
1.1 A new definition of ontological representations in PASSI
In the proposed architecture the definition of a complete ontology is strategic in order to establish successful collaborations among the different agents and to allow the introduction of new agents in the operating scenario. In fact, agents need: (i) the capacity of understanding their operating environment (and an ontological description of it is one of the elements of it), (ii) the possibility of interacting with other agents in order to delegate actions and/or to obtain information.

As a consequence it is important not only modeling the concepts of the domain but also the interactions of the agents with them. With interactions we mean the actions that agents can perform in the environment (using or affecting the constituting elements of the environment itself) and the predicates that can describe it.

From this need of specifically formalizing concepts, predicates and actions derives our choice of adopting an RDF description [27]

 REF _Ref23241352 \r \h
 * MERGEFORMAT [21] of the ontology the we represent using an UML class diagram (called DOD - Domain Ontology Description- in the PASSI methodology). We suppose that each communication between two agents refer to elements of the DOD diagram and therefore we explicitly mention it in the description of the agents communication performed in the COD (Communication Ontology Description). In this section we will describe an example of our ontology description and its consequent use in the communications design.

The basic data model of the RDF ontology (as proposed for standardization in [27]) is based on three object types:

· Resources: things described in the RDF expression;

· Properties: a characteristic, attribute or relation of a resource;

· Statements: it expresses a belief about the resource and it is composed of three parts that are the subject (a resource), the predicate (the property of the subject) and the object (the property value).

These standard has been introduced in the FIPA specifications as one of the supported content language (FIPA RDF Content Language [21]). Because of the specific context, some little refinement are to be considered. The W3C RDF resource is named Object in the FIPA RDF and the W3C RDF statement corresponds to the Proposition in the FIPA language.

Multi-agent systems communications are motivated not only by the need of exchanging information but often by the will of the initiator of asking for some kind of collaboration (for example delegating an action). In order to support this conversations, actions have been introduced in the FIPA RDF language. An action is an activity that can be done by an agent. It is described by an act (the operative part of the action), an actor (the entity that is responsible for executing the action) and one or more optional arguments (if necessary for the execution of the action).

In designing our ontology we considered important not only describing the structure of the domain (entities and their relationships) but also the action that can be performed in it and the predicates that will be used by the agents in their communications. This brings two advantages, consisting in the complete description of the logical content of messages (that eliminates ambiguity and misunderstandings) and the possibility of automatically building the RDF files from the design documents.

In the PASSI methodology the design of ontology is performed in the DOD (Domain Ontology Description) and a class diagram is used for it. Several works can be found in literature about the use of UML for modeling ontology (among the others [22], [23] and [24]). Our approach starts from the previous cited works and includes the support for actions and predicates.

A portion of the ontology used in this work is proposed in fig. 4. The diagram (an UML class diagram) represents concepts, predicates and actions with the following conventions: concepts (resource in W3C RDF, objects in FIPA RDF) are represented as classes without stereotype and with fill color, predicates (statements in W3C RDF, propositions in FIPA RDF) and actions are represented by classes with the right stereotype and without fill color.

Concepts can be related using three UML standard relationships:

· Generalization: it permits the generalize/specialization relation between two concepts that is one of the fundamental operator for constructing an ontology.

· Association: it models the existence of some kind of logical relationship between two concepts. It is possible to specify the role of the involved entities in order to clarify the structure.

· Aggregation: it can be used to construct sets where value restrictions can be explicitly specified; in the W3C RDF standard three types of container object are enumerated: the bag (an unordered list of resources), the sequence (an ordered list of resources) and the alternative (a list of alternative values of a property). We choose of considering a bag as an aggregation without an explicit restriction, a sequence is qualified by the ordered attribute while the alternative is identified with the only one attribute of the relationship.

In order to give some examples of our notation about concepts, in fig. 4 we can consider the following entities:

· ImData: it represents the set of data characterizing an image.

· MonoImage: it is a specialization of ImData and it comprehends information about the time the image was captured and the camera used. This latter data is represented by the association relationship with the camera entity. Each camera is identified by an ID and is positioned at a specific height and coordinate (the entity CameraPosition has a generalization connection with Point).

· StereoImage is an aggregation (a set) of two MonoImage elements and the set is ordered (left and right views), in other words it is a sequence.

