

P

Towards Maturity of the
PASSI Process

Massimo Cossentino,

RT-ICAR-PA-09-02

Consiglio Nazionale delle Ricerche,

di Cosenza, Via P. Bucci 41C, 87036 Rende, Italy

– Sezione di Napoli, Via P. Castellino 111, 80131 Napoli

– Sezione di Palermo, Viale delle Scienze, 90128 Palermo

Consiglio Nazionale delle Ricerche

Istituto di Calcolo e Reti ad Alte Prestazioni

PASSI2 - Going

Towards Maturity of the
PASSI Process

Massimo Cossentino, Valeria Seidita

December 2009

onale delle Ricerche, Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)

Via P. Bucci 41C, 87036 Rende, Italy, URL: www.icar.cnr.it

Via P. Castellino 111, 80131 Napoli, URL: www.na.

, Viale delle Scienze, 90128 Palermo, URL:www.pa.

Consiglio Nazionale delle Ricerche

Istituto di Calcolo e Reti ad Alte Prestazioni

December 2009

Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR)– Sede

www.icar.cnr.it

na.icar.cnr.it

pa.icar.cnr.it

Consiglio Nazionale delle Ricerche

Istituto di Calcolo e Reti ad Alte Prestazioni

PASSI2 - Going
Towards Maturity of the

PASSI Process

Massimo Cossentino
1
, Valeria Seidita

2

Rapporto Tecnico N.:

RT-ICAR-PA-09-02
Data:

December 2009

1

Istituto di Calcolo e Reti ad Alte Prestazioni, ICAR-CNR, Sezione di Palermo, Viale delle Scienze

edificio 11, 90128 Palermo (Italy).
2
Dipartimento di Ingegneria Informatica, Università degli Studi di Palermo, Viale delle Scienze edificio 6,

90128 Palermo (Italy).

I rapporti tecnici dell’ICAR-CNR sono pubblicati dall’Istituto di Calcolo e Reti ad Alte Prestazioni del Consiglio Nazionale delle

Ricerche. Tali rapporti, approntati sotto l’esclusiva responsabilità scientifica degli autori, descrivono attività di ricerca delpersonale e dei

collaboratori dell’ICAR, in alcuni casi in un formato preliminare prima della pubblicazione definitiva in altra sede.

Index

Introduction .. 4

A Quick Overview on the PASSI2 Process .. 4

The PASSI Process Evolution ... 6

The PASSI2 Process ... 7

System Requirements Model ... 7

Domain Requirements Description Phase ... 8

Agents Identification Phase ... 9

Roles Identification Phase ... 12

Task Specification Phase ... 13

Agent Structure Exploration Phase ... 16

Agent Society Model ... 17

Domain Ontology Description Phase .. 18

Communication Ontological Description Phase ... 20

Roles Description Phase .. 22

Multi-Agent Structure Definition Phase .. 25

Multi-Agent Behavior Description Phase ... 26

Agent Implementation Model .. 28

Single-Agent Structure Definition diagrams ... 29

Single-Agent Behavior Description diagrams ... 30

Figure 20. Single-Agent Behavior Description diagrams ... 30

Deployment Configuration Phase .. 30

Code Reuse Phase .. 31

Code Production phase .. 32

Agent Test ... 32

Society Test ... 32

REFERENCES ... 33

Introduction

The PASSI2 design process is the evolution of PASSI (Process for Agent Society

Specification and Implementation) [44], it covers all the phases from the requirements analysis to

the deployment configuration, coding, and testing.

PASSI2, so as PASSI and all its evolution, is based on a meta-model describing the elements

that constitute the system to be designed (agents, tasks, communications, roles) and what are the

relationships among them. The importance of this description is in the lack of an universally

accepted meta-model of MASs (differently from object oriented systems) that makes unclear any

agent design process that does not precisely define the structure of the system it aims to produce.

PASSI2 has been designed keeping in mind the possibility of designing systems with the

following peculiarities: (i) highly distributed, (ii) subject to a (relatively) low rate of requirements

changes, (iii) openness (external systems and agents that are unknown at design time will interact

with the system to be built at runtime). Robotics, workflow management, and information systems

are the specific application areas where it has been applied.

As regards the implementation architecture, since we consider remarkably important the

adoption (and enhancement) of standards for the diffusion of the agent-base software engineering,

we decided to use the FIPA architecture although; this however, does not mean that PASSI cannot

be largely applied for the design of non FIPA agents (like BDI ones).

Actors involved in the design process are supposed to be designers with:

• some experience of object-oriented design (using processes like the Unified Process

[RUP,UP]). Starting from this requisite we propose a process that relies on common

concepts like a functionality-oriented requirement analysis (differently from methodologies

like Tropos [26] that is goal-based). This allows a smooth change towards AO approaches

for a great number of already skilled designers that could profitably reuse their past

experience without the significant slowdown induced by a remarkable change in their

mental attitudes.

• a good knowledge of UML and the use of related CASE tools. All the diagrams used in

PASSI2 are based on the Unified Modeling Language and their syntax has been modified

only to satisfy the needs of agents representation in a few limited cases. Sometimes the

significance of their elements is mapped to agent-related concepts using stereotypes.

• some kind of confidence with agent-oriented solutions. PASSI2 supports different levels of

details and therefore it is recommended that the designer has some knowledge about the

implementation of agent systems (i.e. implementation frameworks, languages and related

basic concepts). In our experiences, the difficulties usually reported by OO designers are

mainly related with agent design aspects like ontology, communications, and behavior

architecture.

Another specific feature of PASSI2 is that it is one of the few methodologies that incorporate

the design of ontology. This because we think that ontology design is a fundamental step in MAS

design and the designer's vision of the domain expressed in terms of an ontology influences all of

his work.

A Quick Overview on the PASSI2 Process

In the following sections, we will introduce the elements of the PASSI2 design process. It is

composed of three models (Figure 1) that address different design concerns and nineteen phases in

the process of building a model.

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

Figure 1 . The models and phases of the PASSI2 methodology

In PASSI2 we use UML and adapts it to the need of representing agent systems through its

extension mechanisms (constraints, tagged values and stereotypes). Within the agent design

community, a variant or dialect of UML, (AUML [15]) has been proposed as a standard but it is

not sufficient for our aims because of its by now limited scope (it re-defines the semantics and

syntax of only a few different diagrams, not the whole UML set of views). Only very recently, a

more extensive language (AML [43]) has been presented and in the next future we will evaluate it

for a possible adoption in the PASSI2 artifacts. This however will not have a drastic impact on the

PASSI2 process since the process itself is well separated by the syntax adopted for producing the

prescribed artifacts.

The models and phases of PASSI2 are:

1. System Requirements Model. A model of the system requirements in terms of

agency and purpose. Developing this model involves five steps:

• Domain Description (DD): A functional description of the system using

conventional use-case diagrams.

• Agent Identification (AId): Separation of responsibility concerns into agents,

represented as UML packages.

• Role Identification (RId): Use of sequence diagrams to represent each agent’s

responsibilities through role-specific scenarios.

• Agent Structure Exploration (ASE): An analysis-level description of the

agent structure in terms of tasks required for accomplishing the agent’s

functionalities.

• Task Specification (TSp): Specification through state/activity diagrams of the

capabilities of each agent.

2. Agent Society Model. A model of the social interactions and dependencies among

the agents involved in the solution. Developing this model involves three steps:

• Domain Ontology Description (DOD). Use of class diagrams to describe domain

categories (concepts), actions that could affect their state and propositions about

values of categories.

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

• Communication Ontology Description (COD). Use of class diagrams to describe

agents' communications in terms of referred ontology, interaction protocol and

message content language.

• Role Description (RD). Use of class diagrams to show distinct roles played by

agents, the tasks involved that the roles involve, communication capabilities and

inter-agent dependencies in terms of services.

• Multi-Agent Structure Definition (MASD). Use of conventional class diagrams to

describe the structure of solution agent classes at the social level of abstraction.

• Multi-Agent Behavior Description (MABD). Use of activity diagrams or state-charts

to describe the behavior of individual agents at the social level of abstraction.

3. Implementation Model. A model of the solution architecture in terms of classes,

methods, deployment configuration, code and testing directives; it is composed of

ten phases, the first two are performed at both the multi-agent (whole agent society)

and single-agent abstraction level:

• Single-Agent Structure Definition (SASD). Use of conventional class diagrams to

describe the structure of solution agent classes at the implementation level of

abstraction.

• Single-Agent Behavior Description (SABD). Use of activity diagrams or state-charts

to describe the behavior of individual agents at the implementation level of

abstraction.

• Deployment Configuration (D.C.). Use of deployment diagrams to describe the

allocation of agents to the available processing units and any constraints on

migration, mobility and configuration of hosts and agent-running platforms.

• Code Reuse (C.R.). A library of patterns with associated reusable code allows the

automatic generation of significant portions of code.

• Code Completion (C.C.). Source code of the target system is manually completed.

• Agent Test: it is devoted to verifying the single behavior with regards to the original

requirements of the system solved by the specific agent.

• Society Test: the validation of the correct interaction of the agents is performed, in

order to verify that they actually concur in solving problems that need cooperation.

This test is done in the most real situation that can be simulated in the development

environment.

The Iteration Planning activity is someway positioned at an higher level of abstraction,

above this logical sequence of models and phases. It is at the base of every iterative incremental

process and in our case consists in the analysis of the Problem Statement and all the other available

documents (for instance outputs of previous iterations) in order to identify the requirements (and

related risks) that should be faced in the next iteration.

