
Different Perspectives in Designing Multi-Agent
Systems

Massimo Cossentino

ICAR/CNR – Istituto di Calcolo e Reti ad Alte Prestazioni/ Consiglio Nazionale delle
Ricerche

c/o CUC, Viale delle Scienze, 90128 Palermo, Italy
cossentino@cere.pa.cnr.it

Abstract. The process of designing a multi-agent system (MAS) naturally
involves many different concepts. The system should reach some goals and
provide specific requirements. The designer should produce an accurate model
for the domain ontology, the agents’ knowledge and interactions. The structural
and behavioral description of the system will descend from these elements and
will also generate some constraints in the other parts of the design.
From these considerations and our experiences in designing MAS with a CASE
tool supported methodology (PASSI) we deducted the importance of exploring
the design process of these systems from several different perspectives that
explicitly address the architectural, social, knowledge, resource and physical
aspects of them.

1. INTRODUCTION

During the design of a MAS (multi-agent system), the designer passes through several
different levels of abstraction looking at the problem from many different points of
view. The result is a series of models that reflect this multi-faced structure.

As a natural consequence, the process used in affording the different models
should not be planar but multi-dimensional. Several different perspectives can
therefore be identified in this process. They address different aspects of the agent
solution that is more complex than a traditional object oriented one because of its
social and ontology aspects, of the necessity of surveillance on the rules observance,
and of trust problems connected to a potentially opened system.

In testing the PASSI (Process for Agent Societies Specification and
Implementation) [7] design methodology, we observed that the mental process of the
designer does not only follow the sequence of steps prescribed, it browses around
analyzing different aspects of the design (we will refer to the resulting point of view
as a perspective) and different connections among the elements (we will refer to them
as influences); the sequence of steps is only the sequential order in which he will
perform the formal acts and will produce the diagrams.

The PASSI methodology takes great advantage from the use of PTK (PASSI
ToolKit), a dedicated design tool (integrated in Rational Rose) that we have realized.

Several UML design tools exist and some attempts have been done in order to support
the designer not only in the pure action of designing (like a simple graphic tool can
do) but also in order to introduce some level of cognitive support. Regarding this
experiences we have the advantage of focusing our work on a specific design process
and therefore the possible activities of the designer are known and can be studied. We
looked at the methodology from very different points of view trying to explore the
possible relationships between the different elements of it in terms of chronological
order of production, flow of information, focus of attention (decomposition of the
functionalities, social aspects, implementation of the solution, …).

From this study we learnt some lessons that will be useful in increasing the
functionalities of our Rational Rose add-in and better the productivity of the whole
process.

2. The PASSI design methodology

In this section, we will briefly introduce the elements of the PASSI methodology [7].
It is composed of five models (Figure 1) and twelve phases that address different
design concerns in the process of building a model. Although these numbers could
seem high, they reflect a natural vocation of the process for a multi-facet approach
while the support offered by PTK (the Rational Rose add-in) drastically lowers the
effort of the designer automatically producing several parts of the whole model.

In PASSI we use UML as a modeling language and in order to support some
specific issues related to the nature of the MAS we also use AUML [8]. We chose of
restricting the implementation environment for our multi-agent systems to FIPA-
based platforms and from this choice we obtained the possibility of fully supporting
the most detailed, coding-related steps of the design process.

The process is iterative and requirements-to-code; the twelve phases (each of them
producing one or more UML diagrams) are:
• Domain Description (D.D.). A functional description of the system using

conventional use-case diagrams. We describe the requirements with use-case
diagrams that are obtained either through common requirements elicitation typical

Depl. Model

Syst. Req. Model

T.Sp.R.Id.

Ag. Impl. Model

A.S.D.

A.B.D.

Code Model

C.R.

C.C.

D.O.D. R.D. P.D.
Agent Society Model

Initial
Requirements New Requirements

A.Id.

D.D.

D.C.