Reasoning on the concepts of the domain and exchanging information about them, agents could express predicates according to their knowledge. For example, in a surveillance scenario, an agent could communicate to another that the element identified by the ID=74 is an intruder. Each element of the environment is an instance of the GenericComponent concept and therefore it is identified by an ID and occupies a position in the world.

This predicate (like the others we represent) can be expressed using a tuple of this kind:

(subject, predicate, object)

In the case of the previous example the predicate becomes:

(GenericComponent (ID=74), IsIntruder, True).

In the diagram these elements can be easily related to their role in the assertion: the predicate (IsIntruder) is the root of a path that navigating the intruder relationship brings to the subject of the proposition (the GenericComponent). The value is an attribute of the specific instance of the predicate.

The last fundamental components of our Domain Ontology Diagram are actions. They can be represented using the tuple:

(act, actor, [arguments])

where the arguments are optional. As an example we can consider the case when an agent asks to another of localizing an element of the environment and sending the information to another (ResultReceiver) agent. This corresponds to requiring the execution of the following action:

[image: image1.emf]Point

x : int

y : int

ImData

data1D : byte[]

name : String

colors : int

x : int

y : int

dim : int

comment : String

MarkerPosition

h : int

Marker

IDMarker : int

1

1..n

+markerPos

1

1..n

LocalizeMe

<<Act>> Localize(Target : GenericComponent = Self)

<<action>>

AutoLocalize

Actor = Self

<<Act>> Localize(Target : GenericComponent = Self)

<<action>>

Position

time : long

angle : int

Localize

Actor : String

ResultReceiver : String

<<Act>> Localize(Target : GenericComponent)

<<action>>

IsIntruder

Value : Boolean

<<predicate>>

GenericComponent

ID : int

1 0..1

+Position

1 0..1

1 +Target 1

1

+intruder

1

StartTracking

Actor : String

ResultReceiver : String

<<Act>> Track(Target : GenericComponent)

<<action>>

1

+Target

1

GiveCalibration

Actor : String

ResultReceiver : String

<<Act>> Send(calibration : CalibrationData)

<<action>>

IsStImage

Value : Boolean

<<predicate>>

GiveStImage

<<Act>> Send(theImage : StereoImage)

<<action>>

CameraPosition

h : int

CalibrationData

calibration : long[][]

time : long

1

+calibration

1

GiveCameraData

Actor : String

ResultReceiver : String

<<Act>> Send(TheCamera : Camera)

<<action>>

IsImage

Value : Boolean

<<predicate>>

StereoImage

1

+stereoImage

1

+theImage

GiveImage

Actor : String

ResultReceiver : String

<<Act>> Send(theImage : MonoImage)

<<action>>

Camera

ID : int

1

1

+CameraPos

1

1

1

1

+CameraParam

1

1

1..n

+TheCamera

1..n

MonoImage

time : long

1

+monoImage

1

2

+AnImage

2

{ordered}

1

+theImage

1

1

0..n

+CapturedBy

1

0..n

Figure 4: The Ontology Description Diagram of the system represents concepts, predicates and actions in an UML class diagram
(Localize, Actor, Target, ResultReceiver)

A concrete instance of the action could be:

(Localize, AgentA, GenericComponent (ID=35),AgentB)
where Localize is the required act, AgentA is the actor (and it is identified with an unique name), GenericComponent(ID=35) is one of the elements of the environment (the Target, what is to be tracked) and AgentB is the agent to whom the Target position should be notified. This is represented in the diagram by the Localize action class whose attributes are the Actor and ResultReceiver arguments of the action. The act (Localize) is specified as an operation of the class (with the act stereotype) and the Target is its parameter.

It is interesting to note that this notation permits an easy representation the of generalization/specialization relationships among similar actions. Consider the AutoLocalize action, it is a special case of the Localize action where the actor is the agent that receives the request and the target is itself. This is represented in the diagram through the “Self” value of the Actor attribute and the “Self” value of the Target parameter of the Localize act; the remaining part of the structure is inherited by the most general Localize action.

The representation of actions in the same context of the remaining part of ontology permits some important reasoning on the action itself and it results.

An useful example is represented by the StartTracking action where an agent (AgentA) asks to another (called AgentB) of tracking one element of the environment (it is supposed that AgentB is capable of tracking the movement of each element of the scenario and that it will notify another agent (the ResultReceiver) of the target position.

