Domain Requirements Description

Process Fragment

Author: M. Cossentino, V. Seidita
Last saved on: 18/10/10 13:26

Fragment DeSCriptionmmmmmmsmsss 3
Fragment GOal.....iiiinnissssssssssssssssssssssssssss s s ssss s ssssssssssssssss s s s sassssnses 3
Fragment OFigiN ... s s s sms s ssmsass 3

The PASSI Process IfECYCle. s sssssssssssssssssssssssssees 5
Fragment OVerVIEW.....immmsmsssssssssssssssss s sssasssssssssssssssssss s s anes 5

Fragment System metamodel.........ccoonimmnmnmnnnmmnssssssss s 6
Definition of System metamodel elements..........cccvcimnniinmnnssssssssss - 7
Definition of System metamodel relationships.......cccounnn——— 7
System metamodel INPUt/OULPULccviiirrmsissmsmss s 7

Definition of input system metamodel elements and relationshipscccceeeneereceneenne. 7
StaKehOlder ... ———————_——_—————— 7
SYSEEIM ANALYSE ..eereereerreesreersreessessseessesessesssseessessssessssesssess s ssses s es e es s ss e sssssessenes 8
1D 1) 44 00 4 B 20 q =) o T 8

Fragment WOrKflOW ... crsssssnssanns 8
R'1/000 954 L0 1V TXT0 o) 00) o 8
W2 ot 474 U070 CT 0) 01) 9
System metamodel elements and relationships input/output.......ccoerscinrenesnscnns 9
WP INPUL/OUEPUL .c.ccitieiinisismssssmsssnsssssssssnssssnssnss 9

Deliverableusssss————————————— 10
Domain Requirements Description Document ..., 10

Domain Requirements Description Diagram: example of notation ..., 10
Deliverable relationships with the MMM ... 10

0D 1 1= 1 L, 11
Enactment Guidelines ... 11
Reuse GUIdeliNes........oimmimmssssssssssssssssnss s ssssssssssssssssssssssssassssssssasasss 11

(0100 00 X0 1) L[) o 10T 11
Dependency Relationship with other fragments...... s 11

ST)) 1 L 5 11

Fragment Description

Fragment Goal

Representing system functional and non-functional requirements

Fragment Origin

The presented fragment has been extracted from PASSI
Specification and Implementation) design process.

PASSI (Process for Agent Societies Specification and Implementation) is a step-by-step
requirement-to-code methodology for designing and developing multi-agent societies. The
methodology integrates design models and concepts from both Object-Oriented software
engineering and artificial intelligence approaches.

PASSI has been conceived in order to design FIPA-compliant agent-based systems, initially
for robotics and information systems applications.

Systems designed by using the PASSI process are usually composed of peer-agents (although
social structures can be defined). According to FIPA specifications agents are supposed to be
mobile, and they can interact by using semantic communications referring to an ontology
and an interaction protocol.

PASSI is suitable for the production of medium-large MAS (up to a hundred agent-kinds each
one instantiated in an unlimited number of agents in the running platform).

The adoption of patterns and the support of specific CASE tools (PTK) allows a quick and
affordable production of code for the JADE platform. This encourages the use of this process
even in time/cost-constrained projects or where high quality standards have to be met.

(Process for Agent Societies

Initial

Requirements

Next Iteration

Agent Implementation Model

Multi-Agent

[I
[I
I I
I I
| | (Structure) Structure
| Agents | Definition — 5 Definition e P
: Identification : I
\ J Y
I |
| |
I |

|

|

(Behavior) |

(Roles)_,(Tasks) Description |
Identification Specification | |

—— e e — — — — ——" — — —————— —_ ———— — — ——o— —

Roles Protocols | :
Description Description : |
| |

-

|
|
Single-Agent |
|
|

Behavior
Description

[———

| Domai icati |
omain ommunication
y Deployment
| Ontology Ontological ! |
| \ Description Description (Conﬁgurat:on) >
|

L]

Figure 1. The PASSI design process

The design process is composed of five models (see Figure 1): the System Requirements
Model is a model of the system requirements; the Agent Society Model is a model of the
agents involved in the solution in terms of their roles, social interactions, dependencies, and
ontology; the Agent Implementation Model is a model of the solution architecture in terms
of classes and methods (at two different levels of abstraction: multi and single-agent); the

Code Model is a model of the solution at the code level and the Deployment Model is a
model of the distribution of the parts of the system (i.e. agents) across hardware processing
units, and their movements across the different available platforms.

Useful references about the PASSI process are the following:

M. Cossentino. From Requirements to Code with the PASSI Methodology. In Agent-
Oriented Methodologies, B. Henderson-Sellers and P. Giorgini (Editors). Idea Group
Inc., Hershey, PA, USA. 2005.

M. Cossentino, S. Gaglio, L. Sabatucci, and V. Seidita. The PASSI and Agile PASSI MAS
Meta-models Compared with a Unifying Proposal. Lecture Notes in Computer
Science, vol. 3690. Springer-Verlag GmbH. 2005. pp. 183-192.