Key:

D.D. – Domain Description
A.ID. – Agents Identification
R.Id.– Roles Identification
T.Sp. – Task Specification
A.S.D. – Agents Structure Definition
A.B.D. – Agents Behavior Description
O.D. –Ontology Description
R.D. – Roles Description
P.D. – Protocols Description
C.R. – Code Reuse Library
C.C. – Code Completion Baseline
D.C. – Deployment Configuration

Fig. 1. The models and phases of the PASSI methodology

of the object-oriented methods [10] or through the informal application of a
scenario-based teleological method such as GBRAM [11] or ScenIC [12].
The result is a functional description of the system through a hierarchical series of
use-case diagrams.

• Agent Identification (A.Id.). Agent identification starts from the use-case diagrams
of the previous step. According to our definition of agents, it is possible to see an
agent as a use case or package of use cases in the most detailed diagram of the
D.D. phase.

• Role Identification (R.Id.). Role identification produces a set of sequence diagrams
that specify the most important scenarios from the agents’ identification use case
diagram. These diagrams are used to identify the roles played by the agents to
achieve their goals.

• Task Specification (T.Sp.). In the Task Specification phase we look at one agent at
a time, drawing an activity diagram for each agent. In this diagram, each activity
node represents a task that the agent can perform. Therefore T.Sp. diagram
resumes the behavior of the agent also including its interactions with the others. It
completes the requirements model of the system.

• Ontology Description (O.D.). We use class diagrams and OCL constraints to
describe the ontology of the domain, the knowledge ascribed to individual agents
and the pragmatics of their interactions. In order to better describe the details of
these elements, we often use two different diagrams, the Domain Ontology
Description and the Communication Ontology Description, to describe the overall
ontology and its use as part of the agent’s knowledge and communications.

• Role Description (R.D.). With a class diagram we show the distinct roles played by
agents, the tasks involved, the communication capabilities and the inter-agent
dependencies (service, resource, … [15]). The scope of this phase is modeling the
lifecycle of each agent, looking at the roles it can play, at the collaboration that it
needs, and the communications in which it participates. The R.D. diagram is also
where we introduce all the rules of the society (organizational rules, [13]), laws of
the society and the domain in which the agent operates (e.g. trade laws) and the
behavioral laws considered by Jennings in his “social level” [3].

• Protocol Description (P.D.). Sequence diagrams specify the grammar of each
pragmatic communication protocol in terms of speech-act performatives. We adopt
the representation of the AIP (Agent Interaction Protocol) proposed by Odell as an
agent oriented extension (AUML) to the standard of UML [8].

• Agent Structure Definition (A.S.D.). This phase is composed of several class
diagrams. The diagrams logically belong to two different levels of detail in the
design: the multi-agent and the single-agent. In the first we focus on the general
architecture of the system and therefore in it we can find agents and their tasks. In
the second level we look at each agent internal structure, showing all the attributes
and methods of the agent class and of its internal task classes.

• Agent Behavior Description (A.B.D.). Activity/state diagrams describe the behavior
of individual agents. As in the case of the A.S.D. phase we have two different
levels of abstraction in this phase. In the multi-agent diagrams we represent the
flow of events, the invoked methods and the messages exchanged between agents.
In the single-agent diagrams we detail the implementation of the formerly used
methods.

• Code Reuse (C.R.). In this phase we try to reuse existing patterns of agents and
tasks. It is not correct to talk of patterns of code only, because the process of reuse
takes place in the design of the system. Our patterns therefore are not only pieces
of code. They are also pieces of design (of agents and tasks) that can be reused to
implement new systems. Our add-in for Rational Rose provides an extended
support for this phase and thanks to a quickly growing up repository the designer
can often reuse large parts of the design/code in a fast and affordable process.

• Code Completion (C.C.). The programmer completes the code of the application
starting from the design, the skeleton produced and the patterns reused.