The general expression for this action is:

(StartTracking, Actor, Target, ResultReceiver)

An instance of it can be represented by the tuple:

(StartTracking, AgentB, GenericComponent (ID=56), AgentA)

One possible operating scenario for this action is that an agent responsible for pursuing an intruder wants to track its movement. If several cameras are available, the agent can select the most profitable one reasoning on the position of the camera both in terms of height and 2-D coordinates. This corresponds to relating the last known position of the intruder (the Position property of GenericComponent) with the positions of the different cameras (CameraPos property of the Camera entity). Using the results of this evaluation, the agent can require the StartTracking action to an agent that uses the best positioned camera maximizing the quality of the result.

The description of the ontology with related predicates and actions, in our approach, finds a natural complement in the design of the communications among agents. Communications are the mean that agents use to establish their social relationships and therefore they are one of the key features of a multi-agents system. A communication involves several aspects:

1. The content is the motivation of the communication itself and it relates to the elements of the ontology; usually what an agent communicates to another is a portion of its knowledge, this could be a concept of the domain or the value of a predicate but also an agent could ask to another of performing some kind of action (agents can delegate actions to others in order to achieve their goal in a more profitable way).

2. The Agent Interaction Protocol determines the rules of the conversation. A communication is (generally) composed of several messages. Each one (according to the speech act theory [28] is characterized by a single performative (the speech act). A set of performatives, that are sufficient to manage all the aspects of a communication with a specific purpose, compose an interaction protocol. For instance, if an Initiator agent asks for some kind of information to a Participant agent (QueryIf performative of the Query protocol), the second could reply only with the performatives enumerated by the specific protocol (that are: not-understood, refuse, failure, inform). If the Participant agent knows the required information it could reply with an inform message containing the piece of data, but the agent could also refuse of providing the information (for example because of personal security policies) and replies with a refuse performative.

3. The content language specifies the way an agent could express its message being sure that the others will understand the meaning. Several different theories and approaches exist about this aspect and we decided of privileging the use of one of the FIPA standard language. In accordance with the strategy of description of the ontology we adopt the FIPA RDF content language in all the communications.

A message interchange is one of the moment of the agent’s life and therefore can be related to the external macro manifestations of the agents behavior: roles. Each communication is performed by an agent while it is playing a specific role. We suppose that the agent will not change its role during a communication (that we consider an atomic element of the design at this stage) but, obviously, its result could fire a change of role in the agent.

The COD (Communication Ontology Description) diagram for our multilevel vision architecture is described in fig. 5. This diagram is an UML class diagram and represents agents, agent’s roles and communications with their details. Agents are represented by classes with the Agent stereotype and fill color. Communications are relationships among agent classes whose direction descends from the direction of the first message of the interaction. Each communication (for convenience identified by an unique name) has an association class (with the Communication stereotype, without fill color and identified by the same name of the communication) specifying the ontology, content language and agent interaction protocol used. The roles played by the agents in the interaction are shown near the ends of the association line.

[image: image2.emf]StereoImage

Ontology : IsStImage

Language : LEAP

Protocol : Inform

<<Communication>>

ImageToCalibration

Ontology : IsImage

Language : LEAP

Protocol : Inform

<<Communicatio...

ImageToTrack

Ontology : IsStImage

Language : LEAP

Protocol : Inform

<<Communication>>

Image

Ontology : IsImage

Language : LEAP

Protocol : Inform

<<Communicatio...

GiveStImageRequest

Ontology : GiveStImage

Language : RDF

Protocol : FIPARequest

<<Communication>>

ImageRequest

Ontology : GiveImage

Language : RDF

Protocol : FIPARequest

<<Communicatio...

CamerasRequest

Ontology : GimmeCameras

Language : RDF

Protocol : FIPARequest

<<Communication>>

CalibrationToHardw

areRequest

Ontology : GimmeImage

Language : RDF

Protocol : FIPARequest

<<Communicatio...

