Roles Identification

Process Fragment

Author(s): M. Cossentino, V. Seidita
Last saved on: 04/11/10 16:19

Index

Fragment Description
Fragment Goal
Fragment Origin

The Process lifecycle
Fragment Overview.

Fragment System metamodel
Definition of System metamodel elements
Definition of System metamodel relationships
System metamodel Input/Output

Definition of input system metamodel elements and relationshipsceceveermeeesseerne

Stakeholder
System Analyst
Domain Expert

NNNOUT s WwwWw

Fragment workflow
Workflow description
Activity description
System metamodel elements and relationships input/output.......ccoouveinresesssennnns
WP Input/Output

OO RO 00X

)

Deliverable
Roles Identification Diagrams
Roles Identification Diagram: example of notation 10
Deliverable relationships with the MMM 10

Guidelines 11
Enactment Guidelines 11
Reuse Guidelines 11

Composition 11
Dependency Relationship with other fragments 11

o

References Error! Bookmark not defined.

Fragment Description

Fragment Goal

Identifying the roles played by agents and their main interactions.

Fragment Origin

The presented fragment has been extracted from PASSI (Process for Agent Societies
Specification and Implementation) design process.

PASSI (Process for Agent Societies Specification and Implementation) is a step-by-step
requirement-to-code methodology for designing and developing multi-agent societies. The
methodology integrates design models and concepts from both Object-Oriented software
engineering and artificial intelligence approaches.

PASSI has been conceived in order to design FIPA-compliant agent-based systems, initially
for robotics and information systems applications.

Systems designed by using the PASSI process are usually composed of peer-agents (although
social structures can be defined). According to FIPA specifications agents are supposed to be
mobile, and they can interact by using semantic communications referring to an ontology
and an interaction protocol.

PASSI is suitable for the production of medium-large MAS (up to a hundred agent-kinds each
one instantiated in an unlimited number of agents in the running platform).

The adoption of patterns and the support of specific CASE tools (PTK) allows a quick and
affordable production of code for the JADE platform. This encourages the use of this process
even in time/cost-constrained projects or where high quality standards have to be met.

Initial .
Requirements Next Iteration

Agent Implementation Model

|
|
Multi-Agent Single-Agent |
|
|

|
| |
| |
| |
|
| | Structure Structure
| Definition Definition
| Agents |
lldemiﬁca(ion |
Iy — e 1 i "
o Wnom)
oles asks Description Description
| G!enliﬁcalion Gpecificatior) :
I e

: Domain Coorm:\l:nifratilon Roles Protocols | : Deployment |
Ontology ntologica Description Description /J | Configuration I
| \ Description Description | |
| | |
&

Figure 1. The PASSI design process

The design process is composed of five models (see Figure 1): the System Requirements
Model is a model of the system requirements; the Agent Society Model is a model of the
agents involved in the solution in terms of their roles, social interactions, dependencies, and
ontology; the Agent Implementation Model is a model of the solution architecture in terms

of classes and methods (at two different levels of abstraction: multi and single-agent); the
Code Model is a model of the solution at the code level and the Deployment Model is a
model of the distribution of the parts of the system (i.e. agents) across hardware processing
units, and their movements across the different available platforms.

Useful references about the PASSI process are the following:

* M. Cossentino. From Requirements to Code with the PASSI Methodology. In Agent-
Oriented Methodologies, B. Henderson-Sellers and P. Giorgini (Editors). Idea Group
Inc., Hershey, PA, USA. 2005.

* M. Cossentino, S. Gaglio, L. Sabatucci, and V. Seidita. The PASSI and Agile PASSI MAS
Meta-models Compared with a Unifying Proposal. Lecture Notes in Computer
Science, vol. 3690. Springer-Verlag GmbH. 2005. pp. 183-192.

* M. Cossentino and L. Sabatucci. Agent System Implementation in Agent-Based
Manufacturing and Control Systems: New Agile Manufacturing Solutions for
Achieving Peak Performance. CRC Press, April 2004.

* M. Cossentino, L. Sabatucci, and A. Chella. Patterns reuse in the PASSI methodology.
In Engineering Societies in the Agents World IV, 4th International Workshop, ESAW
2003, Revised Selected and Invited Papers, volume 3071 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2004. pp. 294-310

* M. Cossentino, L. Sabatucci, A. Chella - A Possible Approach to the Development of
Robotic Multi-Agent Systems - IEEE/WIC Conf. on Intelligent Agent Technology
(IAT'03). October, 13-17, 2003. Halifax (Canada)

* Chella, M. Cossentino, and L. Sabatucci. Designing JADE systems with the support of
case tools and patterns. Exp Journal, 3(3):86-95, Sept 2003.

The Process lifecycle

. E ey
System
Requirements

;5141 ;<\>E"715<> > s §> E@
Agent Code Deployment
Implementation

Agent
Society

Figure 2. The PASSI process phases

PASSI includes five phases (see Figure 2) arranged in an iterative/incremental process model:

e System Requirements: It covers all the phases related to Req. Elicitation, analysis and
agents/roles identification

* Agent Society: All the aspects of the agent society are faced: ontology, communications,
roles description, Interaction protocols

e Agent Implementation: A view on the system’s architecture in terms of classes and
methods to describe the structure and the behavior of single agent.