The PASSI Process Evolution

During these years of work and experiences using PASSI, we gradually tuned it in order to

best fit the designer needs. The most important changes we did are:

1) Ontology description split into Domain Ontology Description + Communication Ontology

Description

2) Elimination of Protocol Description

3) Test introduction

4) Deployment configuration/System integration different meanings

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

The PASSI2 Process

In this section we will discuss the steps of PASSI2, referring to the well known standard

FIPA architecture [10], [11] as a deploying environment. We will describe the different activities

accomplished by the designer and the consequent artifacts using an agentified implementation of

the same PASSI2 process as a case study. The idea that is behind this approach is describing

PASSI2 with PASSI2.

System Requirements Model

Its aim is to produce an analysis level description of the system in terms of requirements and

agents. The corresponding discipline agent is responsible for maintaining the analysis model that

will be an input for the following phases. It includes the five phases that will now be discussed

more in details.

In Figure 2 we can see a description of the System Requirements model activities and related

artifacts.

Figure 2. The System Requirements Model activities and resulting artifacts

Starting from the Problem Statement document, the designer during the Domain

Requirements Description phase produces a decomposition of the system requirements in terms of

use cases. These are later grouped into packages that represent the responsibilities of each agent in

terms of what functionalities it has to realise. At this stage agents are identified from a functional

point of view and an initial analysis model can be draft from both the structural (Agent Structure

Exploration phase) and behavioural (Roles Identification and Task Specification phases).

Figure 3. UML profile for SPEM symbols (as specified in [27])

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

According to the UML profile specified for SPEM in [27], in this diagram (and in some of

the following ones) we will use the symbols reported in Figure 4 with the same meaning prescribed

by SPEM specifications [27]: work definition is a kind of operation that describes the work

performed in the process, UML model and document are kinds of work products.

Domain

Requirements

Description

Agent Identification

Task

Specification

Roles Identification

*

1

*

1
*

1

*

1 *

1

*

1

*

1
*

Scenarios

1

*

1

*

1

*

1

*

1

*

1

*

1

*

Requirement

Scenario

Requirement

Non Functional

Requirement

1 *

Requirements

Document

*

*

Role

Message

*

Agent Structure

Exploration

1*

Tasks

Problem

Statement

Agent
1

*

Glossary

*

System

Requirements

Model

Quote

Define

Refine

Define

Define

Define

Define

Define

Quote

1

* Agent

1..*

1
Quote

Relate

Figure 4. The structure of the artifacts for the System Requirements model

The mapping between the elements of the MAS meta-model described in sub-section and the

artefacts of this discipline is described in Figure 4. This diagram represents the System

Requirements model in terms of UML models and text documents. Each of them reports one or

more elements from the PASSI2 MAS meta-model; each MAS meta-model element is represented

using an UML class icon (yellow filled) and in each documents such elements can be defined (this

means that the elements are introduced for the first time in the design in this artefact), refined (this

means that an already defined element is detailed or someway updated) or simply quoted (this

means that the elements have been already defined and are reported in this artefact only to

complete its structure but no work has to be done on them). Obviously because of the iterative

nature of the PASSI2 process, if an element is to be defined in a specific phase, it is possible that in

one of the following iterations it will be changed (refined) according to the evolution of the design.

In the next subsections we will detail the different phases of this model.

Domain Requirements Description Phase

Requirements elicitation may involve the elaboration of system goals [17][18][19][20], and

this can be seen as even more appropriate in MAS design (as proposed in Tropos [26]), which are

teleological in nature. DeLoach et al. [1] describe requirements using goals, which they refine into

a system description using use-case and sequence diagrams.

Despite several authors have a commitment to the use of goals in requirements engineering,

we have chosen a different approach. In PASSI2, we describe requirements directly in terms of

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

use-case diagrams that are obtained either through standard requirements elicitation precursors to

object-oriented (OO) methods [6][7] because we think that this approach allows an easier transition

to designers coming from the OO world (students of our basic software engineering courses among

them).

In this phase we describe the system requirements in terms of use cases in order to prepare

the Agent Identification phase where these elements will be clustered and put under the

responsibility of some agent. If a goal-oriented approach is used at the beginning of the design (like

for instance the early requirements analysis proscribed by Tropos [26]), requirements should be

derived from it and then applied to this phase.

As a result, a functional description of the system is provided through a hierarchical series of

use-case (UC) diagrams. Scenarios that are at the basis of the UC diagrams come from the Problem

Statement document and they are explained using sequence diagrams in following phases.

The expected output of this phase is an UML use case diagram and a textual document

containing the complete documentation of the use cases in terms of: name, participating actors,

entry condition, flow of events, exit condition, exceptions and special requirements.

Figure 5. The Domain Requirements Description (DRD) diagram

In Figure 5, an example of DRD diagram describes (some of) the activities of the PASSI2

design process (these could be thought as the description of the functionalities of a tool that

supports the development process with PASSI2). For instance, consider the Communication

Ontological Description phase where the designer identifies and describes each communication

that takes place among agents. In Figure 9 we can see that this phase is part of the Agent Society

model; the fundamental use case of this model is Agent Society Model Construction that also

includes the functionalities related to other phases like the Domain Ontology Description, and

some other model-level features like the Agent Society Documents Composition use case and the

system model management (Agent Society MAS Meta-Model Management use case). Finally, all

the models (disciplines) are in turn coordinated by a process level use case (PASSI2 Process

Management)

It is worth to highlight that use cases identification, their refinement and relationships

introduction is not considered within the scope of the PASSI2 methodology since we suppose this

is part of the designer background skills and any of the existing approaches can be considered valid

if it produces a good representation of the system requirements in this form.

Agents Identification Phase

Tasks Allocation

Content Definition

Other Params Definition

Communication Specification

Communications Identification

Define Ontology elements

Introduce elements

Relationships

Refine Ontology

Process Documents Collection

Process MAS Meta-Model

Management

Communication Ontological

Description

Domain Ontology Description

Agent Society Documents

Composition

Agent Society MAS

Meta-Model Management

PASSI Process Management

Agent Society Model

Construction

Designer

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>
<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

One of the central issues in PASSI2 is the identification of agents early in the development

process. If agents were merely MAS implementation components, their identification during the

analysis of requirements would be premature. However, if a MAS is a society of anthropomorphic

entities, it is more reasonable to divide the description of required behaviors into loci of

responsibility from the start. This is particularly true in cases where the “system” is an

heterogeneous society of intended and existent agents that in Jackson’s terminology can be

“bidden” or influenced but not deterministically controlled [21].

In this way, the designer skill in capturing system requirements has been capitalized in order

to produce an initial representation of the system functionalities and now this model is used to

identify agents and designate their responsibilities in terms of requirements to satisfy.

Agent identification starts from use-case diagrams of the previous step. A direct

correspondence is created among the requirements and the agents that will be created. Each use

case is assigned to an agent (use cases assigned to agents are clustered in one package labeled with

the same agent name) whose mission becomes satisfying the corresponding requirements by its

own or asking for collaboration from the others. The need for this collaboration, can be the obvious

consequence of assigning two use cases related for instance with an include relationship to two

different agents. The first agent (that owns the base use case) will ask to the other (that owns the

included use case) to provide the functionality it is lacking of. This establishes the bases for

creating a society of collaborating agents whose common goal is the success of the whole social

system through the satisfaction (when this is not in contrast with the overall goal) of the individual

objectives.

The resulting artifact is a use case diagram (or a set of such diagrams) reporting the same use

cases of the previous phase now clustered in a set of packages, each one representing one agent. As

it is common, we represent external entities interacting with our system (people, not agent-based

software systems and external agents) as actors.

Relationships between use cases of the same agent follow the usual UML syntax and

stereotypes, whereas relationships between use cases of different agents are stereotyped as

communication as described below.

Our assumptions about agent’s interaction and knowledge play an important role in the

understanding of this phase and they are as follows:

• An agent acts to achieve its objectives on the basis of its local knowledge and capabilities;

• Each agent can request help from other agents that are collaborative if this is not in contrast

with their own objectives;

• Interactions among agents and external actors consist of communication acts; this implies

that if some kind of include/extend relationship exists between two use cases belonging to

different agents, this is to be changed to communication since a conversation is the unique

interaction way for agents (see the relationship among use cases Agent Society Model

Construction and Communication Ontological Description in Figure 5 and Figure 6). This is

a necessary extension of the UML specifications that allow communication relationships

only among use cases and actors. The direction of relationships goes from the initiator of the

conversation to the participant. This stereotype change is, however, not in contrast with the

spirit of the definition of the communication relationship since an agent is a proactive entity

that could initiate an interaction just like an actor. An exception exists to this change in the

relationship stereotype: it is possible that an agent in requiring some collaboration from

another will not use a communication but instead will instantiate the other one (this could

happen, for instance, when an agent responsible for some kind of web search activity

instantiates a lot of spiders assigning a different site to each one); in this case, that is

however not frequent, we use an instantiate stereotype to distinguish this situation from the

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

others (obviously it in not always possible to identify this difference in the agents’

relationship at this early stage of the design).

• An agent’s knowledge can increase through communication with other agents or exploration

of the real world (sensing activity).

Figure 6. An example of Agent Identification diagram

Communications among agents may differ significantly from those between agents and other

entities. Among agents, communication patterns follow a specific protocol and communication

content refers to a specific ontology. Communications between external actors and agents are not

necessarily implemented like that. For example, agents could receive information directly from

actors through sensing devices, whose communication protocols are constrained by the hardware

devices and their drivers.

No precise rules exist to perform the activities related to this phase but using our experience

with it we can draw some guidelines. The first activity consists in analyzing the use case diagrams

resulting from the previous phase and attempt their clustering in a set of packages according to

these criteria:

• It is better to group use cases that have inner logical commonalities because probably this

will bring to implementations that have several common elements.

