Domain Ontology Description

Process Fragment

Author(s): M. Cossentino, V. Seidita
Last saved on: 23/11/10 15:02

Fragment DeSCriptionmmmmmmsmsss 3
Fragment GOal.....iiiinnissssssssssssssssssssssssssss s s ssss s ssssssssssssssss s s s sassssnses 3
Fragment OFigiN ... s s s sms s ssmsass 3

The Process HfECYCLE .t ssssssssssssssssssssssssssssnes 4
Fragment OVerVIEW.....immmsmsssssssssssssssss s sssasssssssssssssssssss s s anes 5

Fragment System metamodel.........ccoonimmnmnmnnnmmnssssssss s 5
Definition of System metamodel elements.........cccovinniinsnsssssssssssssss s 6
Definition of System metamodel relationships.......cccounnn——— 6
System metamodel INPUt/OULPULccviiirrmsissmsmss s 7

Definition of input system metamodel elements and relationshipscccoeeneeereeeneenne. 7
StaKehOlders ... ——————————_————_ 7
ONLOLOZY EXPETL cevrrerrerrreeseersseeseesseesesesseessseessessssessssessssessssesssesssssssssssssessssessssassssesssssssesssssssasssssssessenes 8
SYSTEIMN ANALYST coueereeeeeeeseesse et ee e esssesssesss s sssees s R b s as s R Rt 8

Fragment WOrKflOW ... crsssssnssanns 8
R'1/000 954 L0 1V TXT0 o) 00) o 8
Activity deSCriPioN .. ————————— 8
System metamodel elements and relationships input/output.......ccoerscinrenesnscnns 9
WP INPUL/OUEPUL ..c.ciiiieismsnssmssssmsssnssssnssssnssssnssssnssnss 10

Deliverableusssss————————————— 10
Domain Ontology Description Document........commmmmmmmmmmmsmsssssssns 10

Domain Ontology Description Diagram: example of notation.......coeenneeerneesseeenne. 11
Deliverable relationships with the system metamodel..........ccoevrvrinririnnnsssnsnsnsinans 12

0D 1 1= 1 L, 12
Enactment Guidelines ... 12
Reuse GUIdeliNes........oimmimmssssssssssssssssnss s ssssssssssssssssssssssssassssssssasasss 13

(0100 00 X0 1) L[) o 10T 13
Dependency Relationship with other fragments......onennennesseesseseeseee s 13

ST) 2] 1 L 5 13

Fragment Description

Fragment Goal

Describing the agent environment in terms of an ontology composed by concepts,
predicates and actions.

Fragment Origin

The presented fragment has been extracted from PASS/
Specification and Implementation) design process.

PASSI (Process for Agent Societies Specification and Implementation) is a step-by-step
requirement-to-code methodology for designing and developing multi-agent societies. The
methodology integrates design models and concepts from both Object-Oriented software
engineering and artificial intelligence approaches.

PASSI has been conceived in order to design FIPA-compliant agent-based systems, initially
for robotics and information systems applications.

Systems designed by using the PASSI process are usually composed of peer-agents (although
social structures can be defined). According to FIPA specifications agents are supposed to be
mobile, and they can interact by using semantic communications referring to an ontology
and an interaction protocol.

PASSI is suitable for the production of medium-large MAS (up to a hundred agent-kinds each
one instantiated in an unlimited number of agents in the running platform).

The adoption of patterns and the support of specific CASE tools (PTK) allows a quick and
affordable production of code for the JADE platform. This encourages the use of this process
even in time/cost-constrained projects or where high quality standards have to be met.

(Process for Agent Societies

Initial
Requirements

Next Iteration

Agent Implementation Model

Code Model

i R 4 :
- | |
D . ;
: I Sooag 4l | |
| |
| | Structure Structure | | ¢ |
| Agents | Definition /|—» Definition [|
| Identification | : ! ‘ : : Production :
| T AL /. ___
I | I Behavior Behavior |
| Roles Tasks | i\ Description Description / }|
| \Identification Specification | | |

.