• Deployment Configuration (D.C.). We use deployment diagrams to describe the
allocation of agents to the available processing units and any constraints on
migration and mobility. Some extensions to the standard UML notation are
provided in order to support agents’ mobility.
The PASSI methodology is general and can be applied in many different agent

implementation environments. We extensively tested it using a standard FIPA
architecture [9] in designing informative [16] and robotics systems [17].

3. The multidimensional perspective in the MAS design process

We identified 5 different perspectives in analyzing the system design. Two of them
(knowledge and computer) come from a Newell’s classification [1] (indeed, our
computer perspective, is a little different) later expanded by Jennings [3] with the
social level that we adopt as the third perspective, the other two (architectural and
resource) come from classical software engineering concepts.

We think that looking at a MAS from different perspective does not result in a
series of different not-related subsystems or partial descriptions of the whole system.
The real outcome is a more detailed description of it in terms of a well defined aspect.

When the designer looks at the system in order to study some specific problem he
thinks about it as ‘something’ of specific. He can be concerned about the distribution
of the software in the available hardware platforms in order to optimize the
performances or can be interested in defining the rules of interaction of the agent
society. For this reason we intentionally call these different points of view
‘perspectives’ and not ‘levels’ or ‘abstractions’ because we want to stress the concept
that the perspective is the representation of the system when the spectator is interested
only in a specific conceptual area of the multi-faced agent system.

The architectural perspective looks at the software as a set of functionalities to be
implemented in a classical, software engineering approach. It is the more abstract
perspective. Its elements exist in the mind of the designer, they are abstractions of the
system representing the functionalities and their logical implementation.

The social perspective is characteristics of the multi-agent systems. Many authors
use some kind of social description in their approaches. It is interested in the society
of agents that interact to reach the goals imposed by the designer.

The knowledge perspective is a high detailed point of view. The single agent, its
functional and behavioral details (that induce some specific implementation) are the
focus of this perspective.

The resource perspective is oriented towards the reuse of patterns of agents and
their tasks. It represents some kind of mental bottom-up process, the process of
recycling an existing agent and eventually adapting it to match the necessity of a new
problem.

The computer perspective is the more physical, touchable point of view. It relates
to the spreading of the files that constitute the software in the available hardware
platforms; it therefore consider the problems arising from the hardware and their
reflections on the software and deployment aspects of the system.

A classification of our perspective can be done using a biological metaphor: the
resource and computer perspectives can be thought as physical representations of the
system, the knowledge and social perspectives reflects psychological aspects of the
MAS, the architectural perspective is some kind of theological justification for the
others, it can be seen as the glue and motivation for the remaining four.

In the following sections we will discuss the details of the different perspectives.
Each of them will be discussed using the approach of Newell in [1]. He used the
concepts of: medium (what is to be processed), components (elementary parts of the
level that provide primitive processing), laws of behavior (how system behavior
depends on the component behavior and the structure of the system) and laws of
composition (how components can be assembled) as aspects of the levels that
compose a computer system.

In our work we refer to the concept of perspective instead of level because we want
to emphasize the union of the system thought as a representation of the problem-
solution couple that evolves from the early stages of the requirements elicitation to the
final coding and deployment activities. The system is represented in the sequence of
the models and phases of the PASSI methodology with their resulting artifacts.
Looking at this unit with different scopes we obtain a perspective of it that shows
some elements (under one of their possible facades) hiding what is out of the
particular focus.

In the following we will describe each perspective in its general terms and then in
relation to the PASSI methodology. In this latter step we will examine the
relationships between the diagrams of PASSI arising from the application of each
perspective. Then we will introduce these relationships in the schema of the
methodology shown in fig. 1 in order to permit a simple comparison of the diagrams
and relationships involved in the different perspectives.