StereoCalibrationToH

ardwareRequest

Ontology : GimmeStImage

Language : RDF

Protocol : FIPARequest

<<Communication>>

TrackingToHardwareRequest

Ontology : GimmeImageFlow

Language : RDF

Protocol : FIPARequest

<<Communication>>

TrackingToCalibrationRequest

Ontology : GimmeCalibration

Language : RDF

Protocol : FIPARequest

<<Communication>>

MotionToHarwareRequest

Ontology : GimmeImageFlow

Language : RDF

Protocol : FIPARequest

<<Communication>>

MotionTo CalibrationRequest

Ontology : GimmeCalibration

Language : RDF

Protocol : FIPARequest

<<Communication>>

GimmeStereoImageRequest

Ontology : GimmeStImage

Language : RDF

Protocol : FIPARequest

<<Communication>>

StereoCalibrationRequest

Ontology : GimmeCalibration

Language : RDF

Protocol : FIPARequest

<<Communication>>

GimmeImageRequest

Ontology : GimmeImage

Language : RDF

Protocol : FIPARequest

<<Communication>>

TrackingRequest

Ontology : StartTracking

Language : RDF

Protocol : FIPARequest

<<Communicatio...

StartMotionRequest

Ontology : StartMotion

Language : RDF

Protocol : FIPARequest

<<Communication>>

IntuderNotification

Ontology : IsIntruder

Language : RDF

Protocol : Inform

<<Communicatio...

SelfPositionBuildingRequest

Ontology : AutoLocalize

Language : RDF

Protocol : FIPARequest

<<Communication>>

PositionBuildRequest

Ontology : Localize

Language : RDF

Protocol : FIPARequest

<<Communication>>

VisionLocalizazion

Ontology : LocalizeMe

Language : RDF

Protocol : FIPARequest

<<Communication>>

RegistrerRequest

Ontology : GiveVisionEnv

Language : RDF

Protocol : FIPARequest

<<Communicatio...

IntuderNotify

Ontology : IsIntruder

Language : RDF

Protocol : Inform

<<Communicatio...

MarkerRequest

Ontology : GiveVisionEnv

Language : RDF

Protocol : FIPARequest

<<Communicatio...

StereoCameraGrab

berToCalibration

Ontology : IsStImage

Language : LEAP

Protocol : Inform

<<Communicatio...

ImageToMotionDetector

Ontology : IsImage

Language : LEAP

Protocol : FIPARequest

<<Communication>>

LocalizatorToCalibration

Ontology : GimmeCalibration

Language : RDF

Protocol : FIPARequest

<<Communication>>

Planner

robot : GenericComponent

<<Agent>>

MapServer

markers : Marker[]

VisionManager

robot : GenericElement[]

cameras : Camera[]

markers : Marker[]

<<Agent>>

+PositionRequester

+PositionServer

VisionLocalizazion

RegistrerRequest

IntuderNotify

SelfLocalizator

calibration : CalibrationData

stereoImage : StereoImage

<<Agent>>

+PositionServer

+SelfLocalizator

SelfPositionBuildingRequest

+Startup

+SystemRegistering

MarkerRequest

StereoCameraGrabber

stereoImage : StereoImage

<<Agent>>

+StereoGrabbing

+SelfLocalizator

StereoImage

Tracking

image : MonoImage

calibration : CalibrationData

<<Agent>>

Localizator

image : MonoImage

calbration : CalibrationData

<<Agent>>

+PositionServer

+Localizator

PositionBuildRequest

IntruderDetector

intruder : GenericComponent

<<Agent>>

+IntruderDetector

+PositioNotifier

IntuderNotification

+IntruderDetector +Tracking

TrackingRequest

HardwareManager

cameras : Camera[]

<<Agent>>

+Tracking

+ImageServer

TrackingToHardwareRequest

+Register +SystemRegistering

CamerasRequest

+SelfLocalizator

+ImageServer

GimmeStereoImageRequest

+ImageServer

+StereoGrabbing

GiveStImageRequest

+Localizator

+ImageServer

GimmeImageRequest

Calibration

calibratioData : CalibratioData[]