M. Cossentino and L. Sabatucci. Agent System Implementation in Agent-Based
Manufacturing and Control Systems: New Agile Manufacturing Solutions for
Achieving Peak Performance. CRC Press, April 2004.

M. Cossentino, L. Sabatucci, and A. Chella. Patterns reuse in the PASSI methodology.
In Engineering Societies in the Agents World IV, 4th International Workshop, ESAW
2003, Revised Selected and Invited Papers, volume 3071 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2004. pp. 294-310

M. Cossentino, L. Sabatucci, A. Chella - A Possible Approach to the Development of
Robotic Multi-Agent Systems - IEEE/WIC Conf. on Intelligent Agent Technology
(IAT'03). October, 13-17, 2003. Halifax (Canada)

Chella, M. Cossentino, and L. Sabatucci. Designing JADE systems with the support of
case tools and patterns. Exp Journal, 3(3):86-95, Sept 2003.

The PASSI Process lifecycle

4 f) ’ ~ f | ’] / (@
System Ag?“‘ Agenl_ N Code Deployment
Requirements Society Implementation

Figure 2. The PASSI process phases

PASSI includes five phases (see Figure 2) arranged in an iterative/incremental process model:

. System Requirements: It covers all the phases related to Req. Elicitation,
analysis and agents/roles identification

. Agent Society: All the aspects of the agent society are faced: ontology,
communications, roles description, Interaction protocols

. Agent Implementation: A view on the system’s architecture in terms of
classes and methods to describe the structure and the behavior of single agent.

. Code: A library of class and activity diagrams with associated reusable code
and source code for the target system.

. Deployment: How the agents are deployed and which constraints are

defined/identified for their migration and mobility.

Each phase produces a document that is usually composed aggregating UML models and
work products produced during the related activities. Each phase is composed of one or
more sub-phases each one responsible for designing or refining one or more artefacts that
are part of the corresponding model. For instance, the System Requirements model includes
an agent identification diagram that is a kind of UML use case diagrams but also some text
documents like a glossary and the system use scenarios.

Fragment Overview

Consider the PASSI process (Figure 1) and the “System Requirements” phase with its
outcome “System Requirements Model”. Now, consider the “Domain Requirements
Description” (red colored in Figure 3) activity and the consequent outcome (the
“Communication Ontological Description” composite document).

This activity aims to model the social interactions and dependencies among the agents
involved in the solution and to face the following agent society aspects are faced:
communication and role description. The activity and its main outcome has been considered
for being extracted from PASSI and for becoming a process fragment.

((3
*
. 7S <<predecessor> o o
Domain Requiremengg L e gents Agents
o Description 05 "’:""ﬂ;"""" Identification
¢ 1 ’) N
Problem -~ A <input> ¥
Statement T .‘ O e
N Domain
f . <<output>>
Lecinputo> \ \ Requirement = 2
& u D | e, § B S
Identify Use \ £ Cluster Use
i \ Describe Use Glossary § Cases Name Agents
a Cases 2
<<ouput> § <cperforms,
M ¢ <<input>> pemary>>)
Scenarios <<performs, primary>>) D <cpertoms, primary>>
oy N <<performs,
s ‘r P assiste> System Analyst
ystem
Domain
Analyst
g Expert <<input>>
<<pertorms, primary>>
(2
<<pred > L 2 D
Roles Identification predecesse Task o
0000 Specificatio as
3 ‘ ‘ Specification
AN <dinpu>
o Roles < S e
Identify Roles Identification Identify Tasks Describe
. Control Flow
S-<outour>
DESign <<y rms, primary>> << ir >>
<<pertome, primary>> Scenarios perioms, pimary>> LoZ,_<<perorns.prnary
System Analyst
< L)
<<periorms -
System Analyst porain
Expert
<<performs, primary>>
= 22] a 3
< o > O >
Role Use Activity Behavioral Structured ~ Free Composite
WPKind WPKind ~ WPKind ~ WPKind

Keys
Figure 3. The System Requirements Phase (structural view)

Fragment System metamodel
The portion of metamodel of this fragment is:

<<MMMR>> <<MMMR>> <<MMMR> >
Generalize Include Extend
<<MMMR> >
UC_Relationship
H <<MMMR> >
' Association

<<MMMR>> =
UC_Rglatipnship p» i
!
Functional Requirement | <<MMMR>>

Association p

Actor

<<MMMR>>
Constrained_by

Constrajned_by

Non Functional Requirements

Figure 4. The fragment system metamodel

This fragment refers to the MAS metamodel adopted in PASSI and contributes to define and
describe the elements reported in Figure 4.

Definition of System metamodel elements

This fragment underpins the following model elements:

Functional requirement - Functional requirements describe the functions that the software
is to execute. (from IEEE SEBOK 2004)

Non-Functional requirement - Non functional requirements constrain the solution and are
sometimes known as constraints or quality requirements. (from IEEE SEBOK 2004)

Actor - An external entity (human or system) interacting with the multi-agent system.

