Task Specification

Process Fragment

Author(s): M. Cossentino, V. Seidita
Last saved on: 28/09/10 14:18

Fragment DeSCriptionmmmmmmsmsss 3
Fragment GOal.....iiiinnissssssssssssssssssssssssssss s s ssss s ssssssssssssssss s s s sassssnses 3
Fragment Origin ... s 3

The ProcCess HECYCLE ...ttt sessest st sss s ssses s ss s ss s sassssans 4
Fragment OVeIVIEW.....ismeismssismssssmsssassssssssssssssesssnsnsans 5

Fragment System metamodel.........ccoonimmnmnmnnnmmnssssssss s 5
Definition of System metamodel Elements and Relationshipsccccoevrnrsnsnnesasanans 6
System metamodel INPUt/OUEPUL ..o ————— 7

Definition of input system metamodel elements and relationshipscccoeneerneneeene. 7

StAKENOIAET ...t ———————————— 8

SYSLEIM ANALYSE oot ss s st s 8

Fragment WOTKEIOW ... sssssssssssssssssssssnss 8
WOTrKfloW deSCription ..ccismsmsississnsississssssssssssssssssssssssssssss s ssssssssssssssssssssssssssssssssasssnens 8
ACtiVity deSCriPtioN ... s sssssssssssnssssnssssnssssnsanss 9
System metamodel elements and relationships input/output........cocovvicinnnscscnnne 9
WP INPUE/OULPUL ...cuciniseiensnsmsnsssssissssssssssssssssssssssasssssssssssssssssssssssssssassssssssssssssssssssssssssassssnnes 10

Deliverable ... ————————————————— 11
Task Specification DOCUMENT ... 11

Task Specification Diagram: example of NOtatioNc.cvrereeereesneinseenseeneeeseesseesseese e 11
Deliverable relationships with the system metamodel.........ccooniicinnnssnscsnsesnsanas 12

GUIElINES ..o ———————————— 12
Enactment GUIidelines ... sssssssssssssssssssssssssssssssssssasas 12
Reuse GUuidelines........msssssssa———s 12

L010) 401 010 1] L [) o F O OO ST T TPON 12
Dependency Relationship with other fragments.......enencnneeneeseeeeseeseeenee 12
0 101 1 13

L3Sy ()) 1 e 13

Fragment Description

Fragment Goal

Describing the behaviour of each agent (agent’s plan) by considering its activities and
communications.

Fragment Origin

The presented fragment has been extracted from PASS/
Specification and Implementation) design process.

PASSI (Process for Agent Societies Specification and Implementation) is a step-by-step
requirement-to-code methodology for designing and developing multi-agent societies. The
methodology integrates design models and concepts from both Object-Oriented software
engineering and artificial intelligence approaches.

PASSI has been conceived in order to design FIPA-compliant agent-based systems, initially
for robotics and information systems applications.

Systems designed by using the PASSI process are usually composed of peer-agents (although
social structures can be defined). According to FIPA specifications agents are supposed to be
mobile, and they can interact by using semantic communications referring to an ontology
and an interaction protocol.

PASSI is suitable for the production of medium-large MAS (up to a hundred agent-kinds each
one instantiated in an unlimited number of agents in the running platform).

The adoption of patterns and the support of specific CASE tools (PTK) allows a quick and
affordable production of code for the JADE platform. This encourages the use of this process
even in time/cost-constrained projects or where high quality standards have to be met.

(Process for Agent Societies

Initial

Requirements

Next Iteration

System Requirements Model !

Agent Implementation Model

Code Model

|
— |
omain Multi-Agent Single-Agent |
Description |
Structure | ‘
— Definition i

[y
\ Y

|

|

(Behavior) (Behavior) |
Description Description |
|

T e A e A a

Code
Production

| I
| I
 (Gonram) |
| I
| I
| |
| [

|
L
| |
| |
| | (Structure)
| | Definition
|
|
| |
|
|

|

|

|

|

|

|
(=
| Identification
|

|< Roles) l(Tasks >|
| \Jdentification Specification |

Domain

Communication

- Roles Protocols Deployment I
log Ontological Description Description Configuration I
Description Description

|
| Ontology
|
|

e e e e —— ——— —— ————————— ———

Figure 1. The PASSI design process

The design process is composed of five models (see Figure 1): the System Requirements
Model is a model of the system requirements; the Agent Society Model is a model of the
agents involved in the solution in terms of their roles, social interactions, dependencies, and
ontology; the Agent Implementation Model is a model of the solution architecture in terms

of classes and methods (at two different levels of abstraction: multi and single-agent); the
Code Model is a model of the solution at the code level and the Deployment Model is a
model of the distribution of the parts of the system (i.e. agents) across hardware processing
units, and their movements across the different available platforms.