* Code: A library of class and activity diagrams with associated reusable code and source
code for the target system.

* Deployment: How the agents are deployed and which constraints are defined/identified
for their migration and mobility.

Each phase produces a document that is usually composed aggregating UML models and
work products produced during the related activities. Each phase is composed of one or
more sub-phases each one responsible for designing or refining one or more artefacts that

are part of the corresponding model. For instance, the System Requirements model includes
an agent identification diagram that is a kind of UML use case diagrams but also some text
documents like a glossary and the system use scenarios.

Fragment Overview

Located inside the PASSI System Requirement phase reported in the following Figure 3, this
fragment includes the activity “Roles Identification” (red box).
The aim is to identify the roles played by agents and to roughly describe their main
interactions by starting from the requirements assigned to each agent and a text description

of scenarios.

2

<oradncessons *> o
[Domain Requiremen
N Description > “’;"““;3“"" Identification
¢
Problem -~ — ¢
Statement ¢ .I Lo o
o> DOMain g
<> Requirement = s X .
< > Description | % . (Lu < “sipis
Identity Use Describe Use Glossary | s Name Agents
- Cases 14
po— ¢
R ¢—<cnpur
Scenarios D <cpadorm, primary>>
oz £ System Analyst
System
Domain
Analyst QoTer i
<<parorms, prna>>
(¢
<<predecessor> > o
Roles Identfication & Task O
Specifcati s
XXX ~ 5% Sronin
V<
%4 L2 < o>
Identify Roles Identification Identify Tasks CDDV::I"I?IZW
<o
Design <<portoms, prmae>
<<parorms,prmany>> Scenarios <purioms, rinan>> LT, <<parooms, vy
System Analyst
<> .
<eperiome, ssssts>>
System Analyst pomain
Expert
<partoms, prmary>>
= 8 a ¢
o < g O O
RoleUse acivity Behavioral Stuctured ~ Free Composite
WPKind WPKind WPKind WPKind

Keys

Figure 3. The System Requirements Phase (structural view)

Fragment System metamodel

The portion of metamodel of this fragment is:

SSMMME> > Valeria 4/11/10 16:19
Message_RR
Comment: aggiornare

<<MMMR> >

Mesgag}e_RR >

Agent | <<MMMR>> Role

Pldys B>
1

|
I

<<MMMR>>
Plays

Scenario

[X 2

Actor < <MMMR>
Message_RA P>
'

<<MMMR> >
Message_RA

Figure 4. The fragment MAS metamodel

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define and
describe the elements reported in Figure 4.

Definition of System metamodel elements

‘Element Type Definition

Role MMME A portion of the behaviour of an agent that is
characterized by a goal (accomplishing some specific
functionality) and/or provides a service.

Scenario MMME An instance of a use case describing a concrete set of
actions. A scenario is composed of the following fields:
- Name: used to identify the scenario
- Participating actors: the list of participating
actors (frequently actor instances are used)
- Flow of events: describing the flow of events
step by step.

Message_RR MMMR A message exchanged between two roles.
See glossary for message definition
Message_RA MMMR An interaction between an agent and a role. This can

be a message as well as another kind of interaction
(for instance GUI-based)

Plays MMMR It specifies which agent plays a role\

Valeria 4/11/10 16:19

Keys: Comment: dividere MMMR e MMME

MMME= MAS Metamodel Element
MMMR= MAS Metamodel Relationship

Definition of System metamodel relationships

System metamodel Input/Output

Input, output system metamodel elements to be designed in the fragment are detailed in
the following tables.

As regards system metamodel elements:

Input To Be Defined To be refined | To be quoted
MMME MMMR MMME MMMR MMME | MMMR [MMME[MMMR
Functional |Functional Role Role-Role Agent
RequirementfRequirement (Message_RR)
Functional

Requirement
(UC_Relationship)

Actor Role-Actor Actor
(Message_RA)

Agent Role-Agent
(Plays)

Definition of input system metamodel elements and relationships

Functional requirement - Functional requirements describe the functions that the software
is to execute. (from IEEE SEBOK 2004)

Actor - An external entity (human or system) interacting with the multi-agent system.

Agent — PASSI considers three different levels of abstraction in the agent definition:

1) the system requirements domain agent is a responsibility center; this means that each
agent will rationally act to achieve its goals (usually defined in terms of functionalities it
should ensure).

2) during the Agency Domain design phases, the agent is an autonomous entity capable of
pursuing an objective through its autonomous decisions, actions and social relationships.

3) In the solution domain phases, an agent is a significant software unit, each agent is an
instance of an agent class.

Generally speaking, an Agent is an entity which:

- is capable of actions in an environment;

- can communicate directly with other agents typically using an Agent Communication
Language;

- is driven by a set of functionalities it has to accomplish;

- possesses resources of its own;

- is capable of perceiving its environment;

- has only a partial representation of this environment in form of an instantiation of the
domain ontology (knowledge);

- can offer services;

- can play several, different (and sometimes concurrent or mutually exclusive) roles.