<<Agent>>

+Startup

+CalibrationServer

TrackingToCalibrationRequest

+StereoCameraCalibrationBuilding

+ImageServer

CalibrationToHardwareRequest

+FixedCameraCalibrationBuilding

+ImageServer

StereoCalibrationToHard

wareRequest

+Startup

+CalibrationServer

StereoCalibrationRequest

+StereoGrabbing

+StereoCameraCalibrationBuilding

StereoCameraGrabberToCalibration

+Startup

+CalibrationServer

LocalizatorToCalibration

FixedCameraGrabber

image : MonoImage

<<Agent>>

+Grabbing

+Tracking

ImageToTrack

+ImageServer

+Grabbing

ImageRequest

+Grabbing

+Localizator

Image

+Grabbing

+FixedCameraCalibrationBuilding

ImageToCalibration

MotionDetector

image : MonoImage

calibration : CalibrationData

<<Agent>>

+IntruderDetector

+MotionDetector

StartMotionRequest

+MotionDetector

+ImageServer

MotionToHarwareRequest

+Startup

+CalibrationServer

MotionTo CalibrationRequest

+Grabbing

+MotionDetector

ImageToMotionDetector

Figure 5: The Communication Ontology Description diagram represents agents, agent’s roles and communications

As an example we can consider the TrackingRequest communication between the Tracking and IntruderDetector agents (fig. 5). The association class (named TrackingRequest as the communication) has three attributes: the ontology whose type is StartTracking (already discussed above, see the DOD diagram in fig. 4 for its definition) meaning that this interaction is a request of performing the StartTracking action from the IntruderDetector agent to the Tracking agent. The agent interaction protocol used is the FIPARequest [25] while the content language is RDF. Many FIPA implementations use ACL [26] as the message language and supposing that this is the case, starting from the specification of this communication in the COD and of the StartTracking action in the DOD, we can deduce that the content of the request sent from an instance of the IntruderDetector agent that we name AgentA to an instance of the Tracking agent named AgentB is:

 (StartTracking, AgentB, GenericComponent (ID=56), AgentA)

Expressing this request in RDF and introducing it in an ACL message we obtain:

(request

: sender AgentA

: receiver AgentB

: content (

<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:fipa=http://www.fipa.org/schemas#

xmlns:visont=http://mozart.csai.unipa.it/vision#>

<fipa:Action rdf: ID=”StartTracking”>

<fipa:actor> AgentB </fipa:actor>

<visont:resultreceiver> AgentA </visont:resultreceiver>

<fipa:act>track</fipa:act>

 <fipa:argument>

 <visont:target>ID=56</visont:target>

 </fipa:argument>

</fipa:Action>

</rdf:RDF>)

 :language fipa-rdf0)

Note that in this code, the receiver tag relates to the receiver of the message (AgentB of the Tracking type) while the ResultReceiver (inside the RDF content) refers to the agent that will be notified of the target position (AgentA of type IntruderDetector, the sender of the message in our example).

The text of the message is the result of the information present in both the DOD (Domain Ontology Description) and the COD (Communication Ontology Description) and it can be automatically built starting from there. Also the classes and methods that in each agent (sender and receiver) will deal with this message can be automatically built thanks to a Rational Rose add-in [5] that we produced and this turns the effort of detailing the design in a great advantage in terms of time of development and code correctness.

References

[1] FIPA Abstract Architecture Spec. (Refinements). FIPA specification documents (08-10-01). http://www.fipa.org

[2] Arkin R., Behavior Based robotics, The MIT Press, Cambridge, Massachusetts, London, England, 1998.

[3] Chella A., Gaglio S., Pirrone R., Conceptual representations of actions for autonomous robots, Robotics and Autonomous Systems, 34, (2001), 251-263.

[4] Jennings N.R., On agent-based software engineering, Artificial Intelligence 117 (2000), 277-296.

[5] Cossentino, M., Potts, C. A CASE tool supported methodology for the design of multi-agent systems in proc. of SERP’02 (Las Vegas, Nevada, Jul 2002)

[6] Chella, A., Cossentino, M., and Lo Faso, U. Designing agent-based systems with UML in Proc. of ISRA'2000 (Monterrey, Mexico, Nov. 2000).
[7] Chella, A., Cossentino, M., Infantino, I., and Pirrone, R. An agent based design process for cognitive architectures in robotics in proc. of WOA’01 (Modena, Italy, Sept. 2001).
	
[image: image3]

Figure 11: The hardware architecture used in the experiments: five PCs share the multilevel agent platform and host some agents of the whole set.
[8] I. Infantino, R. Cipolla, A. Chella, "Reconstruction of architectural scenes from uncalibrated photos and maps", IEICE - Transaction on Information and System, Vol.E84-D No.12 pp.1620-1625.
[9] Chella, A., Cossentino, M., Tomasino, G. An environment description language for multi-robot simulations in proc. of ISR 2001 (Seoul, Korea, 2001)

[10] Chella, A., Guarino, D., Infantino, I., Pirrone, R., A Vision System for Symbolic Interpretation of Dynamic Scenes Using ARSOM, Applied Artificial Intelligence, Vol. 15 No. 8, Issue Sep 2001,pp.723-734.