3.1 The Architectural Perspective

It is the more conventional, less artificial intelligence perspective. It looks at the
system only as a software. Its aim is to produce a good architecture in order to prepare
a simple, well-detailed coding activity. This kind of attention is present in papers on
multi-agent system design coming mainly from object-oriented experiences like that
of DeLoach [2]. The functionalities of the system are fragmented in pieces that are
small enough to be explored, captured in their meaning and relationships and
therefore implemented in the different parts of the system.

3.1.1 Elements of the perspective
The focus of this perspective is the requirements reflection in the architecture of the
system. The main components of this perspective are the functionalities required from
the system and the agents that will satisfy these requirements. As a direct
consequence of the specific focus, also the agents’ roles and tasks (together with their
structural/behavioral description) are seen in this perspective.

If we look at the components listed above, we can see that some compositional
laws derive from the capabilities of the elements; for example, different roles can be
played by one agent (providing a specific service in a moment and asking for another
later) or the same role can be played by different agents, (the bidder role can be
played by different types of agents in an auction). Other compositional laws come
from the requirements of the system. Among these we have the interactions with the
external world (that could require agents with sensing/actuating capabilities to be
present in the interface between the system and the real world) or the design
strategies (the designer could choose if adopting many different agents to perform a
few tasks or a few agents performing many tasks).

The behaviors laws are derived from the necessity of satisfying the requirements.
The components of this perspective share the goal of realizing all the functionalities
as prescribed by these laws in order to obtain the desired external system behavior.

3.1.2 The architectural perspective in PASSI
The first phase that we can find in this perspective is the Domain Description that is
composed of use case diagrams and therefore is oriented towards the functionalities.
The next one is the A.Id. in which we bind some functionalities with a specific agent
and, because of the agent presence in our scope, we should also consider the Role
identification diagrams where we illustrate the scenarios in which the required
functionalities will be satisfied and the Task Specification diagram that is the
classification of the elementary pieces of behavior used to accomplish the
requirements assigned to each agent. From the previous phases we obtain the
information needed to design the (M)ASD diagram (a structural description of the
agents) and the (M)ABD diagram (an activity diagram that is a picture of the way
agents will act to reach their objectives and to accomplish the assigned functionalities
interacting each other when necessary).

Syst. Req. Model
Detailed

description
of functionalities

T.Sp.R.Id.

Ag. Impl. Model

(M)A.S.D.

(M)A.B.D.

Code Model

C.R.

C.C.

O.D. R.D. P.D.

Agent Society Model

Initial
Requirements New Requirements

A.ID.

D.D.

Depl. Model

D.C.

List of
Agents

Tasks
of the
agent

Pieces of behavior (tasks)

Agents to be
implemented

Syst. Req. Model

T.Sp.R.Id.

Ag. Impl. Model

A.S.D.

(M)A.B.D.

Code Model

C.R.

C.C.

O.D. R.D. P.D.

Agent Society Model

A.ID.

D.D.

Constraints
coming from
the domain

Security problems

Depl. Model

D.C.

Services required

Rules of the
social behavior
in the domain

Unacceptable
behavior

Nature of the knwoledge
exchanged

Protocols
implementative

details
Communicative

behaviors

Constraints on roles coming
from the domain ontology

Fig. 2. The architectural perspective
in the PASSI methodology

Fig. 3. The social perspective in the
PASSI methodology

The listed diagrams are related in several ways (see Figure 2): from the D.D. phase
the details of the functionalities arrive to the A.ID. phase where they are assigned to
specific agents. This list of agents is used in the R.Id. diagram where the agents
description are refined with the attribution of their roles. From the description of roles
(performed with the sequence diagram of the R.Id. phase) we deduct the information
needed to draw the task specification. The list of identified agents and of the tasks are
part of the (M)A.S.D. phase where each agent is shown with its tasks. The same list of
tasks determine the number of swimlanes of the activity diagram of the (M)A.B.D.
 phase and the scenarios of the R.Id. phase are used as guidelines to complete this
diagram.