Stakeholder

Two roles are involved in this fragment: the System analyst and the Domain Expert. They are
described in the following sub-sections:

System Analyst

He is responsible for:
1. Roles identification. The System Analyst studies (textual) scenarios and system
requirements and he/she identifies the roles played by agents.
2. Designing scenarios in the chosen notation (usually UML sequence diagrams).

Domain Expert

He supports the system analyst during the description of scenarios.

Fragment workflow

Workflow description

The process that is to be performed in order to obtain the result is represented in the
following as a SPEM diagram.

3 2"
Valeria Seidita 28/9/10 14:08
=] Comment: non é la figura giusta, non c’@ il
=, — domain expert e I'icona dell’agent
- \ {D. identification & shagliata, I’'ho messa su
i 15. dropbox , vorrei che la cambiassi tu visto che
= Mesomon Roles Idenfication word non & stabile!
| 10
LSy
System Analyst
o — s —@
Identify Roles S?:Zi\canrib;
\ J

Figure 5. The flow of activity of this fragment

Activity description

The fragment encompasses the following work breakdown elements:

Name Kind Description Roles
involved
Identify Roles Task The System Analyst studies | System

(textual) scenarios and system | Analyst
requirements (as defined in the | (perform)
previous phase) and identifies the
roles played by agents

Design Scenarios | Task Each scenario in designed in form | System
of sequence diagram thus | Analyst
depicting the details of agents | (perform)
interactions Domain
Expert
(assist)

System metamodel elements and relationships input/output

The above described work breakdown elements have the following input/output in terms of
system metamodel components:

Input Output
Activity/Task MMME MMMR MMME MMMR
Name
Identify Roles Agent, Actor, | UC_Relationship Role
Functional (Generalize,
Requirement | Include, Extend,
(from Agent | Communicate),
Identification | Is_ResponsibleFor,
Document) Association (From
Agent
Identification
Document
Design Scenarios Scenario \Message_RR,
Message_RN

Valeria Seidita 28/9/10 14:09

Comment: non avevamo detto di non usare
we Input/Output acronimi di questo tipo? poi ci dimentichiamo

cosa volevamo dire.

Input, output work products to be designed in the fragment are detailed in the following

tables.
Input Output
Agents Identification|Roles Identification
diagram Diagrams

Deliverable

Roles Identification Diagrams

This fragment delivers one composite document. It is composed of one or more Roles
Identification Diagram(s), a text description of the scenario reported in each diagram and
one or more tables describing role features. Usually diagrams are UML sequence diagrams
reporting roles played by agents, actors and the message they exchange.

Sequence diagrams describe all the possible communication paths between agents. A path
describes a scenario of interacting agents working to achieve a required behaviour of the
system. Each agent may belong to several scenarios, which are drawn by means of sequence
diagrams in which objects are used to symbolize roles.

Roles Identification Diagram: example of notation

Common UML sequence diagrams are used to identify roles.
The name of each class is in the form: <role name>:<agent name>
Role names are not underlined because they are not instances of agent classes but rather
they represent a part of the agent behaviour.
x
: Supplier
v TheseBaoks) | | |

s tPurchase nndiﬁg]ns I |

TryTheseConditions I |

guniumTheseCundithszthThisSupplie!r |

|
|
T wBestOfer? | |
| HerelshyBest |
| |
|
|
|

Purcha ser

| hbmer: l|BoolsPnovider | | Conaultant : | Negetiator :

OrderPlacer: Deliveryhotifier : . Recorder :

| *[OfferNotGppdE nough] What2boutTh...

That'sTheBesto fier

| 1 |
I CamyOutOrder |

|
I I WantToBuy
¢ NewDeli
BooJ(sDeIl\ered [L ey
[
|

|

[[[

| UpdatepurchaseHistdry

! T | | o | ¥

Figure 6. An example of Role Identification Diagram

GofTheBooks

Structure of the table used to describe roles:

Name Description Responsibilities

Deliverable relationships with the MMM

The following figure describes the structure of this fragment work products in relationship
with the MAS model elements:

o rI;] Valeria Seidita 28/9/10 14:13

Comment: ma questa I'hai cambiata? la

| risoluzione & pessima, almeno nel mio
E0l R monitor.

¢

Roles Q
Identification I 1

Agent

= —

9 Actor

Keys B = o @
» =2 b » =

MMM Element Structural Behavioral Structured Frée Composite
WPKind WPKind WPKind WPKind WPKind

Figure 7. Structure of the RID fragment work-product with respect to the MAS meta-model

Guidelines

Enactment Guidelines

Roles can be identified by describing scenarios arising from the instantiation of use case
flows of activities.

This flow naturally involves agents (already identified in a previous fragment) and in so doing
they play roles.

Reuse Guidelines

Composition

Dependency Relationship with other fragments

This fragment can be used when scenarios involving agents are available (for instance in
terms of the outcome of a PASSI RID fragment)

Glossary

Message - an individual unit of communication between two or more agents that points out
the standard FIPA message format. Usually a message is associated with a communicative
act (or performative)

References