Useful references about the PASSI process are the following:

M. Cossentino. From Requirements to Code with the PASSI Methodology. In Agent-
Oriented Methodologies, B. Henderson-Sellers and P. Giorgini (Editors). Idea Group
Inc., Hershey, PA, USA. 2005.

M. Cossentino, S. Gaglio, L. Sabatucci, and V. Seidita. The PASSI and Agile PASSI MAS
Meta-models Compared with a Unifying Proposal. Lecture Notes in Computer Science,
vol. 3690. Springer-Verlag GmbH. 2005. pp. 183-192.

M. Cossentino and L. Sabatucci. Agent System Implementation in Agent-Based
Manufacturing and Control Systems: New Agile Manufacturing Solutions for Achieving
Peak Performance. CRC Press, April 2004.

M. Cossentino, L. Sabatucci, and A. Chella. Patterns reuse in the PASSI methodology.
In Engineering Societies in the Agents World 1V, 4th International Workshop, ESAW
2003, Revised Selected and Invited Papers, volume 3071 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2004. pp. 294-310

M. Cossentino, L. Sabatucci, A. Chella - A Possible Approach to the Development of
Robotic Multi-Agent Systems - IEEE/WIC Conf. on Intelligent Agent Technology
(IAT'03). October, 13-17, 2003. Halifax (Canada)

Chella, M. Cossentino, and L. Sabatucci. Designing JADE systems with the support of
case tools and patterns. Exp Journal, 3(3):86-95, Sept 2003.

The Process lifecycle

8.0 8 >0-8-0-8--0—- 8 —0—0
System Agent Agent Code Deployment

Requirements Society Implementation

Figure 2. The PASSI process phases

PASSI includes five phases (see Figure 2) arranged in an iterative/incremental process model:

System Requirements: It covers all the phases related to Req. Elicitation, analysis and
agents/roles identification

Agent Society: All the aspects of the agent society are faced: ontology, communications,
roles description, Interaction protocols

Agent Implementation: A view on the system’s architecture in terms of classes and
methods to describe the structure and the behavior of single agent.

Code: A library of class and activity diagrams with associated reusable code and source
code for the target system.

Deployment: How the agents are deployed and which constraints are defined/identified
for their migration and mobility.

Each phase produces a document that is usually composed aggregating UML models and
work products produced during the related activities. Each phase is composed of one or

more sub-phases each one responsible for designing or refining one or more artefacts that
are part of the corresponding model. For instance, the System Requirements model includes
an agent identification diagram that is a kind of UML use case diagrams but also some text
documents like a glossary and the system use scenarios.

Fragment Overview

This fragment aims to describe the behaviour of each agent. One different diagram is
designed for each agent whose behaviour is modelled in terms of flow of activities and
communication as a plan. The UML Model of this portion of process, Task Specification
Diagram, can be designed by adopting a standard UML notation (Activity diagram).

Located inside the PASSI System Requirement phase reported in the following Figure 3, this
fragment includes the activity “Task Specification” (red box)

<>

[

prodece >
@ Agents
Domain Requiremenj Agents
= Description > "’E””";a”"“ Identification
P
Problem ~ <copu ¢
Statement ¢ .‘ O o
ceoupus _ DOMAIN g
put Requirement = A =, =
o < Description | %1% § o o <<output>>
Identify Use £ Cluster Use
. Cases Reecibe Uoe Glossary § " cases Name Agents
<<output>> 2 parform:
3’\ <<input>> pamary>>
Scenarios <<performs, prmary>> R <cpertorm, primeny>>
o o
2 ‘;’ P assistsr> System Analyst
YS™ Domain
Analyst omer ,
<o
<cpertons, primary>>
¢
3 <<predecessor> g
Roles Identification ! Task LD
Specificatio Task
TELY ! e
N <cinputp>
o S
© Roles < < o>
Identify Roles Identification Identify Tasks CD?‘SCI"E’IQ
ontrol Flow
B -<couo>
Design performs, primary>> <<performs, primary>>
<<parorms, primary>> Scenarios portoms,priman>> L&D, <<periomns, pimary
System Analyst
L0 L0
< o>
System Analyst pomain
Expert
<pertomns, prmary>>-
= 8 a 3
< < L0 T L0
Role Use Activity Behavioral Stuctured Free Composite
WPKind WPKind WPKind WPKind

Keys

Figure 3. The System Requirements Phase (structural view)

Fragment System metamodel

The portion of metamodel of this fragment is:

<<MMMR>>
Communicate

<<MMMR> >
Communicate p»

Agent

<<MMMR> >
Activity_Invocation

<<MMMR> >

Task_Invocation T

: < <MMMR> >
X Actuwty_Mvocatlon P
<<MMMR>> ‘

Task_Invgcation p Activity

1 —

Task

<<MMMR>> |

Plan Task-Activity_Invocation p»

!
1

<<MMMR> >
Task-Activity_Invocation

Figure 4. The fragment MAS metamodel

This fragment refers to the MAS metamodel adopted in PASSI and contributes to define and
describe the elements reported in Figure 4.