• Data flow could represent an important problem for intrinsically distributed systems like

MASs and therefore it could be useful to group together use case that will probably

exchange a significant amount of data (this is a little difficult at this stage since data flow is

not evident in use case diagrams)

• This activity produces a sort of architectural decomposition of the future system (at least at

the functionality level but being each agent a consistent element of the implementation this

partition also guides some kind of structural decomposition for the following solution). This

suggests the observance of some common sense rules for agents identification:

o When possible (and if evident at this stage), agents that could be deployed in special

devices (like PDA or cellular phones) should be fine grained in order to optimize

their performance

o Human interaction functionalities could be assigned to specific agents in order to

prepare the option for a multi-device implementation (web-based, cell phone

COD

<<Agent>>

Communications Identificat ionTasks Allocat ion

Content Definition

Other Params Definit ion

DOD

<<Agent>>

Define Ontology elements

Int roduce elements

Relationships

Refine Ontology

PASSI

<<Agent>>

Process Documents Collect ion

Process MAS Meta-Model

Management

Agent_Society

<<Agent>>

Agent Society Documents

Composit ion

Agent Society MAS

Meta-Model Management

Communicat ion Ontological

Description

PASSI Process Management

Agent Society Model

Construct ion

Domain Ontology Description

Communicat ion Specificat ion

Designer

<<include>>

<<include>>

<<include>>

<<communicate>><<communicate>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<communicate>>

<<include>>

<<include>>

<<include>>

<<include>>

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

interfaces, and so on) via different categories of agents implementing these

functionalities.

o In order to facilitate agents mobility, functionalities that strictly depend on hardware

devices or databases should not be accessed by many other parts of the system and

should be isolated by the remaining part of the system eventually using a wrapping

solution.

Roles Identification Phase

During this phase we are concerned with an agent’s externally visible behavior, so any

representation of its internal behavior is approximate. In PASSI2 a role is defined by the set of

responsibilities defining the subjective behavior of an agent in an interaction (conversation) with

another or in providing some service in one or more scenarios; an agent may play one or more roles

at the same time.

Because of the interaction that is behind any conversation or service provided, the role can be

regarded as a social manifestation of the agent behavior.

The Roles Identification phase produces a set of sequence diagrams that specify scenarios

from the agents’ identification use case diagram. In this context, it is particularly important to

investigate all the paths involving inter-agent communications, and fortunately some guidelines can

be considered: (1) such communication paths are shown in the A.Id. diagram by the presence of a

relationship between two agents with the communication/instantiation stereotype; (2) each

relationship may belong to several scenarios; (3) for each relationship in a specific scenario of the

A.Id. diagram, there is at least one message in the sequence diagram of the R.Id. phase.

In this phase, roles are identified in the sense that agents’ external manifestations are

captured in sequence diagrams where agents participate playing one or more roles concurring to the

evolution of the system dynamic.

It is worth to remind that in object-oriented approaches, many designers use to introduce

boundary, control and entity objects in order to classify elements populating scenarios according to

their responsibility. Interface objects are responsible for interactions with external actors, control

objects supervise the flow of control within the scenario, and entity objects are used as data stores.

These categories lose a great part of their meaning when describing agents. In fact, it makes

no sense to have a controlling element in a scenario when all the participating agents are naturally

autonomous and the correct execution of the scenario is conditioned by the concurrent will of all

the participants (the most similar element could be some kind of coordinating role). Entity objects

have not a direct counterpart in MASs since each agent is, generally speaking, a complex element

of design with a consistent part of knowledge by its own. The situation of interface objects is

different because they could be personified by GUI agents that are often used to implement with a

light (and easily movable) agent the graphical interface between the user and a complex heavy

agent that is not easily deployable in some kind of devices. In this sense, there is an important

difference that should be reminded between agents and objects: most agent definitionsErrore.

L'origine riferimento non è stata trovata. add a sensing capability to the agent (the way the

agent uses to explore its world) and this can be considered like an interface role too.

As regards the contribution of this phase to the MAS meta-model instantiation, we can see

that the following elements are defined:

1. scenarios (described using sequence diagrams),

2. roles (described in terms of name, interactions with other agents/roles and responsibilities),

3. which roles participate in each scenario.

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

The different roles that an agent can play are introduced as objects in the appropriate

sequence diagram. An agent may participate in several scenarios playing distinct roles in each, and

may even appear more than once in a single sequence diagram playing different roles.

Differently from object-oriented design where messages represent methods invocation,

messages reported in these diagrams have no relationship with agent’s internal structure since we

are here representing an external view of the agents behavior and we have no information about the

way each agent will deal with its ongoing communications (and composing messages); obviously a

task will be related to one or more messages in order to process them, but this level of description

is out of the scope of this phase just like it is in the AUML sequence diagram [15].

It is interesting to note that contrarily of what happens with object systems, during the design

of agent scenarios, it is possible to have a sequence diagram without any actor. This is the logical

consequence of the agent autonomy; this means that an agent could trigger a scenario without the

participation of any external actor.

Task Specification Phase

In the previous phases we identified agents and their roles. Now, in the task specification

phase we are facing the third element of our MAS meta-model: tasks.

While use case diagrams in the Agent Identification phase represent a functional description

of the multi-agent collaboration (the whole agent society), in the Task Specification phase we look

at one agent at a time, drawing one activity diagram for each agent in order to represent the

activities performed by the agent to carry on its duty. Such a diagram represents the plan of the

agent, reporting the relationships among the external stimuli received by the agent and its

behaviour (expressed in terms of fired tasks).

Because of the specific nature of an activity diagram (a kind of state chart), it is very easy to

model aspects like concurrency (several behaviors are executed concurrently in order to realize

some intention), control structures (agent’s decisions) and incoming events (messages from other

agents but also external events) and agent’s states (for instance “waiting for transaction commit”

can be represented as object states [36]). Contrarily, it is not easy to represent in this way other

situations like non deterministic flow of control that could arise in some agents implementation.

In some cases a state chart diagram should be preferred to the activity one; this is the case of

agents based on the Brook’s Subsumption architecture [34][35] where the overall system behavior

is the result of many interacting simple behaviors organized in layers. Each layer provides a set of

out-of-the-shelf behaviors and higher levels compose them to perform complex behaviors. Layers

of the Subsumption architecture are modeled as networks of finite state machines augmented with

timers (Augmented Finite State Machines, AFSMs), and therefore, they can be naturally modeled

with UML state diagrams. Using this kind of diagrams is not a problem in PASSI2 and it could be

done when necessary but in this work we will only describe the use of activity diagrams since we

used them more frequently.

Another common agent architecture that should be considered is the DBI (Belief, Desire,

Intention) one [37]. Several attempts have been done to implement the BDI agent architecture

([32][33]) with FIPA agents ([28][28][30][31]) and we think that an activity diagram could help in

preparing an initial hypothesis of what the BDI agent plan can be.

As proposed in the classical Procedural Reasoning System (PRS) [37], agent’s desires and

intentions are realized by using plans from a library. We suppose that the responsibility of realizing

those plans is delegated to the agent’s tasks and a first hypothesis of the control flow that is behind

their execution is presented in the TSp diagrams; the strategy will later be consolidated within the

following phases and the portion of plan related to each task will be detailed in the implementation

model of the task itself.

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

Other BDI elements can be modeled in the following phases, for instance, belief can be seen

as the instance of knowledge structure (described in the DOD phase) hold by an agent, desires can

be deducted from the set of agent’s functional (and eventually non functional) requirements since

each agent wants to accomplish its duty (we are dealing with rational agents [37] who will

naturally act in accordance to their goals), while intentions can be considered to be the rationale

that is behind the T.Sp. diagram.

As regards the Tasks Specification diagrams syntax (in form of activity diagrams), we draw

one different diagram for each agent (see Figure 7) where each activity represents one task that the

agent can do. Each diagram is divided in two different sections using swim-lanes: the right one

reports the tasks of this agent (one activity for each task), the left swim-lane reports the tasks of the

agents that interact with this one.

Relationships between the activities represent within-agent communications if the activities

are located in the same swim-lane. These are not speech acts; they are often signals addressing the

necessity of beginning an elaboration that is left to a specific task (i.e. signals to delegate another

task to do something). If a relationship connects elements of two different swim-lanes, it

represents a communication from an agent to another one (generally speaking this could be

composed of more than one message, at this stage this has not been yet formalized); it is also

possible that several related relationships will be later (in the COD phase, see sub-section 0)

organized into one single communication. The inner behavior of each task can be specified more in

detail by using sequence diagrams, other activity diagrams or semi-formal text.

In Figure 7 we can see the TSp diagram for the COD agent introduced in Figure 6. It

describes that the Agent_Society agent delegates the COD one to compose the diagram with the

Start_Composition message that is received and acknowledged by the Compose_Diagram task;

according to its plan, the COD agent asks for the list of interactions and then compiles the diagram

(Design_diagram task). This agent also offers the possibility of introducing communication details

(Detail_Communications task) and checks its pertinence part of the model (Check_Model task).

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

Figure 7. The Task Specification diagram for the COD agent.

In our experiences with the previous version of PASSI2, we found that this is often one of the

most difficult phases for not skilled designers; for this reason we suggest the following guidelines:

during the initial composition of these diagrams, the designer should introduce one task for each

incoming communication deduced from RId sequence diagrams (a communication can be

composed of several messages, it is considered incoming with regards to the direction of the first of

this messages); similarly, a task is introduced for each outgoing message of the R.Id. sequence

diagrams. In subsequent iterations the amount of this tasks and their work load should be carefully

evaluated in order to obtain a sufficient degree of optimization. This is not possible at the

beginning since such an operation requires a detailed understanding of what is to be exchanged by

the agents, which interaction protocol and content language will be used (details defined in the

Agent Society model phases).