Definition of System metamodel relationships

Generalize — (see UML definition)

Include — (see UML definition)

Extend — (see UML definition)

Association — (see UML definition)

Constrained_by — It relates a Functional Requirement to a Non Functional Requirement. It
means that a functionality of the system has to be realised under some non functional
constraints (see FURPS+ to have examples of non functional requirements).

System metamodel Input/Output

Input, output system metamodel elements to be designed in the fragment are detailed in
the following tables.

As regards system metamodel elements:

Input To Be Designed To Be Refined To Be Quoted

MMME MMMR MMME MMMR MMME | MMMR MMME | MMMR

Scenario IActor Functional
Requirement-
Functional
Requirement
(Generalize,
Include, Extend)
Functional Functional
Requirement [Requirement-Actor
(Association)

Non Functional
Functional Requirement- Non
Requirement [Functional
Requirement
(Constrained By)

Definition of input system metamodel elements and relationships

Scenario: “A narrative description of what people do and experience as they try to make use
of computer systems and applications” [M. Carrol, Scenario-based Design, Wiley, 1995]

Stakeholder

Roles involved in this fragment are:

System Analyst

Domain Expert

Their responsibilities are described in the following subsections.
System Analyst

He is responsible for:
1.

Use cases identification

2. Use cases refinement. Use cases are refined with the help of a Domain Expert.
Domain Expert
1.

He supports the system analyst during the description of the domain requirements.
Fragment workflow

Workflow description

The process that is to be performed in order to obtain the result is represented in the
following as a SPEM2.0 diagram.

a a
O o
O Problem .
Scenarios
System Analyst Statement

<<mandatory, input>>

e

<<mandatory, input>>

& —*rls —@

Identify Use Describe Use
Cases

Y

Domain Expert

Cases
<<optional, output>> <<mandatory, output>>
un) (4
Evy <
Domain
Glossary Requirements
Description
2] ¢ a
> o 0 . 0 LD
Structured omposite Free
Role Use Task Use WPKind WPKind WPKind
KEYS
Figure 5. The flow of activity of this process fragment

Activity description

The fragment encompasses the following work breakdown elements:

Name Kind Description Roles
involved

Identify Task It consists in identifying use cases in | System

Requirements order to represent the system | Analyst
requirements. (performs)

Describe Task Use cases are described with the | System

Requirements help of a Domain Expert Analyst
(performs)

Domain

Expert

(assists)

System metamodel elements and relationships input/output

The above described work breakdown elements have the following input/output in terms of
system metamodel components.
In the Input column, system metamodel components utilization is completed by the name
of the input document reporting them in the original design process.

Input Output
Activity/Task MMME MMMR MMME MMMR
Name
Identify Scenario (in
Requirements Scenarios
document)
Describe Actor, Functional | Functional
Requirements Requirement, Non | Requirement-
Functional Functional
Requirement. Requirement
(Generalize, Include,
Extend)
Functional
Requirement-Actor
(Association)
Functional
Requirement- Non
Functional
Requirement
(Constrained By)
WP Input/Output

Input, output work products to be designed in the fragment are detailed in the following

tables.

Input Output
Problem Statement System Requirements|
document
Scenarios Glossary
Deliverable

Domain Requirements Description Document

This fragment produces a composite document composed of use case diagrams and portions
of (structured) text containing the complete documentation of the use cases in terms of:
name, participating actors, entry condition, flow of events, exit condition, exceptions and
special requirements.

It also reports the non functional requirements identified for the system and associated to
each use case.

Domain Requirements Description Diagram: example of notation
Common UML use case diagram(s) are used to represent the system requirements.

j <<include>>

%/sonarReader O
\ <<incl
Environment O sensorFusion

laserReader <<indlude>>

O\ <<include>>

engControl pathPlanningTL

Figure 6. An example of Domain Requirements Description diagram

Deliverable relationships with the MMM

The following figure describes the structure of this fragment work products in relationship
with the MAS model elements:

757

Actor
¢
o
Domain Functional
Requirements Requirements
Description
Non Functional
Requirements
Keys =] = =] a ¢
= > B B = =

MMM Element Structural Behavioral Structured Free Composite
WPKind WPKind WPKind WPKind WPKind

Figura 7. Structure of the fragment work-product in terms of system metamodel elements

Guidelines

Enactment Guidelines

Reuse Guidelines

Composition

Dependency Relationship with other fragments

In most approaches, this fragment is intended to be the first of the design process but a
requirements elicitation fragment can be adopted before this.

References

! M. Cossentino. From Requirements to Code with the PASSI Methodology. In Agent-
Oriented Methodologies, B. Henderson-Sellers and P. Giorgini (Editors). Idea Group Inc.,
Hershey, PA, USA. 2005

2 http://pa.icar.cnr.it/passi/