Definition of System metamodel Elements and Relationships

Element

Type

Definition

Task

MMME

A task specifies the computation that generates the
effects of the behavioural feature. Its granularity
addresses the significance of a non decomposable
group of atomic actions that cannot be directly
addressed without referring to their belonging task.

Activity

MMME

The composing unit of a task. An activity takes a set of
inputs and converts them into a set of outputs, though
either or both sets may be empty. An Activity can
either be decomposable in other activities or atomic.

Plan

MMME

The behaviour of an Agent is specified within its plan.
It is the description of how to combine and order Tasks
and interactions to fulfil a (part of a) requirement.

Communicate

MMMR

The communication between two agents is at this level
of abstraction still not completely defined. It can be
composed by one or more atomic messages (for
instance Message_RR messages defined in RID PASSI
fragment)

Task_Invocation

MMMR

Flow of control within the Plan uses Task_Invocation
messages to enable Tasks invocation from other Tasks

Activity_Invocation

MMMR

Flow of control within the Plan uses
Activity_Invocation messages to enable Activities
invocation from other Activities

Task-
Activity_Invocation

MMMR

Flow of control within the Plan uses Task-
Activity_Invocation messages to enable Tasks or
Activities invocation from other Tasks or Activities

Keys:
MMME= MAS Metamodel Element
MMMR= MAS Metamodel Relationship

System metamodel Input/Output

Input, output system metamodel elements to be designed in the fragment are detailed in
the following tables.

As regards system metamodel elements:

Input To Be Designed To Be Refined To Be Quoted
MMME MMMR MMME MMMR MMME | MMMR MMME | MMMR

Role Role-Role [Task IAgent-Agent Agent

(Message R (Communicate)

R)
Agent Role-Actor |Activity [Task-Task

(Message_R (Task_Invocation)

A)
Actor Role-Agent [Plan IAgent-Task

(Plays) (aggregate)

Task-Activity
(Composite)

ITask-Plan (Composite)

IAgent-Plan
(Aggregate)

IActivity-Activity
(Activity_Invocation)

Task-Activity (Task-
Activity_Invocation)

Definition of input system metamodel elements and relationships

Actor - An external entity (human or system) interacting with the multi-agent system.

Agent - A system requirements domain agent.

PASSI considers three different levels of abstraction in the agent definition:

1) the system requirements domain agent is a responsibility center; this means that each
agent will rationally act to achieve its goals (usually defined in terms of functionalities it
should ensure).

2) during the Agency Domain design phases, the agent is an autonomous entity capable of
pursuing an objective through its autonomous decisions, actions and social relationships.

3) In the solution domain phases, an agent is a significant software unit, each agent is an
instance of an agent class.

Generally speaking, an Agent is an entity which:
- is capable of actions in an environment;

- can communicate directly with other agents typically using an Agent Communication
Language;

- is driven by a set of functionalities it has to accomplish;

- possesses resources of its own;

- is capable of perceiving its environment;

- has only a partial representation of this environment in form of an instantiation of the
domain ontology (knowledge);

- can offer services;

- can play several, different (and sometimes concurrent or mutually exclusive) roles.

Role - A portion of the social behaviour of an agent that is characterized by a goal
(accomplishing some specific functionality) and/or it provides a service.

Message_RA - An interaction between an agent and a role. This can be a message as well as
another kind of interaction (for instance GUI-based)

Message_RR - A message exchanged between two roles.

Plays - It specifies which agent plays a role

Stakeholder

Only one role is involved in this fragment, that is:
¢ System Analyst

Her/His responsibilities are described in the following subsection.

System Analyst

He is responsible for:
1. Tasks identification during the TSp. sub-phase.
2. Description of the control flow during the TSp. sub-phase.

Fragment workflow

Workflow description

The process that is to be performed in order to obtain the result is represented in the
following as a SPEM 2.0 diagram.