In addition to the above suggested tasks, the designer may have to introduce other tasks that

are not immediately visible in an exterior view of the agent. They could arise spontaneously from a

Agent Society

DOD

Automatic Compilation Role

User Interaction Role

Detail_

Communications

Detail_

Communications

Refresh

Diagram
COD_Diagram

[drafted]

Model Management Role

Report_errors

Report_Success

Update_Upper_level
<<Action>>

Receive Check

Request
Check Model

Report_errorsErrors_in_model

Report_Success

Check_OK

Update_Upper_level
<<Action>>MAS_update

[Check<>OK]
[Check=OK]

Receive Check

Request
Check Model

[MASModelChanged]

[Not MASModelChanged]

Compose_Dia

gram

AskFor_Intera

ctions

Design_Diagram

AskFor_Ontol

ogy

Ontology_Request

AskFor_Tasks

Tasks_Request

GUI

triggered

Design_Diagram

Start_Composition

Check_COD

Interactions_Request

CODCOD T.Sp.:Interacting Agents

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

detailed analysis of the agent’s external behavior or from the opportunity of better decomposing the

agent’s structure (to facilitate reuse, optimize calculations, access external devices).

Agent Structure Exploration Phase

The System Requirements model aims at exploring the problem by identifying an agent-

oriented perspective that could enable a straight solution that will be detailed in the following

models. This analysis point of view could not be lacking of a structural description of the identified

agents that is depicted in form of a class diagram at a social abstraction level (all agents are

reported together with their interactions). The Agent Structure Exploration phase, in facts, collects

the results of the previous phases and represents the agents in forms of classes and their behavioral

capabilities (tasks) as class methods. These tasks are the structural implementation of the external

manifestations produced by agents in scenarios of the RId phase. They are both methods used to

interact with other agents and to accomplish other agent’s duties.

Figure 8 reports a portion of an Agent Structure Exploration (ASE) diagram. Each agent is

shown as a class and its tasks are reported as methods of the class. Communications are

represented by relationships among agents and their name is used to identify them throughout all

the remaining part of the project. Agent knowledge is usually neglected here since at this stage we

still lack of any study about its structure and therefore it could be confusing to attempt an

hypothesis without the guidance of an ontology exploration of the domain as it will be performed

in the following DOD phase (see subsection 0).

This diagram representation associated with the scenarios of RId phase and the agent’s

behavior plan presented in the TSp phase, compose a complete sketch of the requirements for each

agent and enable the following design phases. Agents have been identified in the AId phase and

related to requirements, roles and communications have been identified in the RId phase

(communications are the logical way of implementing agent interactions found in scenarios), tasks

have been sketched iterating among this phase, the RId and the TSp phases.

Figure 8. A portion of Agent Structure Exploration Diagram

DOD

Provide_Ontology()

COD

AskFor_Interactions()

AskFor_Ontology()

AskFor_Tasks()

Design_Diagram()

Compose_Diagram()

Detail_Communication()

Check_Model()

Ontology_Request

Agent_Society

Fire_new_phase()

Check_for_next_phase()

Receive_model_update()

Provide_MAS_Elements()

Start_Composition

Check_COD

MAS_Update

Interactions_Request

Tasks_Request

Report_Errors

Check_OK

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

Agent Society Model

The Agent Society Model introduces an agent-oriented solution for the problem (and related

requirements) described in the previous phases. Being agents the center of our approach, the model

presents an ontological description of both the domain where agents will live and their

communications, then agents are described in terms of roles they play services provided by roles,

resource dependencies and finally their structure and behavior.

The activities (and resulting artifacts) that contributes to build up this model are described in

Figure 10, where we can identify five phases: Domain Ontology Description (DOD, where the

domain of interest is described in terms of its ontology), Communication Ontological Description

(COD, where agents communications are described in terms of referred ontology and the other

interaction details), Roles Description (where agents are described in terms of their roles and

dependencies for services and resource availabilities), Multi-Agent Structure Definition (MASD,

where agents are described in terms of the behaviors they own), Multi-Agent Behavior Description

(MABD, where agents are described in terms of their behavior both from the social-exterior point

of view and the internal flow of control).

Figure 9. The Agent Society Model activities and resulting artifacts

The relationships among the artifacts produced during these phases and the elements of the

PASSI2 MAS meta-model are described in Figure 10 where we can see that one different UML

model is created in each of the phases and moreover a text document is written in the Roles

Description phase to describe services provided by agents.

In this figure we adopted the same syntax as in Figure 3 but an extension is now necessary:

some artifacts relate different elements of the model (for instance this happens in the

Communication Ontological Description diagram, where communications are related to ontology

elements, content language and AIP); to represent this situation, Figure 10, we introduce the relate

relationship; it means that one of the activities the designer will perform in producing the artifact

consists in relating some instances of the two elements.

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

Figure 10. The artifacts structure for the Agent Society Model

Domain Ontology Description Phase

An agent-based system may achieve its semantic richness through explicit ontologies, or

domain-specific terminologies and theories. In order to detail the resulting ontology we introduce

the DOD (Domain Ontology Description) phase in which we use a class diagram to describe the

ontology of the domain representing the involved entities through classes.

PASSI2 is one of the few MAS design processes that include the design of ontology as an

explicitly prescribed phase. This is the consequence of a precise choice since in our opinion, a good

exploration of the domain is fundamental in order to deeply understand the problem and to have a

good adherence between the application domain and the solution to be developed, particularly if

the solution will be an agent-based one. For this reason the model we produce of ontology includes

concepts (categories, entities of the domain), predicates (assertions on properties of concepts) and

actions (that agents can perform in the domain).

Starting from the positions of other authors [12][13], we express ontology using class

diagrams. Because of our particular attention for the automatic production of as much code as

possible we describe the elements that constitute the domain ontology as an XML schema. In this

way we can easily obtain an XML description of the message content expressed in one of the

possible ACL (Agent Communication Language) languages [22] (PTK already supports the

automatic generation of the ontology code in RDF that is part of both the W3C [38] and FIPA [39]

specifications).

In PASSI2, it is important not only modeling the concepts of the domain but also the

interactions of the agents with them. With interactions we mean the actions that agents can perform

in the environment (using or affecting the constituting elements of the environment itself) and the

predicates that can the knowledge of the agent on it.

The basic data model of the RDF ontology (as proposed for standardization in [38]) is based

on three object types:

• Resources: things described in the RDF expression;

• Properties: a characteristic, attribute or relation of a resource;

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

• Statements: it expresses a belief about the resource and it is composed of three parts that are

the subject (a resource), the predicate (the property of the subject) and the object (the

property value).

This specification has been introduced in FIPA documentation as one of the supported

content language (FIPA RDF Content Language [39]). Because of the specific context, some little

refinement are to be considered. The W3C RDF resource is named Object in FIPA RDF and the

W3C RDF statement corresponds to the Proposition in the FIPA language.

Multi-agent systems communications are motivated not only by the need of exchanging

information but often by the will of the initiator of asking for some kind of collaboration (for

example delegating an action). In order to support these conversations, actions have been

introduced in the FIPA RDF language. An action is an activity that can be done by an agent. It is

described by an act (the operative part of the action), an actor (the entity that is responsible for

executing the action) and one or more optional arguments (if necessary for the execution of the

action).

Figure 11. A Domain Ontology Description (DOD) diagram

In Figure 11, a portion of the ontology used to describe the domain related to the PASSI2

toolkit chosen as a case study for this paper, is reported. The diagram (an UML class diagram)

represents concepts, predicates and actions with the following conventions: concepts are

represented as classes with the concept stereotype and with the yellow fill color, predicates and

actions are represented by classes with the predicate or action stereotype and with the blue or white

fill color.

Concepts can be related using three UML standard relationships:

• Generalization: it permits the generalization/specialization relationship between two

concepts that is one of the fundamental operator for constructing an ontology.

• Association: it models the existence of some kind of logical relationship between two

concepts. It is possible to specify the role of the involved entities in order to clarify the

structure.

• Aggregation: it can be used to construct sets where value restrictions can be explicitly

specified; in the W3C RDF standard three types of container object are enumerated: the bag

(an unordered list of resources), the sequence (an ordered list of resources) and the

alternative (a list of alternative values of a property). We choose of representing a bag as an

aggregation without any explicit restriction, while a sequence is qualified by the ordered

attribute and the alternative is identified with the only one attribute of the relationship.

Class Diagram
<<concept>>

Activity Diagram
<<concept>>

Sequence Diagram
<<concept>>

Text Document
<<concept>>

MAS Description

TypeFilter : String

<<predicate>>
Add Element

Actor : String

Receiver : String

<<Act>> Add(TheMAS, AnElement)

<<action>>

MAS Element

Type : String

AnElement

0..n

TheDocumentation

0..n

0..n

Related_to

0..n

Compose_Model

Actor : String

Receiver : String

<<Act>> Compose(Inputs : MAS Element, Model : UML Model)

<<action>>

TSp Diagram
<<concept>>

DOD Diagram
<<concept>>

COD Diagram
<<concept>>

MABD Diagram
<<concept>>

RId Diagram
<<concept>>

Compile

Actor : String

Receiver : String

<<Act>> Compile(AModel : UML Model) : UML Model

<<action>>

UML Model
<<concept>> AModel

Model Changed

Result : Boolean

<<predicate>>

MAS
<<concept>>

TheMASstructureTheMAS

1..n1..n

1..n

AModel

1..nOldModel

NewModel

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

Exploring Figure 11, we can see that its elements define the pieces of knowledge of the

agents and the ontology of their communications. For instance, we can there find the MAS concept

that represents the MAS model instantiated by the designer during his work; it is composed by

MAS elements (like agents, roles, tasks and all the other elements of the MAS meta-model. Now

let us consider this interaction occurring in a scenario involving the COD agent (User_interaction

role) and the DOD agent (Ontology_server role). The first one (COD agent) needs a list of the

already defined ontology elements in order to allow the definition of the referred ontology attribute

of each communication. It sends a request to the DOD agent that answers with the MAS

Description predicate; this latter describes the MAS model by listing its elements as it was

requested. During the Communication Ontological Description phase, the designer could introduce

a new communication between two agents and this corresponds to delegating the COD agent of

performing the Add Element action described in Figure 12; it has two attributes: the actor and the

receiver. As already said, this action will be performed by the COD agent that will be specified as

the actor, the successful execution of the action will then notified to the agent that is responsible of

ensuring the consistence among the different agents activities (the discipline agent responsible for

the COD agent is Agent Society), this will be the receiver. The Add act specified in the action has

two arguments: the MAS where the element will be added and the element to introduce in it.