[11] Faugeras, O.: Three-Dimensional Computer Vision. MIT Press, Cambridge, MA, 1993.

[12] Horn B.P.K., Robot Vision, MIT Press, Cambridge, MA, 1986.

[13] Russel S., Norvig P., Artificial Intelligence: A Modern Approach, Prentice Hall Int. Ed., 1995.
[14] Chella, A., Cossentino, M., Pirrone, R., Ruisi, A., Modeling ontologies for robotic environments, Proc of 14th Int. Conf. on Software Engineering and Knowledge Engineering (SEKE 2002), July 15-19 2002, Ischia, Italy, 77-80.

[15] Fox, D., Burgard, W., Thrun, S., Probabilistic methods for mobile robot mapping, in Proc. Of the IJCAI-99 Workshop on Adaptive Spatial Representations of Dynamic Environments, 1999.
[16] A. Saffiotti, N.B. Zumel, and E.H. Ruspini. Multi-Robot Team Coordination using Desirabilities. Proc. of the 6th Intl. Conf. on Intelligent Autonomous Systems (IAS), pp. 107-114. Venice, Italy, 2000.

[17] A. Saffiotti and E.H. Ruspini. Global Team Coordination by Local Computation. Proc. of the European Control Conference (ECC). Porto, Portugal, 2001
[18] Balch, T. and Arkin, R.C. Behavior-based formation control for multi-robot teams. IEEE Transactions on Roboticsand Automation 14(6):926–939, 1998.
[19] Latombe, J.C., Robot Motion Planning, Kluwer Academic Publisher, Boston, 1996.
[20] Coradeschi, S., Saffiotti, A. Anchoring Symbols to Sensor Data: preliminary report. Proc. of the 17th AAAI Conf, 129-135. Austin, Texas, July 2000.
[21] FIPA RDF Content Language Specification. Foundation for Intelligent Physical Agents, Document FIPA XC00011B (2001/08/10). http://www.fipa.org/specs/ fipa00011/XC00011B.html

[22] Bergenti F., Poggi A., “Exploiting UML in the design of multi –agent systems”, ESAW Worshop at ECAI 2000.

[23] S. Cranefield and M. Purvis. UML as an ontology modelling language. In Proc. of the Workshop on Intelligent Information Integration, 16th International Joint Conference on Artificial Intelligence (IJCAI-99), 1999

[24] Modeling XML applications with UML. D. Carlson. Addison-Wesley. 2001.

[25] FIPA Request Interaction Protocol Specification. Foundation for Intelligent Physical Agents, Document FIPA PC00026F (2001/08/10). http://www.fipa.org/specs/fipa00026/ XC00026F.html

[26] FIPA ACL Message Structure Specification. Foundation for Intelligent Physical Agents, Document FIPA XC00061E (2001/08/10). http://www.fipa.org/specs/ fipa00061/XC00061E.html

[27] Resource Description Framework. (RDF) Model and Syntax Specification. W3C Recommendation. 22-02-1999. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
[28] Searle, J.R., Speech Acts. Cambridge University Press, 1969.
KnowledgeManager

MapServer

<<platform>>

Ada

HardwareManager

VisionManager

Sting

<<container>>

ThirdLevelPathPlanner

SelfLocalizator

Chopin

<<container>>

FirstLevelPathPlanner

SecondLevelPathPlanner

StategicalPlanner

Calibration

radio

LAN

Cartesio

<<container>>

FixedCameraGrabber

Tracking

MotionDetector

IntruderDetector

Giove

<<container>>

SensorReader

EngController

OdometryLocator

StereoCameraGrabber

bus

PentiumII 350

MHz

128 SDRam

Celeron 1,3

GHz

256 SDRam

PentiumIII 800

MHz

128 SDRam

PentiumII 266

MHz

128 SDRam

PentiumII 350

MHz

128 SDRam

PAGE
4
Submitted to Pattern Recognition - Special Issue on Agent based Computer Vision