0>
Roles Idenfication

<<mandatory, input>>

S i s SR
System Analyst Identify Tasks DeSCTEIZVSO"‘m'
A
<<mandatory, output>>
?
o>
Task Specification
~ ¢
& oy O 0>
Role Use Task Use B\fvhs}z:g;a' C\‘,’V";‘:(?rfge
KEYS
Figure 5. The flow of activity of this fragment
Activity description
The fragment encompasses the following work breakdown elements:
Name Kind Description Roles
involved
Identify Tasks Task It consists in the identification of the | System
behavioural features each agent | Analyst
performs, and the (agent) roles | (perform)
involved in fulfilling the requirements
that are under its responsibility. It
consists in the identification of the
activities that each agent performs
playing one role.
Describe the | Task It consists in introducing the | System
control flow communication relationships among | Analyst
tasks of different agents and the | (perform)
control flow among tasks of the same
agent

System metamodel elements and relationships input/output

The above described work breakdown elements have the following input/output in terms of

system metamodel components.

In the Input column, system metamodel components utilization is completed by the name

of the input document reporting them in the original design process.

Input Output
Activity/Task MMME MMMR MMME MMMR
Name
Identify Tasks Role Role-Role Task
(Message_R
R)
Agent Role-Actor | Activity
(Message_R
A)
Actor Role-Agent | Plan
(Plays)
Describe the | Role Role-Role Agent-Agent
control flow (Message_R (Communicate)
R)
Agent Role-Actor Task-Task
(Message_R (Task_Invocation)
A)
Actor Role-Agent Agent-Task
(Plays) (aggregate)
Task-Activity
(Composite)
Task-Plan
(Composite)
Agent-Plan
(Aggregate)
Activity-Activity
(Activity_Invocatio
n)
Task-Activity (Task-
Activity_Invocation
)
WP Input/Output

Input, output work products to be designed in the fragment are detailed in the following

tables.

Input

Output

Roles
document

Identification|Task

Document

Specification

Deliverable

Task Specification Document

This fragment delivers a Task Specification composite document. This is composed by:

* one or more Task Specification Diagram(s), each diagram is used to specify the plan
of a different agent. Usually these diagrams are UML activity diagrams reporting two
swim-lanes: the leftmost contains tasks belonging to external agents, the rightmost
contains tasks belonging to the agent whose plan is defined in the diagram.

* atable describing each task in terms of list of activities, data and internal plan.

A Task Specification diagram represents the plan of the agent behaviour. It shows the
relationships among the external stimuli received by the agent and its behaviour (expressed
in terms of fired tasks). Relationships between activities represent communications between
tasks of different agents (these communications cross the border separating the two swim-
lanes) or invocation messages triggering tasks execution within the agent (this messages are
all located within the rightmost swim-lane).

Task Specification Diagram: example of notation

Common UML Activity diagrams are used to specify agent’s plan.

Other agents Purchase Manager agent

<PurchaseMonitor. RequestBooksl
StoreUl. NotifyDelivery ReceveRUcRase
Request

< PurchaseAdvisor.Listener : AR GTAGES StartPurchase

Z AskNegotiation >
Purchaser.Listener
z AskOrdering >

UpdatePurchase
History
NotifyEndOfPurchase >

Figure 6. An example of Task Specification Diagram

ReceiveDelivery
Notification

The following table is used to detail each task:

Task: Task_name

Description A short description of task goal and structure

Activities A list of the activities composing this task

Data A list of the main data fields used by the task

Behavior A structured description of the Task behavior (a kind of internal plan)

Deliverable relationships with the system metamodel

The following figure describes the structure of this fragment work products in relationship
with the MAS model elements:

B—
Actiity
F g D

Tapk £
R — O

Eg ¢ Task Specification

Plan

n=E

Agent

Keys 8 = ? a ¢
= = 2 B B =

MMM Element Structural Behavioral Structured Free Composite
WPKind WPKind WPKind WPKind WPKind

Figure 7. Structure of the fragment work-product in terms of MAS meta-model elements

[ies

Guidelines

Enactment Guidelines

In the PASSI methodology, tasks can be identified by looking at lifelines of roles in PASSI RID
sequence diagrams.

This fragment is suitable for the construction of action plans for agents that support a state-
based architecture instead of a goal-oriented one. Plans designed by using this fragment are

static and therefore they are not suitable for agents exploiting reasoning capabilities for
dynamic plan composition.

Reuse Guidelines

Composition

None

Dependency Relationship with other fragments

This fragment can be used after the definition of scenarios within a PASSI RID fragment.

Glossary

Message - an individual unit of communication between two or more agents that points out
the standard FIPA message format. Usually a message is associated with a communicative
act (or performative)

References