: :no;;:igy Co(l)r:‘rg\;;\;f;:tairn Roles) > (Protocols) : : (Deployment) :

D ipti D ipti) .
| \ Description Description escription escription | | Configuration I >
| ____ AgentSocietyModel _________ | |DeploymentModel |

Figure 1. The PASSI design process

The design process is composed of five models (see Figure 1): the System Requirements
Model is a model of the system requirements; the Agent Society Model is a model of the
agents involved in the solution in terms of their roles, social interactions, dependencies, and
ontology; the Agent Implementation Model is a model of the solution architecture in terms

of classes and methods (at two different levels of abstraction: multi and single-agent); the
Code Model is a model of the solution at the code level and the Deployment Model is a
model of the distribution of the parts of the system (i.e. agents) across hardware processing
units, and their movements across the different available platforms.

Useful references about the PASSI process are the following:

M. Cossentino. From Requirements to Code with the PASSI Methodology. In Agent-
Oriented Methodologies, B. Henderson-Sellers and P. Giorgini (Editors). Idea Group
Inc., Hershey, PA, USA. 2005.

M. Cossentino, S. Gaglio, L. Sabatucci, and V. Seidita. The PASSI and Agile PASSI MAS
Meta-models Compared with a Unifying Proposal. Lecture Notes in Computer
Science, vol. 3690. Springer-Verlag GmbH. 2005. pp. 183-192.

M. Cossentino and L. Sabatucci. Agent System Implementation in Agent-Based
Manufacturing and Control Systems: New Agile Manufacturing Solutions for
Achieving Peak Performance. CRC Press, April 2004.

M. Cossentino, L. Sabatucci, and A. Chella. Patterns reuse in the PASSI methodology.
In Engineering Societies in the Agents World IV, 4th International Workshop, ESAW
2003, Revised Selected and Invited Papers, volume 3071 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, 2004. pp. 294-310

M. Cossentino, L. Sabatucci, A. Chella - A Possible Approach to the Development of
Robotic Multi-Agent Systems - IEEE/WIC Conf. on Intelligent Agent Technology
(IAT'03). October, 13-17, 2003. Halifax (Canada)

Chella, M. Cossentino, and L. Sabatucci. Designing JADE systems with the support of
case tools and patterns. Exp Journal, 3(3):86-95, Sept 2003.

The Process lifecycle

) : . E§>EL’V'5<%E("E< > S N E@
System Agent Agent Code Deployment
Requirements Society Implementation

Figure 2. The PASSI process phases

PASSI includes five phases (see Figure 2) arranged in an iterative/incremental process model:
System Requirements: It covers all the phases related to Req. Elicitation, analysis and
agents/roles identification

Agent Society: All the aspects of the agent society are faced: ontology, communications,
roles description, Interaction protocols

Agent Implementation: A view on the system’s architecture in terms of classes and
methods to describe the structure and the behavior of single agent.

Code: A library of class and activity diagrams with associated reusable code and source
code for the target system.

Deployment: How the agents are deployed and which constraints are defined/identified
for their migration and mobility.

Each phase produces a document that is usually composed aggregating UML models and
work products produced during the related activities. Each phase is composed of one or
more sub-phases each one responsible for designing or refining one or more artefacts that
are part of the corresponding model. For instance, the System Requirements model includes
an agent identification diagram that is a kind of UML use case diagrams but also some text
documents like a glossary and the system use scenarios.

Fragment Overview

Consider the PASSI process (see Figure 2) and the phase “Agent Society” with its outcome
“Agent Society Model”. Now, let us consider the work definition “Domain Ontology
Description” (red colored in Figure 3) and the consequent outcome (the “Domain Ontology
Description” composite document). This is a fragment whose aim is to design the ontology

of the system.

Figure 3. The Agent Society Phase (structural view)

Fragment System metamodel
The portion of metamodel of this fragment is:

(<<predecessor> A
¢
<cinput>> > Ca oo S
PRl [~ Define Concepts Define Actions Domain .
— <<input>>— Description
0 2 e O N E
Domain <cporoms, primary> = v Domain Ontology
Description s e o7 <<performs, primary>> o (- Description
input>> ‘:,\/J - ;]
<o Domain Ontology 1 Glossary Communication <<input>>
Descritpion Ontological
Loy ¢ S Desc‘tplo
s System, Analyst f:
= System \Analyst =,
o = o L oo —
<cporomes ey o 2ol T
Glossary " Refine Define \dentify
" <<performs, primary>> Communication . tify Specification
| Rl ommunications Communications
L <cfecessssors | <ainpio>
— <<perirms, primary>>
< o oSty | SE
Define Ontology o ccoutpute> N ¢ A
Predicates Revision E‘ememsgéel o <<pertoms,primany>> Roles
K ¢ J ' System Analyst < Identification
E DV <cpertorms, primary>> = <<pertrme, primary>>
Y Activity Ontology Expert ¢ Communication
s <output>> = Ontological
= escription
o Domain Ontology
Description
Task Use J
<<predecessor>> .
A il <cinpu> EY
Role Use o = SO e
pertorms,primary> 29 o LS ‘ Task Specification
a ¢ . System Analyst <@ Roles Description Lo
(B0 =€
Free Communication =0 ¢ ¢ Describe Roles <<input>>
isas Ontlogca PN Roles Ca | NE
i Protocol Identification Services E0S
= <cinput>> Desgptltz Descr‘ltplon oo
E0d <cinput>> <input>> a 2 Identification
Structured] > <<performs, primary>>
3 ‘ L cN Relationships
WPKind o P ! Definition
Performative Services
e Identification o ! 4
= ¢ ¢
Protocol Tree <
> = Defintion = ¢ ‘ L@V <o, pimaro»
Composite Protocol C%nTllmwah;m = X Agent Designer
WPKind & Description ntologica) Rolés 1
~ s Anal Description Roles Description Dependencies
=) ystem nT lyst <<output>>- ! Ana’ys‘s <<performs, primary>>
L)) <<output>>
Behavioral <<performs, primary>> <<porforms primary>>
WPKind

< <MMME> >
4 Ontology El

i

Class

<<MMME>> <<MMME> > <<MMME>>

Action < <MMMR>> Concept <<MMMR>> Predicate

<CA—0|ntoReI CP-OntoRel p
k. ’ ’ Lo
1} |
<< MlM >> ' <[KMMMR> ! <<MMMR>>
AA—O,ntoReI > ' CC—OPtoReI > ' PP-OhtoRel
! '

' | . ! .
<<MMMR> > <<MMMR>> <<MMMR> > <<MMMR>> <<MMMR>>
AA-OntoRel CA-OntoRel CC-OntoRel CP-OntoRel PP-OntoRel

<<MMMR>> <<MMMR>>
ClassDiagram_Relationship k}———] PA-OntoRel
<<MMMR>>
PA-OntoRel p»

Figure 4. The fragment MAS metamodel

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define and
describe the elements reported in Figure 4.

Definition of System metamodel elements

This fragment underpins the following model elements:

Ontology Element (abstract class) — An ontology is composed of concepts, actions and
predicates. An Ontology element is an abstract class used as a placeholder for the ontology
constituting elements (either concepts, predicates or actions).

Concept - Description of a certain identifiable entity of the domain

Action — It expresses an activity, carried out by an agent.

Predicate — Description of a property of an entity of the domain

Definition of System metamodel relationships

This fragment underpins the following relationships among the model elements:

ClassDiagram_Relationship (abstract class) — the abstract representation of a relationship in
a class diagram

AA-OntoRel — A relationship connecting two actions. It can be further qualified by using a
stereotype.

CA-OntoRel — A relationship connecting an action to the concept(s) it affects. It can be
further qualified by using a stereotype.

CC-OntoRel — A relationship connecting two concepts. It can be further qualified by
adopting classical UML relationship types (es. Aggregate, generalize, ...)

CP-OntoRel — A relationship connecting a predicate to the concept(s) it is applied to. The
roles of the concepts in the predicate can be specified if needed. It can be further qualified
by using a stereotype.

PP-OntoRel — A relationship connecting two predicates. It can be further qualified by using a
stereotype.

PA-OntoRel — A relationship connecting a predicate to the action(s) it is applied to. It can be
further qualified by using a stereotype.

System metamodel Input/Output

Input, output system metamodel elements to be designed in the fragment are detailed in
the following tables.

As regards system metamodel elements:

Input To Be Designed To Be Refined To Be Quoted

MMME MMMR MMME MMMR MMME MMMR | MMME |MMMR

Functional Concept IAA-OntoRel
Requiremen

t

Non Predicate |[CA-OntoRel
Functional

Requiremen

t

Actor Action CC-OntoRel

Environmen |[CP-OntoRel
it

PP-OntoRel

PA-OntoRel

Definition of input system metamodel elements and relationships

Functional requirement - Functional requirements describe the functions that the software
is to execute. (from IEEE SEBOK 2004)

Non-Functional requirement - Non functional requirements constrain the solution and are
sometimes known as constraints or quality requirements. (from IEEE SEBOK 2004)

Actor - An external entity (human or system) interacting with the multi-agent system.