Communication Ontological Description Phase

In the Communication Ontological Description (COD) diagram we describe the agents’

knowledge and their communications (considering related ontology, content language and agent

interaction protocol). Some of these communications descend from the already studied agents’

interactions, some others will be here introduced as a consequence of the study performed in the

next phases and iterations.

Communications are among the most important aspects in agent-based software. Referring to

the FIPA architecture we can see each communication as composed of speech acts [23] whose

simplest form is: <i, act (j, C)> where i is the originator of the speech act, act is the name of the act

(we can refer to it as a message), j is the target and C the semantic content. In the FIPA Agent

Communication Language [22] this can be mapped as follows: (act: sender i: receiver j: content

C). Note that speech acts (act in the example above) are grouped by the FIPA specifications [14] in

several agent interaction protocols (AIPs) according to the intention they respond to.

This example is however still incomplete because it is lacking of the language and ontology

specifications outside of which the content C makes no sense. We can therefore conclude that for

each communication we need to specify three elements: ontology, content language and interaction

protocol. While several languages and interaction protocols are standardized by FIPA, ontology

that is often strictly related to the problem is to be defined in the specific application as already

discussed in the previous section.

The Communication Ontology Diagram, is expressed in form of an UML class diagram

including two different kind of elements: agents and communications. In Figure 12 we can see a

portion of COD diagram reporting one of the communications of our case study; in this one the

COD agent (that is a fragment agent) asks to the DOD agents the list of ontology elements that it

will propose to the designer when he introduces a new communication in the diagram.

In Figure 12, each agent is reported as a yellow-filled class with the agent stereotype and

each communication is shown as a relationship between two agents and identified by a unique

name. The communication parameters are detailed in a class associated to the relationship. Each

communication is described in terms of: ontology (this parameter values come from the elements

of the ontology defined in the DOD phase), agent interaction protocol (AIP, the choice agent

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

interaction protocol is totally free), content language (we usually adopt RDF but any language,

FIPA compliant or not, could be choosen).

The “Ontology_Request” communication between the COD agent (initiator) and the DOD

agent (participant) refers to the MAS Description type of data (defined in the DOD diagram,

Figure 11), the content language is RDF and the adopted AIP is Query (one of the standard FIPA

interaction protocols). This description is both easy to understand and very complete and it allows

the simultaneous definition of two related elements: the agent’s knowledge and its communications

specification.

Figure 12. An example of Communication Ontological Description (COD) diagram

In designing this diagram we start from the results of the A.Id. phase. A class is introduced

for each identified agent, and an association is introduced for each communication between two

agents (ignoring at the moment distinctions about agents’ roles). Obviously it is necessary to

introduce the proper data structure (coming from the entities described in the DOD) in each agent

in order to store the exchanged data.

The association line that represents each communication is drawn from the initiator of the

conversation to the other agent as can be deducted from the description of their interaction

performed in the RId phase.

An important piece of experience we achieved during the almost four years of designing with

PASSI2 is that being our agents conceived to be communication intensive, each one of them could

be related to several similar (i.e. with common elements like the ontology or content language)

communications. There we can see that two different communications are just the specialization of

a more general one (GetMASElements) and this offers the opportunity of improving the design of

the COD agent by unifying the management of these conversations in one unique task.

Figure 13. It is often possible to enhance the quality of the design by introducing inheritance among

different communications.

Ontology_Request

Ontology : MAS Description

Language : RDF

Protocol : FIPAQuery

<<Communication>>

DOD

Defined_Ontology : MAS

<<Agent>>

COD

Available_Ontology : MAS

<<Agent>>

Ontology_serverUser_interaction Ontology_Request

GetMASElements
Language = RDF

Protocol = FIPAQuery

 Ontology_Request
Ontology : MAS Description (TypeFilter=OntologyElement)

 Tasks_Request
Ontology : MAS Description (TypeFilter=Task)

DOD
Defined_Ontology : MAS

<<Agent>>

COD
Available_Ontology : MAS

<<Agent>>

Ontology_ServerUser_Interaction Ontology_Request

Agent_Society
Agent_Society_MAS : MAS

<<Agent>>

MAS_Model_Keeper

 Tasks_Request

User_Interaction

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

Roles Description Phase

The aim of this phase consists in modeling the lifecycle of each agent, looking at the roles it

can play, the collaboration it needs, and the communications in which it participates.

In the R.D. diagram we introduce all the rules of the society (organizational rules, [5]), laws

of the society and the domain in which the agent operates (e.g. trade laws) and the behavioral laws

considered by Newell in his “social level” [16]; these rules could be expressed in plain text or OCL

in order to have a more precise, formal description.

As already said, we define a role as a portion of the social behavior of an agent that is

characterized by some specificity such as a set of attributes (for example responsibilities,

permissions, activities, and protocols) or providing a functionality/service. Most commonly roles

we identify are devoted to provide services, share resources or achieving a goal (this is always

related to ensuring the fulfillment of the functionalities that can be deducted from the use cases

assigned to the agent).

The Role Description diagram (Figure 14) is a class diagram where roles are classes grouped

in packages representing agents. Roles can be connected by relationships representing changes of

role, by dependencies for a service or the availability of a resource and by communications. Each

role is obtained composing several tasks for this reason we specify the tasks involved in the role

using the operation compartment of each class.

Dependencies in PASSI2 are similar to those in i* [4]. In i*, the Strategic Dependency Model

is a dependency graph, in which each node represents an actor, and each arc represents a directed

dependency from one actor to the other.

Dependencies are a direct consequence of MAS cooperation, but they do not always hold

when a MAS runs. Agents are autonomous and could therefore refuse to provide a requested

service. For this reason, the designer needs a schema in which it is possible to analyze these

dependencies and, if necessary, provide alternative ways to achieve the goal.

We consider the following kinds of dependency:

• Service dependency – An agent depends on another to accomplish a goal or perform an activity.

The other agent may provide or deny the required service. This dependency unifies the goal and

task dependencies defined in i*.

• Resource dependency - An actor depends on another for the availability of an entity. This is the

same as i*.

Differently from i* where a specific diagram I used to represent dependencies, in PASSI2 we

introduce dependencies into the RD diagram. However, we need to introduce some further syntax

and stylistic conventions as follows:

• Classes represent roles.

• Methods of these classes correspond to tasks of the agent involved in pursuing the services and

functionalities that under the responsibility of the role.

• Roles of the same agent are grouped in a package that is named as the agent.

• Communications among roles of different agents are shown with a solid line (i.e. a UML

association), directed and named as already defined in the COD diagram.

• A change of role by an agent is shown by a dashed line from the old role to the new one with

the label ‘[role changed]’. We represent the change of role as a dependency relationship because

we want to represent the dependency of the second role from the first for the execution of some

actions or the realization of a condition. Sometime the trigger condition is not explicitly

generated by the first role but its precedent appearance in some scenario justifies the

consideration that it is necessary to prepare the situation that allows the second role to start.

• A service dependency is shown by a dashed line (i.e. a UML dependency), with the ‘service’

stereotype. The direction is towards the ‘server’ role.

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

• A resource dependency is shown by a dashed line (i.e. a UML dependency) with the ‘resource’

stereotype. The direction is towards the role that owns the resource.

We can introduce external actors (representing external or not agent-based applications) in

order to represent the agents interactions with other systems. In this case interactions can occur

using communications (this is the case of agent-based external systems) or several different ways

(remote call procedure, web services invocation …).

Figure 14. A Role Description (RD) diagram

In Figure 14 we can see a portion of RD diagram representing the roles, agents and

communications involved in the scenario already presented in the Roles Identification activity; the

Agent_Society agent (User_Interaction role) requires the COD_Compilation service from the COD

agent (Automatic_Compilation role) with the Start_Compostition communication. In this last agent

the Compose_Diagram task receives the communication as prescribed by the T.Sp. diagram

(Figure 7); then the agent asks for the list of interactions among agents to the Agent_Society agent

(each fragment level agent can interact with same level agents and its discipline agent, therefore

the COD agent cannot acquire this information directly from the RId agent but it asks it to the

Agent_Society agent that either has the required list or it looks for this data from other same level

agents). Once the Automatic_Compilation role of the COD agent has completed its duty (compiling

the COD diagram by using information already present in the design, i.e. providing the

COD_Compilation service), then a change of role occurs and the agent starts to play the

User_Interaction role. During this phase, the agent waits for user inputs (clicks on

communications reported in the diagram) and then shows the form that the designer uses to

introduce some communication parameters.

Some guidelines can be enumerated for this diagram:

• One class is drawn for each role of the same agent class as identified in the R.Id. diagrams.

• For each communication of the R.Id. sequence diagrams (or similarly the COD diagram) the

task that is devoted to deal with that communication is introduced in the proper role. This

should be in accordance with the Task Specification diagram already designed for the agent

• The role from which the first message is sent needs a communication task in order to ask for the

service/resource to the other agent.