3.2 The Social Perspective

The social perspective is focused on the role of the agent society in achieving the
solution to the requirements (through the collaboration among the agents) .

From the domain description we can obtain implications for the roles of the
system; this approach is present in many MAS design methodologies [4][2].

3.2.1 Elements of the perspective
The components of this perspective (as expressed by Jennings in [3]) are the agents
that constitute the organization, the communication channels and the organizational
relationships needed to make them collaborate. The importance of these relationships
has also been reported by Zambonelli et al. that in [13] deepened the organizational
aspects of the Gaia methodology [4].

The organizational rules coming from the structure of the specific domain and from
the agents’ interactions, roles and role changes can be regarded as the compositional
laws; in the behaviors laws we should consider the society actual behavior, the social
responsibilities of the agents and the possibility for them of infringe rules. In this
context the medium is the way that the agents can use to influence other’s behavior
(negotiation techniques, cooperation protocols, request of role changes, …)

3.2.2 The social perspective in PASSI
The agent society model is entirely part of this perspective. The ontology diagrams
(with the domain ontology and communication ontology aspect), together with the
phases related to the roles (R.Id. and R.D.) and the description of the protocols used in
the communications (P.D. phase) describe the system from its social point of view.
Important constraints on the specification present in these diagrams come from the
analysis of the domain in which the system will operate and therefore from the D.D.
phase (see Figure 3). In fact, from the analysis of the domain the designer obtains
information that are useful to introduce constraints in the O.D. phase (for example one
agent, exposed to external attacks, should not store a specific information because of
privacy concerns) and in the R.D. phase (an agent who has win an auction should pay
for the goods). These specifications, often put in form of a constraint, have effect also
in the R.Id. phase sometimes changing the supposed interaction between the agents.

The P.D. phase is conditioned by the O.D. and the R.D. for the influence that the
nature of data exchanged and the service required have on the choice of the protocols.

3.3 The Knowledge Perspective

The focus of this perspective is the agent seen as an asocial problem solver [1], this
means that an agent is conceived in terms of the goals it has to achieve and the
elementary actions that it can perform in their pursuit.

3.3.1 Elements of the perspective
This asocial agent is the main component of the knowledge perspective, together with
its goals and elementary actions. The agent can divide or group its goals in order to
decompose the problems and can compose its elementary actions to adapt its behavior
to the resulting situation.

The obvious behavior law is the principle of rationality that simply states that if an
agent has knowledge that one of its actions will lead to one of its goals, then the agent
will select that action (see Newell [1]). The mediums used by the agent to solve the
problem are the knowledge and the elementary actions that can be assembled to give
its behavior.

3.3.2 The knowledge perspective in PASSI
In this perspective the agent has some goals to achieve using the repository of its
available behaviors and its knowledge. The description of the agent’s capability is
present in the Task Specification diagram; this information can be used to describe the
behavior of the agents and to identify its roles.

In the Ontology Description (O.D.) diagrams we have a description of the
knowledge of the agent and in the R.Id. and R.D. phase we have a picture of how the
agent assemble its tasks to achieve the goals

The A.S.D. and the A.B.D. phases in this perspective assume a significance that is
different from the architectural one. They are now scoped on describing the ‘asocial
agent’ and therefore they are single agent diagrams: (S)A.S.D. and (S)A.B.D.

Syst. Req. Model

T.Sp.R.Id.

Ag. Impl. Model

(S)A.S.D.

(S)A.B.D.

Code Model

C.R.

C.C.

O.D. R.D. P.D.

Agent Society Model

A.ID.

D.D.

Depl. Model

D.C.
Knowledge that
an agent needs
to achieve its

goals

Tasks
performed by

the agent in its
roles

Details on the
behavior of the

agent

Implementative details of
the classes and their

methods

Details of the behavior

Structure of the task
classes (methods)

List of tasks present in the
agent

Knwoledge to be
implemented in the

data structure of
the agent

Behavior law of the
perspective

Syst. Req. Model

T.Sp.R.Id.