Stakeholders

Roles involved in this fragment are:
* Ontology Expert,
* System Analyst

Their responsibilities are described in the following subsections.

Ontology Expert

(S)He is responsible for:

1. Concepts definition. It consists in the identification of the concepts describing the
system domain.

2. Predicates definition. The identification of predicates (the assertions relating
concepts to the system domain).

3. Actions definition. The identification of activities an agent may perform.

4. Ontology element relationships refinement. It consist in relating the previous three
elements with ontological relationships

System Analyst

(S)He is responsible for:

1. Ontology revision. The revision of ontological elements in order to define the pieces
of knowledge of each agent and their communication ontology.

Fragment workflow

Workflow description

The process that is to be performed in order to obtain the result is represented in the
following as a SPEM 2.0 diagram.

ies

70 0 <<mandatory, g 0 g
System Analyst Glossary input>> Define Concepts
> =, > > ~, ,/.“\
. At |deﬁﬁfy o =
Define Actions Ontology Ontology
2 <<mam:atury, Elements Rel. Revision
e
Domain > o > <<mandatory,
L 0 Description Define output>>
Ontology Expert Predicates .
(=D
Domain Ontology
Description
K 2 g
E =N D
v < R |{3‘ Stru;:red Co;;)t;ite
S TaskUse "O€VS€ WPKind WPKind
Activity description
The fragment encompasses the following work breakdown elements:
Name Kind Description Roles
involved
Define Concepts Task The identification of the concepts Ontology
describing the system domain Expert
(perform)

Define Predicates Task The identification of predicates, the Ontology
assertions relating concepts to the Expert
system domain. (perform)

Define Actions Task The identification of the activities Ontology
that an agent may perform. Expert

(perform)

Identify Ont. Task It consists in relating the previous Ontology

Elem. three elements with ontological Expert

Relationships relationships. (perform)

Ontology Revision | Task The revision of ontological elements | System
in order to define the pieces of Analyst
knowledge of each agent and their (perform),
communication ontology. Ontology

Expert (assist)

System metamodel elements and relationships input/output

The above described work breakdown elements have the following input/output in terms of
system metamodel components.
In the Input column, system metamodel components utilization is completed by the name
of the input document reporting them in the original design process.

Input Output
Activity/Task MMME MMMR MMME MMMR
Name
Define Concepts Functional Requirement, Concept
Non Functional
Requirement, Actor
(System Requirements
document)
Define Predicates Functional Requirement, Predicate
Non Functional
Requirement, Actor
(System Requirements
document)
Define Actions Functional Requirement, Action
Non Functional
Requirement, Actor
(System Requirements
document)
Identify Ont. Elem. | Functional Requirement, AA-OntoRel,
Relationships Non Functional CA-OntoRel,
Requirement, Actor CC-OntoRel,
(System Requirements CP-OntoRel,
document) PP-OntoRel,
PA-OntoRel
Ontology Revision | Functional Requirement,
Non Functional
Requirement, Actor
(System Requirements
document)

WP Input/Output

Input, output work products to be designed in the fragment are detailed in the following
tables.

Input Output
System Requirements|Domain Ontology|
Document Description (DOD)
Document
Deliverable

Domain Ontology Description Document

This fragment produces a composite document composed by a class diagram (whose classes

represent concepts, actions and predicates) and a text document describing the elements

reported in the diagram with the following details:

* Concepts are described in terms of their attributes,

* The returned type is specified for predicates,

¢ Actions have an Actor (that is responsible to do the job), a ResultReceiver (that is to be
notified of the action results) and an Act that describes the action to be done with the
required input and prescribed outcome.

As already said, information described in the class diagram is (optionally) completed by a
text document reporting the following data for each element (concept, action, predicate) of
the ontology:

Concept Description

Attribute Type Description
Predicate Return Type Description
Action Description

Actor Description

ResultReceiver Description

Act

Parameter Type Description

Result Type Description

Domain Ontology Description Diagram: example of notation

<<action>>
<<action>> Givelmage

GiveStlmage | Actor : String
~ | ResultReceiver : String

<<Act>> Send(theImage : Stercolmage

<<Act>> Send(theImage : MonoImage

+thelmage
1
<<concept>>
Monolmage
+Anlmage 2 time : long
{ordered} ——

+thelmagg - ‘
/ — 71 |
e m/ T
<<concept> | +monolmage
Stereolmage <<concept>>
ImData
N <<predicate>> datalD :byte[]
IsImage name : String
+stereolmage =
8 Value : Boolean colors : int
: X :int
<<predicate>> y :int
IsStIlmage e
Value : Boolean comment : String

Figure 5. an example of Domain Ontology Description diagram

The ontology is described (using a class diagram) in terms of concepts (fill colour : yellow),

predicates (fill colour: light blue) and actions (fill colour: white).