• All the tasks of the previous two steps should also be present in the T.Sp. diagrams. There we

can find other tasks not directly related to communications handling. These must be introduced

COD

DOD

Agent_Society

COD_Diagram_Drafted = True

MAS_Model_Keeper

Provide_MAS_Elements()

Automatic_compilation

AskFor_Interactions()

Compose_Diagram()
Design_Diagram()

Interactions_Request

MAS Description

<<Resource>>

Model_Management

Check_M odel()

User_Interaction

ASModel_Sequencer()
Fire_New_Phase()

Check_For_Next_Phase()

Start_CODCheck_COD

User_interaction

AskFor_Tasks()
AskFor_Ontology()

Design_Diagram()

Detail_Communications()

Tasks_Request

ROLE CHANGE[ROLE CHANGE]

Ontology_server

Get_Ontology()

Ontology_Request

MAS Description

<<Resource>>

MAS Description

<<Resource>>

COD_Compilation

<<Service>>

Model_Checking

<<Service>>

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

in the right role accordingly to their contribution to the agent behavior. At the end, each task of

the agent in the T.Sp. phase should be present in at least one role.

• If an agent can play several different roles, the series of changes can become complex and in

such cases, a state diagram can be helpful in describing it.

The R.D. diagram presents information that is already in the design but which is now

assembled from a different viewpoint. This is helpful in understanding and well defining services

that are the most important outcome of this phases. Because of the specific nature of this diagram,

it can be largely compiled by the supporting tool and the designer only needs to position the tasks

in the proper role, define services and resources, model constraints for role changes. The

composition of the Services description document (that is a text document) is performed as the last

activity of this phase and it is left to the system.

Figure 15. A SPEM activity diagram reporting the Role Description part of the PASSI2 process

1.1.1.1 Service Specification

In the RD diagram we model two different types of dependencies (resource and service); this

descend from the different uses that we think an agent could do of the domain ontology elements;

an agent can assert its belief (by formulating a predicate) or perform some action on domain

concepts. We make a precise parallelism between these ontology elements and RD dependencies

(resource and services). According to our point of view, if an agent needs to access a resource (a

resource is here seen as an intangible entity that can be acquired - also using sensors - shared, or

produced by agents), than it will ask to the resource owner of expressing its belief about it. Besides,

if an agent desires that some action is performed on its domain (represented as a set of ontology

concepts in its knowledge), it could ask to another of doing it, thus introducing the idea that the

second agent is providing a service to the first. The duality between resource and service is solved

in their implementation by thinking that providing access to an information (a typical resource

access situation) corresponds to enabling a ‘resource sharing’ kind of service.

Description of services in the Service document is done by adopting OWL-S [40][41]

although we often limit the number of parameters used to describe the service if the system is

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

closed (and therefore all the information prescribed by an OWL-S service specification is not

necessary).

In this description, a specific importance maintain (using OWL-S labels) the

Service_Provider and Service_Requester that are directly related to the actor and

receiver entries of actions described in the DOD diagram (see 0).

Each service is identified by the serviceName that is also used by the agent to register the

service in the platform yellow pages. This is important since we suppose that agents will acquire

the address of their converser only by searching the platform yellow pages and never supposing an

a-priori knowledge of their name or contact address.

We use service precondition to model some rules of agent society. Suppose for instance

that the COD agent wants to get the list of identified agents in a specific project. We could imagine

a scenario where it asks it directly to the AID agent (that is responsible for the phase where agents

are identified and associated to use cases) but the AID agent would refuse this information because

of the hierarchical organization adopted in this agent society. Each fragment agent, in fact, will

grant services only to agents belonging to the same discipline-team of agents; here a discipline-

team is seen as a subset of the agent society collecting: (i) fragment-level agents belonging to the

same discipline and (ii) the discipline-level agent that is responsible for that discipline (for instance

System Requirements, Agent Society…). The service precondition could ensure the observation of

this rule if each agent registers itself (in the platform white pages) as a member of a specific

discipline-team of agents and this value is included in the service input parameters.

Finally, the serviceCategory attribute is used to distinguish a properly named service

from a resource sharing one (see discussion above). Other commonly used attributes are: input,

output, and effect whose meaning is obvious and will not be discussed here.

Multi-Agent Structure Definition Phase

The aim of this phase consists in representing the agent society structure; we use one class

diagram to show the whole MAS (of course, several diagrams could be used if the number of

classes requires this), each agent is depicted using a class and detailed in terms of its knowledge

and tasks.

This diagram represents the structure of the agents in a simple compact form that we found

very useful to comprehend the MAS structure at a glance and to describe architectural choices (like

for instance a multi-layer solution).

The contribution of this phase to the MAS Meta-model instantiation is mainly related to the

iteration performed with the following MABD (Multi-Agent Behavior Description) phase (see

Figure 18. The Agent Implementation Model activities and resulting artifacts. Iterating between

these two phases the designer, in the MASD diagram, defines each agent in terms of the knowledge

it needs to deal with its duties and the tasks representing its operational abilities. Each agent is

connected to another using a relationship if a communication is supposed to happen between the

two.

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

Figure 16. An example of MASD (Multi-Agent Structure Definition) diagram

In Figure 16 we can see a portion of the MASD representing the agent society for the

proposed case study. This diagram differs from common UML class diagrams only for the

presence of actors. We think that in a social representation of the system that is also a ‘personified’

view of agents it is important to represent the relationships of the agents with both users and

external agents because a social representation could not be thought to be complete without

explicitly considering the external elements that interacts with the system and often determine its

collective behavior.

In order to complete this phase, the designer should access the initial system description

performed in the ASE (Agent Structure Exploration) phase. This corresponds to start from the

analysis results and then enriching them with considerations coming from the social model. In this

diagram, agents coming from the ASE diagram are detailed in terms of the knowledge they need in

order to cope with their social relationships (communications coming from the COD phase), and

the tasks they use to accomplish their functionalities (some of these already identified in the ASE

phase, some others now introduced while refining the agent).

It is also possible to introduce new agents in order to allow a better decomposition of the

system from a (social) architectural point of view. A frequent example of that consists in an agent

that is supposed to interact with an user via a GUI and then performs some kind of (heavy)

computational task (or similarly a complex series of queries on a knowledge base/ database). If

non-functional requirements prescribe that user interface should be done using a small device like a

cellular phone or a PDA, the heavy-duty agent of the initial hypothesis is not a good solution and

therefore it is likely to be decomposed in two (or more) different agents the first of which is a light-

weighted GUI agent that can be run on strongly constrained devices.

Multi-Agent Behavior Description Phase

COD

Available_Ontology : MAS

AskFor_Interactions()
AskFor_Ontology()

AskFor_Tasks()

Compose_Diagram()
Detail_Communications()

Check_Model()

Design_Diagram()

<<Agent>>

Agent_Society

Agent_Society_MAS : MAS

Fire_new_phase()
Check_for_next_phase()

Receive_Model_Update()

Provide_MAS_Elements()

<<Agent>>

DOD

Defined_Ontology : MAS

Provide_Ontology()

<<Agent>>

Designer

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

Figure 17. A portion of Multi-Agent Behavior Description (MABD) diagram

The aim of this phase consists in designing the agents’ life from the social point of view. This

mainly means updating the initial plan of each agent explicitly considering its social relationships

(actuated using communications); in so doing the designer composes the tasks each agent owns in

order to allow the pursuing of its objectives (in terms of the functionalities it has to accomplish

according to what specified in the Agent Identification phase and services it can provide to the

others as defined in the Role Description phase).

More in details, in this phase the designer draws one or more activity diagrams (if the system

is very large) where the agents’ behavior is expressed in terms of sequence of tasks and

communications. Each diagram can be regarded as a refinement of the initial agent specification

drafted during the TSp (Task Specification) phase (see subsection 0), but designed under a

different perspective, the social one; while in the TSp diagram we were trying to define a first

hypothesis of the agent plan and we were looking at an agent a time, in the MABD diagram, we are

now considering the whole agent society, we are aware of the agent social relationships

(communications), we know much more about the same agents’ structure (in terms of behaviors

and roles played) and we can therefore prepare a more complete schema of the agents’ society life.

From the MAS meta-model point of view, as already reported in the artifacts structure of the

Agent Society Model (Figure 9), this diagram mainly relates agents (through communications)

among them and their tasks to the communications they participate. The MABD notation

prescribes that the diagram is divided in swimlanes, (each swimlane representing an agent) and

each activity inside them represents one of the agent’s tasks. These tasks are related by refining the

initial TSp plan and also considering the roles played by the agents (see RD diagram, subsection 0).

The designer obtains from the RD diagram information about the roles that the agent executes in

parallel (they originate a fork in the MABD diagram) and/or the changes of roles that being

characterized by a logical condition introduce a decision point in the MABD; this phase is

performed also considering the results of the COD (Communication Ontology Description) phase

(the list of communications among agents and their details in terms of ontology, content language

and agent interaction protocol) and the MASD (Multi-Agent Structure Definition) phase (the list of

tasks of each agent).

The dependency of MABD and MASD phases is particularly important, from the process

point of view, because they are supposed to be performed iteratively in order to introduce new

structural elements (tasks) each time they are, thus originating a local iteration that allows the

refinement of the multi-agent sub-model in both the structural and behavioral aspects.

The specific notation of a MAD diagram includes that transitions either represent events (e.g.

a communication, represented by an object flow) or a control flow (from one task to the other).

Moreover, since the syntax of UML activity diagrams already supports the representation of

Fire_new_phase

Provide_

MAS_Elements

Check_Design_

Model

Start_COD

<<Communication>>

[Compile (COD Diagram), RDF, Request]
ASModel_

Sequencer

MAS_Model_Keeper

Role

User_Interaction

Role

Compose_ Diagram

AskFor_

Interactions

Design_

Diagram

Check_Model

Interactions_Request

<<Communication>>

[MAS Description (TypeFilter=Interactions), RDF, Query]

AskFor_

Ontology

[COD_Diagram

Drafted]

Automatic_Compilation

Role

Model_

Management

Role

User_Interaction

Role

User Choice = start COD

User Choice = Check Model

CODAgent_Society

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

concurrency and synchronization, unlike DeLoach [1], we do not need to introduce in PASSI2 a

specific diagram for concurrency, besides we suppose that each agent is executed concurrently to

the others (even if some of these agents can be started later by the others) and in the same agent

several roles can be concurrently active.