Ag. Impl. Model

(S)A.S.D.

(S)A.B.D.

Code Model

C.R.

C.C.

O.D. R.D. P.D.

Agent Society Model

Reverse Engineering of
the methods from the

library

A.ID.

D.D.

Descriptions of patterns
behavior

Reverse Engineering
of agent classes and
tasks from the library

Reusing of tasks coming
from the library

Reusing of protocols
coming from the library

In order to reuse the existing
protocols, the designer could

change some roles

Reusing of
existing agents
that are able to

cover the desired
roles/

functionalities

Changes to
roles/tasks in
order to reuse

existing patterns

Fig. 4. The knowledge perspective in
the PASSI methodology

Fig. 5. The resource perspective in the
PASSI methodology

The C.C. phase is where the ideas about the agent behavior and structure are
concretized into actual code.

Several influences relate the phases of this perspective (see Figure 4). The list of
the tasks needed to perform the interactions described in the R.Id. diagrams is
necessary to carry on the T.Sp. phase; the tasks description gives a picture of the
agent in terms of knowledge required and behaviors available and this information is
useful in drawing the O.D. and R.D. diagrams.

The knowledge of the agent is described in the Ontology Description (O.D.)
diagrams therefore we can draw a connection starting from it and ending in the A.S.D.
diagram where each agent is described also in terms of its data structures. From the
R.D. phase several information are derived for the structure of the agent ((S)A.S.D.
phase) and the details of its behavior ((S)A.B.D. phase).

The iteration between the (S)A.S.D. diagram and the (S)A.B.D. diagram descends
from the behavior law of this perspective. In fact if an agent is implemented in such a
way that it has the knowledge that it is convenient to do something then it will actuate
the consequent behavior (arrow from A.S.D. to A.B.D). This opportunity depends on
the knowledge (awareness of the situation) and the structural behavior description
(ability to act in that situation, arrow from ABD to ASD). The details of the classes
and of their methods coming from these two last diagrams are then used to actually
code them.

3.4 The Resource Perspective

This perspective is focused on the mental process of the designer who tries to reuse
existing patterns of agents and tasks. It is useful to underline that in our view, a
pattern is not only a piece of code but it is described using some diagrams of the same
type of those used in the design of the MAS. As a consequence it influences several
aspects of the design process.

We think that patterns will produce even more interesting results in the agent-
oriented systems than they did in the object-oriented ones because of the higher
encapsulation and decoupling of MAS.

In our opinion patterns should be essentially thought as pieces of structural and
behavioral diagrams that can be introduced in the developing system design in order
to complete it. The code becomes therefore only a consequence of the design and not
the justification of it.

3.4.1 Elements of the perspective
The patterns (composed of code and description diagrams) are the obvious
components in this perspective. They are composed using the interfaces and
interactions specified. For example in a pattern of a task devoted to deal with an
incoming communication using a specified protocol, the initiator of the conversation
interacts with the pattern in some ways that specified in the pattern’s diagrams and are
therefore well defined.

The behaviors laws come from the specification of the behavior of the patterns. In
our approach we detail each pattern with a class diagram representing its structure
(the (S)A.S.D.) and an activity diagram (the (M)A.B.D.) that describes the behavior.

The mediums used are events and common methods invocation. Usually in fact the
elements of the patterns interact using methods invocation within the same agent
while events (for example arising from the dispatch of a message) characterize
external agents interactions

3.4.2 The resource perspective in PASSI
The center of the resource perspective in PASSI is the C.R. phase. In this step
designers identify some patterns that can be profitably applied to their system. These
have a direct effect on the implementation model of the agent at the single agent level
of detail (phases (S)A.S.D. and (S)A.B.D.) where the specification about the agent’s
behavior and knowledge are implemented. The A.Id. phase (figure 5) appears in this
perspective because it specifies the functionalities bound to an agent that can be taken
out from the repository. Eventually, changes in the functionalities of the agent can
reflect on its behavior (R.Id., T.Sp., R.D. phases) and communications (P.D. phase).