Elements of the ontology can be related using three UML standard relationships:

* Generalization: it permits the generalize/specialization relation between two entities
that is one of the fundamental operator for constructing an ontology.

* Association: it models the existence of some kind of logical relationship between two
entities. It is possible to specify the role of the involved entities in order to clarify the
structure.

¢ Aggregation: it can be used to construct sets where value restrictions can be explicitly
specified; in the W3C RDF standard three types of container objects are enumerated:
the bag (an unordered list of resources), the sequence (an ordered list of resources) and
the alternative (a list of alternative values of a property). We choose of considering a
bag as an aggregation without an explicit restriction, a sequence is qualified by the

ordered attribute while the alternative is identified with the only one attribute of the
relationship.

In the previous figure we have a small portion of a robotic vision ontology. Monolmage is a
specialization of the ImData concept with a time stamp (grabbing time). The ordered
aggregation of two mono images gives the Stereolmage. We define the Givelmage action in
order to allow a robot to ask for an image. The image should be provided by the Actor and
sent to the ResultReceiver (both agents). Predicates are also defined in relation to some
existing concepts (Islmage, IsStimage).

Deliverable relationships with the system metamodel

The following figure describes the structure of this fragment work products in relationship
with the MAS model elements:

A

)
Concept |
R
¢ [
=D 0—5()0 I_,EI—
Domain Ontolo ntolog! e
Descritpion w Element Predicate "
1}51
Action
Keys = B & " 5
BE B B B B

MMM Element Structural Behavioral Structured Free Composite
WPKind WPKind WPKind WPKind WPKind

Figure 6. Structure of the fragment work-product in terms of MAS meta-model elements

Guidelines

Enactment Guidelines

As it is obvious, in order to design an ontology we need to know the application domain
described in the System Requirements document and we need a glossary of terms. The
ontology expert is supposed to be an expert of the domain who can produce a formal
representation of its categories according to the adopted notation.

Consider that the suggested structure is based on the RDF specification and therefore
different approaches are not recommended.

Ontology elements may be identified starting from requirement descriptions and
communication needs of agents (for instance, in PASSI, described in the Task Specification
document).

A convenient approach consists in looking at use case (textual) descriptions to find recurrent
nouns. These concepts are then arranged by means of inheritance and abstraction. New
higher level concepts will be so identified. When concepts have been identified, the third
task consists in determining concepts relationships and especially composition ones. There
are two ways available to determine these relations. The first consists in looking into existing
and well known ontologies to determine if a reuse is possible. The second is interviewing

domain experts and looking into the textual description of usage scenario and other
available documentation.

Reuse Guidelines

Composition

This fragment is conceived to produce (possibly with the support of an automatic code
generation tool) an RDF description of ontology categories. This makes it enough general but
it could not be appropriate in some conditions.

Ontology designed with this fragment is supposed to be ‘static’. It supports some kind of a-
priori (design-time) ontology and no type of dynamic discovery (at run-time) of new
categories/relationships.

This fragment is suitable for describing ontology in an RDF-like way. If the desired outcome
should be expressed in a different structure, this could not be the appropriate method to
obtain it

Dependency Relationship with other fragments

This fragment requires requirements and agent communications (even at a preliminary-
analysis stage level of detail) as useful inputs for ontology elements identification. For this
reason this may be fruitfully reused together with the following PASSI fragments:

* Domain Requirements Description

* Task Specification

References

[1] FIPA RDF Content Language Specification. Foundation for Intelligent
Physical ~ Agents, = Document FIPA XCO00011B (2001/08/10).
http://www.fipa.org/specs/ fipa00011/XC00011B.html

[2] S. Cranefield and M. Purvis. UML as an ontology modelling language. In
Proc. of the Workshop on Intelligent Information Integration, 16th
International Joint Conference on Artificial Intelligence (IJCAI-99), 1999

[3] Modeling XML applications with UML. D. Carlson. Addison-Wesley. 2001.