As regards the example of MABD diagram reported in Figure 17, we can see that at system

start, both the Agent_Society and COD agent are created. The Agent_Society agent from the

beginning plays two different roles as already specified in the RD phase (see Figure 14, the

User_Interaction role is devoted to guiding the designer in performing the process using the correct

sequence of phases, and the MAS_Model_Keeper, that is responsible for providing information

about the already designed parts of the system to fragment-level agents such as the COD); the first

step in managing the design process is done by the ASModel_Sequencer task that accordingly to

user’s requests can fire the next phase (task Fire_new_phase), check the model for errors or

inconsistencies (task Check_Design_Model) and so on. To fire the COD phase, the Agent_Society

agent starts a communication (with the Request interaction protocol) and it asks to the COD agent

of beginning the composition of the diagram that is under its responsibility.

Agent Implementation Model

In the Agent Implementation Model, the agent society defined in the previous models and

phases is seen as a specification for the implementation of a set of agents that should be now

designed at the implementation level of details, then coded, deployed and finally tested.

This model fills the gap between the agency level of abstraction where conceptual entities

(agents) concur in define an abstract solution to the problem and the implementation domain where

agents are seen as pieces of software (they can be resembled to the component granularity of an

object-oriented program) and as such should be implemented. It is worth to note that in this release

of the PASSI2 process, we mainly think at an object-oriented implementation of the solution. This

does not contradict all the above arguments since it should be accepted as a matter of fact that

existing proposals of agent languages are not enough mature and/or they are still remarkably based

on object-oriented languages.

Specifically dealing with the implementation platforms we usually refer to FIPA-compliant

ones and among them the most known are JADE, FIPA-OS and Cybele; all of them can be

considered as developing frameworks for implementing Java-based agents. Some of them include

testing and debugging tools (JADE, Cybele) while some others have some level of soft real-time

capabilities (Cybele, at cost of FIPA communication level compatibility loss).

The activities and resulting artifacts of this model are reported in Figure 18. We can see that

the first two phases are concerned with the design of the software agent from both the structural

(SASD, Single-Agent Structure Definition) and behavioral (SABD, Single-Agent Behavior

Description) points of view. Once the agent is ready for implementation, the system deployment

configuration can be drawn in terms of a UML deployment diagram and the list of requirements

(libraries, drivers, etc.) for the hosting platforms.

The design is now completed and (part of) the agent code can be automatically produced by

reusing code solutions coming from applied patterns. We suppose that during all the development

process, the designer is well aware of the advantages coming from a proper pattern-reuse practice.

Once the agent code is (manually) completed it is tested firstly at the agent level (a kind of

unit testing) and then the social level (a kind of integration testing).

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

Multi-Agent

Structure Definition

(From Agent Soc. Mod.)

Deployment

Configuration

Code

Reuse

Multi-Agent

Behavior Description

(From Agent Soc. Mod.)

Single-Agent Structure

Definition

Single-Agent Behavior

Description

Single-Agent

Behavior Definition[Single-Agent Model Not

Completed]

Agent Test
Society Test

Requirements

Document

(From Syst. Req. Mod.)

Single-Agent Structure

Definition

[Single-Agent Model

Completed]
Code

Production

Agent Final

Code

Agent Reused

Code

Society Test

Document

Agent Test

Document

Deployment

Configuration

Figure 18. The Agent Implementation Model activities and resulting artifacts

The mapping between the elements of the MAS meta-model and the artefacts of this

discipline are described in Figure 19. As it can be seen, the Agent Implementation Model is

composed of two sets of UML diagrams (Single-Agent Structure Definition and Single-Agent

Behavior Description) that describe the software solution and five text documents (the Deployment

Configuration including an UML deployment diagram, two code documents and two test plan

documents).

Figure 19. The artifacts structure for the Agent Implementation Model

In the next subsections we will detail the different phases of this model.

Single-Agent Structure Definition diagrams

In this diagram we address the internal structure of the classes composing the agents. We

produce one diagram for each agent, in which we introduce the agent class and its tasks as inner

classes.

We introduce all the methods that are needed in the different classes that have not been

identified previously. These include constructors and the shutdown method required by the

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

FIPAOS environment. The tasks devoted to exchanging information need specific methods to deal

with the communication events. (E.g. the handleAcceptProposal method in the RegisterMtg task,

is invoked when the other agent responds with an accept-proposal communicative act to the request

of registering a meeting.)

At this level of detail we have now described the structure of the software (classes, methods,

attributes) in sufficient detail to implement it almost mechanically. The classes produced by

following the steps described above are precisely the classes that need to be implemented in the

agent coding language. What is still lacking, of course, is the description of the methods presented

in these diagrams.

Single-Agent Behavior Description diagrams

It is an activity diagram, a refinement of the TSP diag. One different activity diagram for

each agent. I have several swimlanes, one for each task of the agent + one for the agent itself + one

for external interacting agents.

Figure 20. Single-Agent Behavior Description diagrams

This is a conventional phase for describing the implementation of the methods introduced in

the (S)ASD diagrams. We can choose the any effective way to describe the specific method.

Deployment Configuration Phase

the configuration for the deployment platform can be described; this includes a diagram of

the initial agents deployment and the list of modules that are necessary for agent execution

(mathematical libraries, hardware controlling drivers and so on), the specification of their paths and

all other specific constraints on the platform that will host the agent. It should be noted that being

PASSI2 agents mobile, one agent can potentially move to several different platforms and therefore

related specifications should be ensured in more than on host.

This is one of the key elements of the evolution between PASSI2 and the previous

methodology developed by one of the authors (AODPU, [9]) more specifically for robotics

applications. It is the response to the necessity of detailing the position of the agents in distributed

systems or in mobile-agents contexts.

The deployment configuration diagram describes where the agents are located and which

different elaborating units need to communicate in order to permit the communications among the

StartPurchase.

StartPurchase

StartNegotiation.

StartNegotiation

newTask(Negotiate)

StartNegotiation.

startTask

StartNegotiation

.handleInform

IdleTask.

handleRequest

message(OurRequest; query-i f)

ReceiveNegotiationRequest.

ReceiveNegotiationRequest

newTask(ReceiveNegoti ationRequest)

ReceiveNegotiationRequest.

startTask

ReceiveNegotiationRequest.

doneNegotiate

Negotiate.

Negotiate

Negotiate.

startTask

done()

message(OurRequest; i nform)

StartPurchase.done

AskNegotiation
done()

newTask(Negotiate)

Purchaser:NegotiatePurchaser.R eceiveNegotiationRequestPurchaser.IdleTaskPurchaseManag er.StartN egotiationPurchaseManager.StartPurchase

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

agents. As usual, elaborating units are shown as 3-D boxes (see Figure 21). Agents are shown as

components; their name is in the form agent-name: agent-class. Communications among agents

are represented by dashed lines with the communicate stereotype, directed as in the R.D. diagram.

For each communication described in the R.D. diagram occurring between agents in different

elaborating units, a dashed line is drawn. The receiving agent has an interface to show that it is

capable of dealing with that communication. (I.e. It understands the protocol used.) An extension

of the UML syntax is used in order to deal with mobile agents moving from one computer to

another. A dashed line with the move_to stereotype represents it.

Site1 Site2

Server

A:scooter A:scooter
move_to

C:central

<<network>>

<<network>>

<<network>>

communicate

Figure 21. An example of D.C. diagram. The scooter agent moves from one node to another.

In this diagram it is also possible to specify the hardware devices used by the agents (sensors

and effectors) and the modes of communication among agents in different elaborating units

(traditional/wireless networks, for example). If two agents in different elaboration nodes need to

communicate (as stated in the previous phases of the design), a path of connection should be

provided between the two nodes.

These constraints about the connections could also be dynamic. In fact, if agent A needs to

communicate with agent C, but moves across the network, we need to introduce the connection

constraints as dependent on agent A’s position. We introduce an OCL constraint in all the needed

connections for this specific purpose.

Code Reuse Phase

Several studies have been carried on in the field of patterns for MAS and different

approaches have been applied. In [2] we can find a classification of patterns for agent systems

including three main categories:

• Traveling patterns (dealing with the movement capabilities of agents),

• Task patterns (dealing with the tasks that agents can perform),

• Interaction patterns (dealing with communications among the agents).

Another classification can be found in [3]. It is composed of seven levels (mobility,

translation, collaboration, actions, reasoning, beliefs, sensory).

In both classification schemes we find common elements: the importance of the agent

mobility, actions performed by agents, and agent collaboration or interaction. Nevertheless, the

second classification is more detailed, and there we find patterns related specifically to sensors.

This is a very important issue in MAS operating in the real world, such as we have in robotics

applications.

Indeed all patterns are really useful only if they are well documented and obviously versatile.

For this reason we have focused our work first in the production of highly reusable patterns and

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

then in their documentation in order to obtain a quick identification of the best pattern for a specific

issue.

In the Code Reuse Phase, we try to reuse existing patterns of agents and tasks. It is not

correct to talk of patterns of code only, because the process of reuse takes place in the design

CASE tool where the designer looks at diagrams detailing the library of patterns, not at their code

directly. Our patterns therefore are not only pieces of code. They are also pieces of design (of

agents and tasks) that can be reused to implement new systems. At the programming level, the

designer is too deeply involved in solving the details of the implementation of the various agents

and does not have a sufficiently complete view of the system.

The best environment to try to reuse patterns is the design environment. We have used a

commercial UML CASE tool that has proven very versatile, thanks to the binding of the design

elements (classes, methods, attributes…) to the code language. We have therefore produced a

series of pieces of reusable code that are documented with their (M)ABD and (S)ASD diagrams. In

the first diagram we describe the behavior of the pattern through the sequence of events and

methods implemented while in the (S)ASD we have a structural description of it in form of a class

or a group of classes (for example an agent with its IdleTask and communication tasks for some

protocols).

