an agent. As a
consequence, we can represent an agent and his
vocational behaviour by a use case.

The behaviour of an agent is the
consequence of his interaction with the real world
(or other agents), and of his own purposes (‘its
design objectives’).

The interactions between agents in our view
can be seen as “messages exchanged” in the
previous definition. These messages are

transmitted through the relationships that exist
among the system elements.

UML comprehends only 4 standard kinds
of relationships: associate, extend, generalize and
include. Other new relationships can be defined
by the user and in so doing every kind of
interaction can be represented.

According to UML definition, the actor
“defines a coherent set of roles that the users of an
entity can play when interacting with the entity.”

Starting from this definition we can think
that the environment, in his interaction with the
agent, plays the role of an actor (represented with
a use case). For example the environment can give
to an agent the motivation to perform (or not) a
specific behaviour. Other agents from a certain
point of view (according to the designer
perspective) can be seen as actors (i.e. entities
external to the system to be designed) or use cases
(entities internal to the system to be designed).

It is possible to think that in the previous
actor’s definition, the role of “active subject” is
assigned to the actor. In the agent representation
we propose it isn’t so. Indeed, our choice of
representing entities external to our agent system
as actors seems to be in accordance with “Actors
model parties outside an entity, …” and “Since an
actor is outside the entity, its internal structure is
not defined but only its external view as seen from
the entity” [11] (this question also recalls the
problem of action and intention as discussed in
[12], [13]).

Use case diagrams in the illustrated
approach, can describe agents together with their
interactions and relations. Use cases diagrams
illustrate also the agents’ purposes from a static,
structural point of view (external, not of
implementation). These diagrams can’t obviously
describe the agents’ dynamic behaviour, which
can be realized in the countless possible scenarios
of a complex agent system.

Other UML diagrams such as Activity
diagrams and Sequence (or Collaboration)
diagrams can describe more precisely the dynamic
behaviour of an agent society.

4. Example
Consider the well known example of the

“foraging” robot [1]. Its behaviour can be
represented through the FSA (Augmented Finite
State) diagram of fig.1.

The robot explores the environment around
him until it detects some food. Then he directs
towards the food, grabs it and delivers it to a
designed site.

Fig.1 – The FSA of the “foraging” robot

This diagram illustrates the dynamics of the

behaviour of the robot but it doesn’t describe the
‘operative situation’.

In making an agent-based software and
specially in the relative analysis phase we could
take benefits from a description of the
“functionality of the model as perceived by
outside users” [6] like that provided by an use
case diagram.

In fig. 2 the “foraging” robot system is seen
from the outside point of view of the use case
diagram.

Fig.2 – Use case diagram of the “foraging robot”

Two actors (represented as a “stick” man)

can be identified: the environment and the food;
behaviours of fig.1 are represented as use cases
(represented as ovals)

The environment ‘communicates’ the
positions of the objects contained in the robot
world (the robot receives this data through his
own sensors). Using this information the robot
walks around searching for food (use case
‘exploration’). When he finds some food (use case
‘acquisition’) he moves towards it and collects it;
in this use case the robot receives information
from the environment (obstacle position) and from
food (its position). Finally he brings to the
selected site the collected food. In so doing the
robot needs information from the environment to
avoid obstacles and, obviously, uses the food that
he is taking with him.

This use case diagram looks at the same
operative situation of the FSA in fig.1 but from a

different point of view. Several agents
(Exploration, Acquisition, Retrieval) are present
and collaborate to achieve the goal (collecting
food and taking it home); the communications
between external entities (i.e. environment and
food) and agents of the system are well specified
(and can, eventually, be typed).

5. Conclusion
The introduction of use case diagrams in

the design of agent based software creates the
opportunity of enhancing the analysis phase using
one of the most interesting software engineering
approach to the problem.

These diagrams allow to use an high level
of abstraction and can well describe a great
population of agents, visualising their mutual
communications.

This contribution represents only the first
step of a study path in the direction of applying
UML to agents. Several interesting problems can
be identified, one of them is the analysis and
design of concurrency.

REFERENCES
[1]. Albus, J., McCain, H. and Lumia, R.:

NASA/NBS Standard Reference Model
for Telerobot Control System
Architecture (NASREM), NBS Technical
Note 1235, Robot Systems Division,
NIST, 1987.

[2]. Lyons, D. and Arbib, M.: A Formal
Model of Computation for sensory-Based
Robotics, IEEE Trans. on Robotics and
Automation, vol. 6, no. 3, pp. 280-293,
1989.

[3]. Kaelbling, L. and Rosenschein, S.:
Action and Planning in Embedded
Agents, in: P.Maes (ed.): Designing
Autonomous Agents, MIT Press,
Cambridge, MA, pp. 35-48, 1991.

[4]. Brooks, R.: The Behavior Language, AI
Memo 1227, MIT AI Labroatory, 1990.

[5]. R.C. Arkin – “Behavior-Based
Robotics” – The MIT Press – Cambridge
MA

[6]. “The Unified Modelling Language
Reference Manual” – J. Rumbaugh, I.
Jacobson, G. Booch – Addison Wesley

[7]. M. Wooldridge, N.R. Jennings,
Intelligent agents: Theory and practice,
Knowledge Engineering Review 10 (2)
(1995) 115-152.

[8]. M. Wooldridge, N.R. Jennings,
Software engineering with agents: pitfall

and pratfalls, IEEE Internet Computing 3
(3) (1999) 20-27.

[9]. M. Wooldridge, Agent-based software
engineering, IEEE Proc. Software
Engineering 144 (1) (1997) 26-37

[10]. N.R. Jennings, On agent-based software
engineering, Artificial Intelligence 117
(2000) 277-296.

[11]. OMG Unified Modeling Language –
Ver. 1.3 – June 99

[12]. J. R. Searle, “Minds, brains and
programs” in “The behavioural and Brain
Sciences” – 1980 – Cambridge University
Press.

[13]. D.R.Hofstadter, D.C.Dennett: “The
Mind's I”, Basic Books, 1981.