If the pattern involves some communication the protocols described in the P.D.
phase can be effected and these changes could propagate to the R.D. and R.Id. phases.

PTK, our Rational Rose add-in, includes a pattern repository that allows a simple
reuse of existing pieces of design and related code. This implementation is fully in
accordance with the above arguments and is one of the key features of PASSI.

3.5 The Computer Perspective

The real, tangible implementation of the system is the focus of this perspective. It is
interested in how the files that contain the code are related and how the agents are
deployed and move in the existing platforms.

3.5.1 Elements of the perspective
This perspective is composed of the software components (executables, libraries, …)
and the hardware configuration. These elements are composed through the
dependency relationships that exist among the elements of the software components
(file dependencies) and hardware requirements (for example hardware connection
availability that permits communications among agents).

Depl. Model

Syst. Req. Model

T.Sp.R.Id.

Ag. Impl. Model

(M)A.S.D.

(M)A.B.D.

Code Model

C.R.

C.C.

O.D. R.D. P.D.

Agent Society Model

A.ID.

D.D.

D.C.

Constraints on distribution
coming from code details
(necessity of library in the

deployment computer,
sensors and actuators

required, ...)

Constraints coming from
the HW and OS to the

code (performance of the
processor, memory
available, sensors

available, ...)

Distribuition of agents
according to the roles

Necessity of
communication paths
among the platforms

(network connections)

Fig. 6. The Computer perspective in the PASSI methodology

The presence of specific hardware devices (sensors, actuators) can also effects the
aggregative behavior of these components (an agent who needs a camera cannot move
to a computer without this device connected). The communication links among units
of the system as expressed in the D.C. diagram and the executable environment
(hardware, software, operating system) configuration are the mediums of this
perspective.

3.5.2 The computer perspective in PASSI
The elements of PASSI that appear in this perspective are: the D.C. diagram for its
obvious role in describing the position of the components in the execution
environment, the C.C. phase where many code-related dependencies (inheritance,
visibility, …) are introduced, the (M)A.B.D. phase where the mutual interaction
between the agents are related to the agent’s implementation and the R.D. phase
where some issues about the spreading of the agents in the world could arise.

The deployment of the agents (D.C. phase, Figure 6) is strictly related to the code
of the application and therefore to the C.C. phase: code constrains the distribution and
presence of some files in the executing units (arrow from C.C. to D.C. in Figure 6)
while the hardware configuration (performance of the processor, memory available,
sensor devices, …) and operating system affect the design of the code (arrow from
D.C. to C.C.). Other influences to the deployment come from the (M)A.B.D. phase in
terms of requirements of communication links and from the R.D. phase about the
location of the agents (for example, a scooter agent could need to visit a specific
server in order to mine information from it).

4. Conclusions and future works

Several studies exist in literature about the possibility of approaching the design of a
software system from different point of views. Starting from these researches, some
UML CASE tools introduce various representations of the system model (for example
in Poseidon we have several views centered on different aspects: diagram-centric,
package-centric, …). In designing our MAS using PASSI and a specific design tool
that we have produced, we felt the importance of the availability of a multi-
perspective support. The first step in introducing these functionalities in our tool, is
described in this paper and it consists of the identification and description (with
regards to PASSI) of the most important possible views for a MAS model. We
identified five useful representations (we refer to them as perspectives): Architectural
(a structural representation of the software), Social (a look at the agent society
involved in the solution), Knowledge (the analysis of each single agent), Computer (a
representation of the physical solution), Resource (the study for reusing existing
elements).

We are now working on the introduction of these five perspectives in the add-in for
Rational Rose (PTK - Passi ToolKit) that we use to design with PASSI. These phase
implicates the further exploration of the flow of information in the design process and
its representation in the tool.