We have found that in our applications and with our specific implementation environment

(FIPAOS), the most useful patterns are those that could be classified as ‘interaction’ patterns. This

is due to the specific structure of FIPA language that delegates a specific task for each specific

communication. Each time an agent needs to use that protocol, the pattern task could be easily

reused and only the part of the code devoted to the information treatment could need of

modification.

Code Production phase

This is rather a conventional phase. The programmer completes the code of the application

starting from the design, the skeleton produced and the patterns reused.

Agent Test

This phase is devoted to verifying the single behavior with regards to the original

requirements of the system solved by the specific agent.

Society Test

In this phase the validation of the correct interaction of the agents is performed, in order to

verify that they actually concur in solving problems that need cooperation. This test is done in the

most real situation that can be simulated in the development environment.

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

REFERENCES

[1] DeLoach, S.A., Wood, M.F., and Sparkman, C.H. Multiagent Systems Engineering.

International Journal on Software Engineering and Knowledge Engineering 11, 3, 231-258.

[2] Aridor, Y., and Lange, D. B. Agent Design Patterns: Elements of Agent Application Design.

In Proc. of the Second International Conference on Autonomous Agents (Minneapolis, May

1998), 108–115.

[3] Kendall, E. A., Krishna, P. V. M., Pathak C. V. and Suresh C. B. Patterns of intelligent and

mobile agents. In Proc. of the Second International Conference on Autonomous Agents,

(Minneapolis, May 1998), 92–99.

[4] Yu, E., Liu, L. Modelling Trust in the i* Strategic Actors Framework. Proc. of the 3rd

Workshop on Deception, Fraud and Trust in Agent Societies at Agents2000 (Barcelona,

Catalonia, Spain, June 2000).

[5] F. Zambonelli, N. Jennings, M. Wooldridge. Organizational Rules as an Abstraction for the

Analysis and Design of Multi-agent Systems. Journal of Knowledge and Software

Engineering, 2001, 11, 3, 303-328.

[6] Jacobson, I., Booch, G., Rumbaugh, J. The Unified Process. IEEE Software (May/June

1999).

[7] Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G. Object-Oriented Software

Engineering: A Use Case Driven Approach. Addison-Wesley (1992).

[8] Chella, A., Cossentino, M., and Lo Faso, U. Applying UML use case diagrams to agents

representation. Proc. of AI*IA 2000 Conference. (Milan, Italy, Sept. 2000).

[9] Chella, A., Cossentino, M., and Lo Faso, U. Designing agent-based systems with UML in

Proc. of ISRA'2000 (Monterrey, Mexico, Nov. 2000).

[10] O’Brien P., and Nicol R. FIPA - Towards a Standard for Software Agents. BT Technology

Journal, 16,3(1998),51-59.

[11] Poslad S., Buckle P. and Hadingham R. The FIPA-OS Agent Platform: Open Source for

Open Standards. Proc. of the 5th International Conference and Exhibition on the Practical

Application of Intelligent Agents and Multi-Agents (Manchester,UK, April 2000), 355-368.

[12] Cranefield, S., and Purvis, M. UML as an ontology modeling language. Proc. of the

Workshop on Intelligent Information Integration, IJCAI-99 (Stockholm, Sweden, July 1999).

[13] F. Bergenti,A. Poggi. Exploiting UML in the design of multi –agent systems. ESAW

Worshop at ECAI 2000 (Berlin, Germany, August 2000).

[14] FIPA Communicative Act Library Specification. Foundation for Intelligent Physical Agents,

Document FIPA00037 (2000). http://www.fipa.org/specs/fipa00037/.

[15] Odell, J., Van Dyke Parunak, H., and Bauer, B. Extending UML for Agents. AOIS

Workshop at AAAI 2000 (Austin, Texas, July 2000).

[16] Newell, A. The knowledge level, Artificial Intelligence, 18 (1982) 87–127.

[17] Antón, A.I., McCracken, W.M., and Potts, C. Goal Decomposition and Scenario Analysis in

Business Process Reengineering in proc. of Advanced Information System Engineering: 6th

International Conference, CAiSE '94 (Utrecht, The Netherlands, June 1994) 94-104.

[18] Antón, A.I., and Potts, C. The Use of Goals to Surface Requirements for Evolving Systems,

in proc. of International Conference on Software Engineering (ICSE '98), (Kyoto, Japan,

April 1998), 157-166

[19] van Lamsweerde, A., Darimont, R. and Massonet, P. Goal-Directed Elaboration of

Requirements for a Meeting Scheduler: Problems and Lessons Learnt in Proc. 2nd

International Symposium on Requirements Engineering (RE'95) (York, UK, March 1995),

194-203

[20] Potts, C. ScenIC: A Strategy for Inquiry-Driven Requirements Determination in proc. of

IEEE Fourth International Symposium on Requirements Engineering (RE'99), (Limerick,

Ireland, June 1999), 58-65.

[21] Jackson, M. Problem Frames: Analyzing and structuring software development problems.

Addison Wesley, 2001

[22] FIPA ACL Message Structure Specification. Foundation for Intelligent Physical Agents,

Document FIPA XC00061E. http://www.fipa.org/specs/ fipa00061/XC00061E.html.

[23] Searle, J.R., Speech Acts. Cambridge University Press, 1969.

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

[24] Zambonelli F. Jennings N., and Wooldridge M., Developing Multiagent Systems: the Gaia

Methodology, ACM Transactions on Software Engineering and Methodology, 12(3):417-

470, July 2003.

[25] Adelfe

[26] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, A. Perini. TROPOS: An Agent-

Oriented Software Development Methodology. Journal of Autonomous Agents and Multi-

Agent Systems. Kluwer Academic Publishers Volume 8, Issue 3, Pages 203 - 236, May

2004.

[27] SPEM

[28] S. Flake and C. Geiger and G. Lehrenfeld and W. Mueller and V. Paelke, Agent-Based

Modeling for Holonic Manufacturing Systems with Fuzzy ControlS. Flake, Ch. Geiger, G.

Lehrenfeld, W. Mueller, V. Paelke. Agent-Based Modeling for Holonic Manufacturing

Systems with Fuzzy Control, NAFIPS'99, 8th International Conference of the North

American Fuzzy Information Processing Society, New York, USA, June 10-12, 1999,

[29] IGARASHI YOSHIME , TAKATA SHIRO, NIDE NAOYUKI, MASE KENJI, FIPA + BDI

Architecture = Implementation of Rational Agent, IPSJ SIGNotes Mathematical modeling

and Problem Solving, 032-2000

[30] Pokahr, L. Braubach, W. Lamersdorf. Jadex: Implementing a BDI-Infrastructure for JADE

Agents. EXP Journal, 3-2003.

[31] P. Busetta and Kotagiri Ramamohanarao, An Architecture for Mobile BDI Agents, in

Proceeding of the 1998 ACM Symposium on Applied Computing (SAC'98), 27 February - 1

March, Atlanta, Georgia (USA), J. Carroll, G. B. Lamont, D. Oppenheim, K. M. George and

B. Bryant eds., ACM Press, 1998

[32] A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. Proceedings of the First

Intl. Conference on Multiagent Systems, San Francisco, 1995.

[33] D. Kinny, A.S. Rao and M. P. Georgeff, A methodology and modeling technique for systems

of BDI agents, (W. Van de Velde and J.W. Perram Eds), Agent Breaking Away: Proceedings

Seventh European Workshop on Modelling Autonomous Agents in a MultiAgent World, 56-

71, Springer-Verlag LNAI, vol. 1038, 1996.

[34] Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of

Robotics and Automation., RA-2, April, 14-23.

[35] Brooks, R.A., "How to build complete creatures rather than isolated cognitive simulators," in

K. VanLehn (ed.), Architectures for Intelligence, pp. 225-239, Lawrence Erlbaum

Assosiates, Hillsdale, NJ, 1991.

[36] OMG Unified Modeling Language Specification, Version 1.5, OMG document formal/03-

03-01, March 2003.

[37] M. Wooldridge, Reasoning about Rational Agents, the MIT Press, Cambridge, (MA)

[38] Resource Description Framework. (RDF) Model and Syntax Specification. W3C

Recommendation. 22-02-1999. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

[39] FIPA RDF Content Language Specification. Foundation for Intelligent Physical Agents,

Document FIPA XC00011B (2001/08/10). http://www.fipa.org/specs/

fipa00011/XC00011B.html

[40] The OWL Services Coalition. OWL-S: Semantic Markup for Web Services. Available at:

http://www.daml.org/services/owl-s/1.0/

[41] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, Katia Sycara; "Semantic Matching

of Web Services Capabilities." In Proceedings of the 1st International Semantic Web

Conference (ISWC2002). Sardinia, Italy, June 9-12, 2002

[42] C. Bernon, M. Cossentino, M. Gleizes, P. Turci, and F. Zambonelli. A study of some multi-

agent meta-models. In Proc. of the Fifth International Workshop on Agen-Oriented Software

Engineering (AOSE-2004) at The Third International Joint Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS 2004), New York, USA, July 2004.

[43] R. Cervenka, I. Trencansky, M. Calisti, D. Greenwood. AML: Agent Modeling Language.

Toward Industry-Grade Agent-Based Modeling. Lecture Notes in Computer Science,

Springer-Verlag, Volume 3382/2005: Agent-Oriented Software Engineering V: 5th

International Workshop, AOSE 2004, New York, NY, USA, July 19, 2004. Revised Selected

Papers.

[44] M. Cossentino. From Requirements to Code with the PASSI Methodology. In Agent

Oriented Methodologies, chapter iv, pagg. 79-106. Idea Group Publishing. Hershey, PA,

USA, June 2005.

 Technical Report N.: RT-ICAR-PA-09-02

PASSI2 - Going Towards Maturity of the PASSI Process