Some interesting results could come from this work like, for example, the
introduction in PTK of a specific support for analyzing the side-effects of
modifications in the design. If a designer changes something in a diagram (that is part
of a specific perspective) then he needs to evaluate the consequences of this change in
the other parts of the work. These effects are described by the relationships between
the diagrams in the specific perspective. We think that some of these consistency
checks and related changes can be automatically performed or at least a strong
support can be introduced for them.

REFERENCES

1. Newell, A. The knowledge level, Artificial Intelligence, 18 (1982) 87–127.
2. DeLoach, S.A., Wood, M.F., and Sparkman, C.H. Multiagent Systems Engineering.

International Journal on Software Engineering and Knowledge Engineering 11, 3,
231-258.

3. Jennings N.R., On agent-based software engineering, Artificial Intelligence 117
(2000), 277-296

4. Wooldridge, M., Jennings, N.R., and Kinny, D. The Gaia Methodology for Agent-
Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent
Systems. 3,3 (2000), 285-312.

5. Aridor, Y., and Lange, D. B. Agent Design Patterns: Elements of Agent Application
Design. In Proc. of the Second International Conference on Autonomous Agents
(Minneapolis, May 1998), 108–115.

6. Kendall, E. A., Krishna, P. V. M., Pathak C. V. and Suresh, C. B. Patterns of
intelligent and mobile agents. In Proc. Of the Second International Conference on
Autonomous Agents, (Minneapolis, May 1998), 92–99.

7. Cossentino, M., Potts, C.: A CASE tool supported methodology for the design of
multi-agent systems. Proc. of the 2002 International Conference on Software
Engineering Research and Practice (SERP'02). Las Vegas, NV, USA, June 2002

8. Odell, J., Van Dyke Parunak, H., and Bauer, B. Extending UML for Agents. AOIS
Workshop at AAAI 2000 (Austin, Texas, July 2000).

9. O’Brien P., and Nicol R. FIPA - Towards a Standard for Software Agents. BT
Technology Journal, 16,3(1998),51-59.

10. Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G. Object-Oriented
Software Engineering: A Use Case Driven Approach. Addison-Wesley (1992).

11. Antón, A.I., and Potts, C. The Use of Goals to Surface Requirements for Evolving
Systems, in proc. of International Conference on Software Engineering (ICSE '98),
(Kyoto, Japan, April 1998), 157-166

12. Potts, C. ScenIC: A Strategy for Inquiry-Driven Requirements Determination in proc.
of IEEE Fourth International Symposium on Requirements Engineering (RE'99),
(Limerick, Ireland, June 1999), 58-65.

13. F. Zambonelli, N. Jennings, M. Wooldridge. Organizational Rules as an Abstraction
for the Analysis and Design of Multi-agent Systems. Journal of Knowledge and
Software Engineering, 2001, 11, 3, 303-328.

14. J.Odell, H. Van Dyke Parunak, B. Bauer. Representing Agent Interaction Protocols in
UML, Agent-Oriented Software Engineering, P. Ciancarini and M. Wooldridge eds.,
Springer-Verlag, Berlin (2001), 121–140.

15. Yu, E., Liu, L. Modelling Trust in the i* Strategic Actors Framework. Proc. of the
3rd Workshop on Deception, Fraud and Trust in Agent Societies at Agents2000
(Barcelona, Catalonia, Spain, June 2000).

16. Burrafato, P., Cossentino, M.: Designing a multi-agent solution for a bookstore with
the PASSI methodology. Fourth International Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS-2002). May 2002, Toronto, Ontario, Canada at
CAiSE'02

17. Chella, A., Cossentino, M., Pirrone, R., Ruisi, A.: Modeling Ontologies for Robotic
Environments. Proc. of the Fourteenth International Conference on Software
Engineering and Knowledge Engineering. Ischia, Italy, July 2002

